Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CARD–BCL-10–MALT1 signalling in protective and pathological immunity

Abstract

CARD protein–BCL-10–MALT1 (CBM) signalosomes are multiprotein signalling platforms that control immune and inflammatory pathways in most tissues. After exposure to distinct immune triggers, these molecules form self-organizing filaments with MALT1 protease activity to regulate canonical nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways and the degradation of mRNA-binding proteins, which provides two layers of control of inflammatory gene expression. These CBM-regulated mechanisms are essential for host defence and tissue homeostasis, and numerous genetic alterations in CBM signalling components have been implicated in inherited and acquired immune-mediated diseases. This Review discusses the regulation and signalling of CBM complexes, their physiological roles and their pathophysiological functions in human immunodeficiency diseases, inflammatory disorders and cancers of the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural organization of CBM complex components, showing sites of post-translational modification.
Fig. 2: Cell type-specific activation of CBM complexes.
Fig. 3: Molecular mechanisms activating CBM signalling in T cells.
Fig. 4: MALT1 paracaspase substrates and their molecular functions.
Fig. 5: Cell type-specific physiological functions of CBM complex signalling.
Fig. 6: Somatic and germline alterations and coding risk variants in CARD9, CARD10, CARD11, CARD14 and MALT1.

Similar content being viewed by others

References

  1. Willis, T. G. et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96, 35–45 (1999).

    CAS  PubMed  Google Scholar 

  2. Zhang, Q. et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat. Genet. 22, 63–68 (1999). References 1 and 2 identify the BCL10 gene by molecular cloning of a recurrent chromosomal translocation in MALT lymphoma.

    CAS  PubMed  Google Scholar 

  3. Morgan, J. A. et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res. 59, 6205–6213 (1999).

    CAS  PubMed  Google Scholar 

  4. Akagi, T. et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 18, 5785–5794 (1999).

    CAS  PubMed  Google Scholar 

  5. Dierlamm, J. et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93, 3601–3609 (1999).References 3–5 identify the MALT1 gene from chromosomal translocations in MALT lymphoma.

    CAS  PubMed  Google Scholar 

  6. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-kappaB and neural tube closure. Cell 104, 33–42 (2001).This study reports the first generation and characterization of BCL-10-deficient mice, which show the essential function of BCL-10 in antigen receptor-induced NF-κB signalling for lymphocyte activation and adaptive immunity.

    CAS  PubMed  Google Scholar 

  7. Ruland, J., Duncan, G. S., Wakeham, A. & Mak, T. W. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 19, 749–758 (2003).

    CAS  PubMed  Google Scholar 

  8. Ruefli-Brasse, A. A., French, D. M. & Dixit, V. M. Regulation of NF-kappaB-dependent lymphocyte activation and development by paracaspase. Science 302, 1581–1584 (2003).References 7 and 8 characterize MALT1-deficient mice and establish non-redundant functions of MALT1 in lymphocyte signalling.

    CAS  PubMed  Google Scholar 

  9. Uren, A. G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967 (2000).

    CAS  PubMed  Google Scholar 

  10. Lucas, P. C. et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J. Biol. Chem. 276, 19012–19019 (2001).

    CAS  PubMed  Google Scholar 

  11. Gaide, O. et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation. Nat. Immunol. 3, 836–843 (2002).

    CAS  PubMed  Google Scholar 

  12. Wang, D. et al. A requirement for CARMA1 in TCR-induced NF-kappa B activation. Nat. Immunol. 3, 830–835 (2002).References 11 and 12 identify CARD11 as a scaffolding protein in T cells that links proximal TCR signalling to BCL-10 for the activation of NF-κB.

    CAS  PubMed  Google Scholar 

  13. Bertin, J. et al. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kappa B. J. Biol. Chem. 275, 41082–41086 (2000).

    CAS  PubMed  Google Scholar 

  14. Wang, L. et al. Card10 is a novel caspase recruitment domain/membrane-associated guanylate kinase family member that interacts with BCL10 and activates NF-kappa B. J. Biol. Chem. 276, 21405–21409 (2001).

    CAS  PubMed  Google Scholar 

  15. Bertin, J. et al. CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B. J. Biol. Chem. 276, 11877–118782 (2001).

    CAS  PubMed  Google Scholar 

  16. Hara, H. et al. Clustering of CARMA1 through SH3–GUK domain interactions is required for its activation of NF-κB signalling. Nat. Commun. 6, 5555 (2015).

    CAS  PubMed  Google Scholar 

  17. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006). This study identifies the essential role of CARD9 in the innate immune system, which controls dectin 1 signalling via BCL-10 and MALT1 engagement to mediate antifungal defence.

    CAS  PubMed  Google Scholar 

  18. Hara, H. et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat. Immunol. 8, 619–629 (2007).

    CAS  PubMed  Google Scholar 

  19. Roth, S. & Ruland, J. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation. Trends Immunol. 34, 243–250 (2013).

    CAS  PubMed  Google Scholar 

  20. Robinson, M. J. et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206, 2037–2051 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shenderov, K. et al. Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome. J. Immunol. 190, 5722–5730 (2013).

    CAS  PubMed  Google Scholar 

  22. Poeck, H. et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat. Immunol. 11, 63–69 (2010).

    CAS  PubMed  Google Scholar 

  23. Roth, S. et al. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1beta production. Nat. Immunol. 15, 538–545 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsu, Y. M. et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat. Immunol. 8, 198–205 (2007).

    CAS  PubMed  Google Scholar 

  25. Hara, H. et al. The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity 18, 763–775 (2003).

    CAS  PubMed  Google Scholar 

  26. Jun, J. E. et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751–762 (2003).

    CAS  PubMed  Google Scholar 

  27. Gross, O. et al. Multiple ITAM-coupled NK-cell receptors engage the Bcl10/Malt1 complex via Carma1 for NF-kappaB and MAPK activation to selectively control cytokine production. Blood 112, 2421–2428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Klemm, S. et al. The Bcl10-Malt1 complex segregates Fc epsilon RI-mediated nuclear factor kappa B activation and cytokine production from mast cell degranulation. J. Exp. Med. 203, 337–347 (2006).

    PubMed  PubMed Central  Google Scholar 

  29. Blonska, M. et al. The CARMA1-Bcl10 signaling complex selectively regulates JNK2 kinase in the T cell receptor-signaling pathway. Immunity 26, 55–66 (2007).

    CAS  PubMed  Google Scholar 

  30. Mabbott, N. A., Baillie, J. K., Brown, H., Freeman, T. C. & Hume, D. A. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14, 632 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Marko, L. et al. Bcl10 mediates angiotensin II-induced cardiac damage and electrical remodeling. Hypertension 64, 1032–1039 (2014).

    CAS  PubMed  Google Scholar 

  32. McAllister-Lucas, L. M. et al. CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells. Proc. Natl Acad. Sci. USA 104, 139–144 (2007).

    CAS  PubMed  Google Scholar 

  33. Grabiner, B. C. et al. CARMA3 deficiency abrogates G protein-coupled receptor-induced NF-κB activation. Genes. Dev. 21, 984–996 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, T. et al. CARMA3 is crucial for EGFR-induced activation of NF-kappaB and tumor progression. Cancer Res. 71, 2183–2192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fuchs-Telem, D. et al. Familial pityriasis rubra pilaris is caused by mutations in CARD14. Am. J. Hum. Genet. 91, 163–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Harden, J. L. et al. CARD14 expression in dermal endothelial cells in psoriasis. PLOS ONE 9, e111255 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Tanaka, M. et al. Essential role of CARD14 in murine experimental psoriasis. J. Immunol. 200, 71–81 (2018).

    CAS  PubMed  Google Scholar 

  38. Jordan, C. T. et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. Am. J. Hum. Genet. 90, 796–808 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Scudiero, I. et al. Alternative splicing of CARMA2/CARD14 transcripts generates protein variants with differential effect on NF-kappaB activation and endoplasmic reticulum stress-induced cell death. J. Cell. Physiol. 226, 3121–3131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, M. et al. Gain-of-function mutation of Card14 leads to spontaneous psoriasis-like skin inflammation through enhanced keratinocyte response to IL-17A. Immunity 49, 66–79 (2018).

    CAS  PubMed  Google Scholar 

  41. Schmitt, A. et al. MALT1 protease activity controls the expression of inflammatory genes in keratinocytes upon zymosan stimulation. J. Invest. Dermatol. 136, 788–797 (2016).

    CAS  PubMed  Google Scholar 

  42. Staal, J. et al. Ancient origin of the CARD–Coiled Coil/Bcl10/MALT1-like paracaspase signaling complex indicates unknown critical functions. Front. Immunol. 9, 1136 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Qiao, Q. et al. Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol. Cell 51, 766–779 (2013). This study resolves the structure of the CARD11–BCL-10–MALT1 complex and shows that it consists of a filamentous polymer of BCL-10 and MALT1 nucleated by CARD11 oligomers.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. David, L. et al. Assembly mechanism of the CARMA1-BCL10-MALT1-TRAF6 signalosome. Proc. Natl Acad. Sci. USA 115, 1499–1504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brownlie, R. J. & Zamoyska, R. T cell receptor signalling networks: branched, diversified and bounded. Nat. Rev. Immunol. 13, 257–269 (2013).

    CAS  PubMed  Google Scholar 

  46. Matsumoto, R. et al. Phosphorylation of CARMA1 plays a critical role in T cell receptor-mediated NF-kappaB activation. Immunity 23, 575–585 (2005).

    CAS  PubMed  Google Scholar 

  47. Sommer, K. et al. Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity 23, 561–574 (2005). References 46 and 47 show that the linker region of CARD11 can be phosphorylated by PKCβ and PKCθ, leading to structural changes within CARD11 that are crucial for CBM complex formation and NF-κB activation.

    CAS  PubMed  Google Scholar 

  48. Medeiros, R. B. et al. Regulation of NF-kappaB activation in T cells via association of the adapter proteins ADAP and CARMA1. Science 316, 754–758 (2007).

    CAS  PubMed  Google Scholar 

  49. Lee, K. Y., D’Acquisto, F., Hayden, M. S., Shim, J. H. & Ghosh, S. PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation. Science 308, 114–118 (2005).

    CAS  PubMed  Google Scholar 

  50. Bidere, N. et al. Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. Nature 458, 92–96 (2009).

    CAS  PubMed  Google Scholar 

  51. Cheng, J., Hamilton, K. S. & Kane, L. P. Phosphorylation of Carma1, but not Bcl10, by Akt regulates TCR/CD28-mediated NF-kappaB induction and cytokine production. Mol. Immunol. 59, 110–116 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishiguro, K. et al. Ca2+/calmodulin-dependent protein kinase II is a modulator of CARMA1-mediated NF-kappaB activation. Mol. Cell. Biol. 26, 5497–5508 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jattani, R. P., Tritapoe, J. M. & Pomerantz, J. L. Intramolecular interactions and regulation of cofactor binding by the four repressive elements in the caspase recruitment domain-containing protein 11 (CARD11) inhibitory domain. J. Biol. Chem. 291, 8338–8348 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cai, X. et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156, 1207–1222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu, S. et al. cIAP2 is a ubiquitin protein ligase for BCL10 and is dysregulated in mucosa-associated lymphoid tissue lymphomas. J. Clin. Invest. 116, 174–181 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, Y. et al. Targeting non-proteolytic protein ubiquitination for the treatment of diffuse large B cell lymphoma. Cancer Cell 29, 494–507 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, Y. K. et al. Molecular determinants of scaffold-induced linear ubiquitinylation of B cell lymphoma/leukemia 10 (Bcl10) during T cell receptor and oncogenic caspase recruitment domain-containing protein 11 (CARD11) signaling. J. Biol. Chem. 291, 25921–25936 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun, L., Deng, L., Ea, C. K., Xia, Z. P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    CAS  PubMed  Google Scholar 

  59. Oeckinghaus, A. et al. Malt1 ubiquitination triggers NF-kappaB signaling upon T cell activation. EMBO J. 26, 4634–4645 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu, C. J. & Ashwell, J. D. NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-kappaB activation. Proc. Natl Acad. Sci. USA 105, 3023–3028 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou, H. et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004). This study shows that BCL-10 and MALT1 activate the IKK complex through a mechanism that involves K63-linked ubiquitylation of IKKγ.

    CAS  PubMed  Google Scholar 

  62. Shinohara, H., Maeda, S., Watarai, H. & Kurosaki, T. IkappaB kinase beta-induced phosphorylation of CARMA1 contributes to CARMA1 Bcl10 MALT1 complex formation in B cells. J. Exp. Med. 204, 3285–3293 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. King, C. G. et al. TRAF6 is a T cell–intrinsic negative regulator required for the maintenance of immune homeostasis. Nat. Med. 12, 1088–1092 (2006).

    CAS  PubMed  Google Scholar 

  64. Dubois, S. M. et al. A catalytic-independent role for the LUBAC in NF-kappaB activation upon antigen receptor engagement and in lymphoma cells. Blood 123, 2199–2203 (2014).

    CAS  PubMed  Google Scholar 

  65. Wang, D. et al. Bcl10 plays a critical role in NF-kappaB activation induced by G protein-coupled receptors. Proc. Natl Acad. Sci. USA 104, 145–150 (2007).

    CAS  PubMed  Google Scholar 

  66. Pan, D. et al. MALT1 is required for EGFR-induced NF-kappaB activation and contributes to EGFR-driven lung cancer progression. Oncogene 35, 919–928 (2016).

    CAS  PubMed  Google Scholar 

  67. Klemm, S., Zimmermann, S., Peschel, C., Mak, T. W. & Ruland, J. Bcl10 and Malt1 control lysophosphatidic acid-induced NF-kappaB activation and cytokine production. Proc. Natl Acad. Sci. USA 104, 134–138 (2007).

    CAS  PubMed  Google Scholar 

  68. Strasser, D. et al. Syk kinase-coupled C-type lectin receptors engage protein kinase C-sigma to elicit Card9 adaptor-mediated innate immunity. Immunity 36, 32–42 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Roth, S. et al. Vav proteins are key regulators of Card9 signaling for innate antifungal immunity. Cell Rep. 17, 2572–2583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cao, Z. et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity 43, 715–726 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bhatt, D. & Ghosh, S. Regulation of the NF-κB-mediated transcription of inflammatory genes. Front. Immunol. 5, 71 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Wiesmann, C. et al. Structural determinants of MALT1 protease activity. J. Mol. Biol. 419, 4–21 (2012).

    CAS  PubMed  Google Scholar 

  73. Pelzer, C. et al. The protease activity of the paracaspase MALT1 is controlled by monoubiquitination. Nat. Immunol. 14, 337–345 (2013).

    CAS  PubMed  Google Scholar 

  74. Baens, M. et al. MALT1 auto-proteolysis is essential for NF-kappaB-dependent gene transcription in activated lymphocytes. PLOS ONE 9, e103774 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Rebeaud, F. et al. The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat. Immunol. 9, 272–281 (2008).

    CAS  PubMed  Google Scholar 

  76. Coornaert, B. et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat. Immunol. 9, 263–271 (2008). References 75 and 76 establish MALT1 as a proteolytically active enzyme and identify A20 and BCL-10 as MALT1 substrates.

    CAS  PubMed  Google Scholar 

  77. Staal, J. et al. T cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 30, 1742–1752 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hailfinger, S. et al. Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. Proc. Natl Acad. Sci. USA 108, 14596–14601 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Klein, T. et al. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-kappaB signalling. Nat. Commun. 6, 8777 (2015).

    CAS  PubMed  Google Scholar 

  80. Elton, L. et al. MALT1 cleaves the E3 ubiquitin ligase HOIL-1 in activated T cells, generating a dominant negative inhibitor of LUBAC-induced NF-κB signaling. FEBS J. 283, 403–412 (2016).

    CAS  PubMed  Google Scholar 

  81. Douanne, T., Gavard, J. & Bidere, N. The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling. J. Cell. Sci. 129, 1775–1780 (2016).

    CAS  PubMed  Google Scholar 

  82. Uehata, T. et al. Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation. Cell 153, 1036–1049 (2013).

    CAS  PubMed  Google Scholar 

  83. Jeltsch, K. M. et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nat. Immunol. 15, 1079–1089 (2014). References 82 and 83 identify the RNA-binding proteins regnase 1, roquin 1 and roquin 2 as MALT1 substrates and thereby establish that MALT1 regulates mRNA stability pathways upon TCR signalling.

    CAS  PubMed  Google Scholar 

  84. Klei, L. R. et al. MALT1 protease activation triggers acute disruption of endothelial barrier integrity via CYLD cleavage. Cell Rep. 17, 221–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mino, T. et al. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).

    CAS  PubMed  Google Scholar 

  86. Fu, M. & Blackshear, P. J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat. Rev. Immunol. 17, 130–143 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Hamilton, K. S. et al. T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10. Sci. Signal. 7, ra55 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Molinero, L. L. et al. CARMA1 controls an early checkpoint in the thymic development of FoxP3+ regulatory T cells. J. Immunol. 182, 6736–6743 (2009).

    CAS  PubMed  Google Scholar 

  90. Brustle, A. et al. MALT1 is an intrinsic regulator of regulatory T cells. Cell Death Differ. 24, 1214–1223 (2017).

    CAS  PubMed  Google Scholar 

  91. Lee, P. et al. Differing requirements for MALT1 function in peripheral B cell survival and differentiation. J. Immunol. 198, 1066–1080 (2017).

    CAS  PubMed  Google Scholar 

  92. Brustle, A. et al. The NF-kappaB regulator MALT1 determines the encephalitogenic potential of Th17 cells. J. Clin. Invest. 122, 4698–4709 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Molinero, L. L., Cubre, A., Mora-Solano, C., Wang, Y. & Alegre, M. L. T cell receptor/CARMA1/NF-kappaB signaling controls T-helper (Th) 17 differentiation. Proc. Natl Acad. Sci. USA 109, 18529–18534 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Xue, L. et al. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nat. Immunol. 4, 857–865 (2003).

    CAS  PubMed  Google Scholar 

  95. Kip, E. et al. MALT1 controls attenuated rabies virus by inducing early inflammation and T cell activation in the brain. J. Virol. 92, e02029–e02017 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Mc Guire, C. et al. Paracaspase MALT1 deficiency protects mice from autoimmune-mediated demyelination. J. Immunol. 190, 2896–2903 (2013).

    Google Scholar 

  97. Gewies, A. et al. Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation. Cell Rep. 9, 1292–1305 (2014).

    CAS  PubMed  Google Scholar 

  98. Jaworski, M. et al. Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity. EMBO J. 33, 2765–2781 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bornancin, F. et al. Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation. J. Immunol. 194, 3723–3734 (2015).

    CAS  PubMed  Google Scholar 

  100. Jia, X. M. et al. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J. Exp. Med. 211, 2307–2321 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Jhingran, A. et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLOS Pathog. 11, e1004589 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Yamamoto, H. et al. Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with Cryptococcus neoformans. Infect. Immun. 82, 1606–1615 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007). This study establishes that CARD9 signalling in DCs drives the activation of adaptive immunity and controls, in particular, the differentiation of T H 17 cells upon fungal infection.

    CAS  PubMed  Google Scholar 

  104. Gavino, C. et al. Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J. Allergy Clin. Immunol. 137, 1178–1188 (2016).

    CAS  PubMed  Google Scholar 

  105. Drummond, R. A. et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLOS Pathog. 11, e1005293 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Rieber, N. et al. Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells. Cell Host Microbe 17, 507–514 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Brown, G. D., Willment, J. A. & Whitehead, L. C-Type lectins in immunity and homeostasis. Nat. Rev. Immunol. 18, 374–389 (2018).

    CAS  PubMed  Google Scholar 

  108. Dorhoi, A. et al. The adaptor molecule CARD9 is essential for tuberculosis control. J. Exp. Med. 207, 777–792 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Abdullah, Z. et al. RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids. EMBO J. 31, 4153–4164 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016). This study links the colitis susceptibility of Card9 -deficient mice to an altered intestinal microbiota and shows an association of a CARD9 risk SNP with a similar microbiota shift in patients with IBD.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sokol, H. et al. Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology 145, 591–601 (2013).

    CAS  PubMed  Google Scholar 

  112. Bergmann, H. et al. Card9-dependent IL-1β regulates IL-22 production from group 3 innate lymphoid cells and promotes colitis-associated cancer. Eur. J. Immunol. 47, 1342–1353 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nemeth, T., Futosi, K., Sitaru, C., Ruland, J. & Mocsai, A. Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo. Nat. Commun. 7, 11004 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Causton, B. et al. CARMA3 Is critical for the initiation of allergic airway inflammation. J. Immunol. 195, 683–694 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. McAllister-Lucas, L. M. et al. The CARMA3-Bcl10-MALT1 signalosome promotes angiotensin II-dependent vascular inflammation and atherogenesis. J. Biol. Chem. 285, 25880–25884 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Van Beek, M. et al. Bcl10 links saturated fat overnutrition with hepatocellular NF-kB activation and insulin resistance. Cell Rep. 1, 444–452 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. Medoff, B. D. et al. CARMA3 mediates lysophosphatidic acid-stimulated cytokine secretion by bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 40, 286–294 (2009).

    CAS  PubMed  Google Scholar 

  118. Delekta, P. C. et al. Thrombin-dependent NF-κB activation and monocyte/endothelial adhesion are mediated by the CARMA3·Bcl10·MALT1 signalosome. J. Biol. Chem. 285, 41432–41442 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tebbutt, N., Pedersen, M. W. & Johns, T. G. Targeting the ERBB family in cancer: couples therapy. Nat. Rev. Cancer 13, 663–673 (2013).

    CAS  PubMed  Google Scholar 

  120. Chang, Y. W. et al. CARMA3 represses metastasis suppressor NME2 to promote lung cancer stemness and metastasis. Am. J. Respir. Crit. Care Med. 192, 64–75 (2015).

    CAS  PubMed  Google Scholar 

  121. Ekambaram, P. et al. The CARMA3-Bcl10-MALT1 signalosome drives NFkappaB activation and promotes aggressiveness in angiotensin II receptor-positive breast cancer. Cancer Res. 78, 1225–1240 (2018).

    CAS  PubMed  Google Scholar 

  122. Chuang, S. S. et al. Pulmonary mucosa-associated lymphoid tissue lymphoma with strong nuclear B cell CLL/lymphoma 10 (BCL10) expression and novel translocation t(1;2)(p22;p12)/immunoglobulin kappa chain-BCL10. J. Clin. Pathol. 60, 727–728 (2007).

    PubMed  Google Scholar 

  123. Streubel, B. et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 101, 2335–2339 (2003).

    CAS  PubMed  Google Scholar 

  124. Hamoudi, R. A. et al. Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism. Leukemia 24, 1487–1497 (2010).

    CAS  PubMed  Google Scholar 

  125. Rosebeck, S. et al. Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 331, 468–472 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Nie, Z. et al. Conversion of the LIMA1 tumour suppressor into an oncogenic LMO-like protein by API2-MALT1 in MALT lymphoma. Nat. Commun. 6, 5908 (2015).

    CAS  PubMed  Google Scholar 

  127. Baens, M. et al. Selective expansion of marginal zone B cells in Emicro-API2-MALT1 mice is linked to enhanced IkappaB kinase gamma polyubiquitination. Cancer Res. 66, 5270–5277 (2006).

    CAS  PubMed  Google Scholar 

  128. Li, Z. et al. Emu-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-kappaB pathways generating marginal zone (MZ) B cell expansion as a precursor to splenic MZ lymphoma. Blood 114, 4158–4168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lenz, G. et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676–1679 (2008). This study identifies activating mutations in the CARD11 coiled-coil domain as a major oncogenic event in diffuse large B cell lymphoma.

    CAS  PubMed  Google Scholar 

  130. Wu, C. et al. Genetic heterogeneity in primary and relapsed mantle cell lymphomas: impact of recurrent CARD11 mutations. Oncotarget 7, 38180–38190 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Pasqualucci, L. et al. Genetics of follicular lymphoma transformation. Cell Rep. 6, 130–140 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kataoka, K. et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat. Genet. 47, 1304–1315 (2015).

    CAS  PubMed  Google Scholar 

  133. Vallois, D. et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T cell–derived lymphomas. Blood 128, 1490–1502 (2016).

    CAS  PubMed  Google Scholar 

  134. Lamason, R. L., McCully, R. R., Lew, S. M. & Pomerantz, J. L. Oncogenic CARD11 mutations induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain. Biochemistry 49, 8240–8250 (2010).

    CAS  PubMed  Google Scholar 

  135. Knies, N. et al. Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B cell proliferation via cooperative NF-kappaB and JNK activation. Proc. Natl Acad. Sci. USA 112, E7230–E7238 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Juilland, M. et al. CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B cell lymphomas. Blood 127, 1780–1789 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ferch, U. et al. Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 206, 2313–2320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hailfinger, S. et al. Essential role of MALT1 protease activity in activated B cell-like diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA 106, 19946–19951 (2009). References 137 and 138 establish pharmacological MALT1 protease inhibition as a putative therapeutic strategy.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Fontan, L. et al. MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell 22, 812–824 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Nagel, D. et al. Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell 22, 825–837 (2012).

    CAS  PubMed  Google Scholar 

  141. Phelan, J. D. et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature 560, 387–391 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. da Silva Almeida, A. C. et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat. Genet. 47, 1465–1470 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Snow, A. L. et al. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. J. Exp. Med. 209, 2247–2261 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Arjunaraja, S. et al. Intrinsic plasma cell differentiation defects in B cell expansion with NF-κB and T cell anergy patient B cells. Front. Immunol. 8, 913 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Ma, C. A. et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat. Genet. 49, 1192–1201 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Dadi, H. et al. Combined immunodeficiency and atopy caused by a dominant negative mutation in caspase activation and recruitment domain family member 11 (CARD11). J. Allergy Clin. Immunol. 141, 1818–1830 (2018).

    CAS  PubMed  Google Scholar 

  147. Hirota, T. et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat. Genet. 44, 1222–1226 (2012).

    CAS  PubMed  Google Scholar 

  148. Stepensky, P. et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J. Allergy Clin. Immunol. 131, 477–485 (2013).

    CAS  PubMed  Google Scholar 

  149. Greil, J. et al. Whole-exome sequencing links caspase recruitment domain 11 (CARD11) inactivation to severe combined immunodeficiency. J. Allergy Clin. Immunol. 131, 1376–1383 (2013).

    CAS  PubMed  Google Scholar 

  150. Jabara, H. H. et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J. Allergy Clin. Immunol. 132, 151–158 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. McKinnon, M. L. et al. Combined immunodeficiency associated with homozygous MALT1 mutations. J. Allergy Clin. Immunol. 133, 1458–1462 (2014).

    CAS  PubMed  Google Scholar 

  152. Punwani, D. et al. Combined immunodeficiency due to MALT1 mutations, treated by hematopoietic cell transplantation. J. Clin. Immunol. 35, 135–146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Torres, J. M. et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J. Clin. Invest. 124, 5239–5248 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. Charbit-Henrion, F. et al. Deficiency in mucosa-associated lymphoid tissue lymphoma translocation 1: a novel cause of IPEX-like syndrome. J. Pediatr. Gastroenterol. Nutr. 64, 378–384 (2017).

    PubMed  Google Scholar 

  155. Rozmus, J. et al. Successful clinical treatment and functional immunological normalization of human MALT1 deficiency following hematopoietic stem cell transplantation. Clin. Immunol. 168, 1–5 (2016).

    CAS  PubMed  Google Scholar 

  156. Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009). This first report of a CARD9-deficient family identifies alterations in human CARD9 signalling as a cause of severe susceptibility to fungal infections.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Drummond, R. A., Franco, L. M. & Lionakis, M. S. Human CARD9: a critical molecule of fungal immune surveillance. Front. Immunol. 9, 1836 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Gavino, C. et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin. Infect. Dis. 59, 81–84 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Janse, M. et al. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9. Hepatology 53, 1977–1985 (2011).

    CAS  PubMed  Google Scholar 

  162. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Zhernakova, A. et al. Genetic analysis of innate immunity in Crohn’s disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am. J. Hum. Genet. 82, 1202–1210 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Xu, X. et al. CARD9(S12N) facilitates the production of IL-5 by alveolar macrophages for the induction of type 2 immune responses. Nat. Immunol. 19, 547–560 (2018).

    CAS  PubMed  Google Scholar 

  166. Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Leshchiner, E. S. et al. Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease. Proc. Natl Acad. Sci. USA 114, 11392–11397 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhou, T. et al. Rare variants in optic disc area gene CARD10 enriched in primary open-angle glaucoma. Mol. Genet. Genom. Med. 4, 624–633 (2016).

    CAS  Google Scholar 

  169. Nho, K. et al. Whole-exome sequencing and imaging genetics identify functional variants for rate of change in hippocampal volume in mild cognitive impairment. Mol. Psychiatry 18, 781–787 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Greb, J. E. et al. Psoriasis. Nat. Rev. Dis. Primers 2, 16082 (2016).

    PubMed  Google Scholar 

  171. Jordan, C. T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012). This work uncovers highly penetrant mutations in CARD14 as the underlying cause of psoriasis in two families and thereby identifies CARD14 as the pathophysiologically relevant gene in the long-known psoriasis susceptibility locus PSORS2.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Howes, A. et al. Psoriasis mutations disrupt CARD14 autoinhibition promoting BCL10-MALT1-dependent NF-kappaB activation. Biochem. J. 473, 1759–1768 (2016).

    CAS  PubMed  Google Scholar 

  173. Mellett, M. et al. CARD14 gain-of-function mutation alone is sufficient to drive IL-23/IL-17–mediated psoriasiform skin inflammation in vivo. J. Invest. Dermatol. 138, 2010–2023 (2018).

    CAS  PubMed  Google Scholar 

  174. Wirnsberger, G. et al. Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat. Med. 22, 915–923 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Xiao, Y. et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat. Med. 22, 906–914 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. van Dissel, J. T. et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T cell responses in human. Vaccine 32, 7098–7107 (2014).

    PubMed  Google Scholar 

  177. Ostrop, J. et al. Contribution of MINCLE-SYK signaling to activation of primary human APCs by mycobacterial cord factor and the novel adjuvant TDB. J. Immunol. 195, 2417–2428 (2015).

    CAS  PubMed  Google Scholar 

  178. Mc Guire, C. et al. Pharmacological inhibition of MALT1 protease activity protects mice in a mouse model of multiple sclerosis. J. Neuroinflamm. 11, 124 (2014).

    Google Scholar 

  179. Eitelhuber, A. C. et al. Dephosphorylation of Carma1 by PP2A negatively regulates T cell activation. EMBO J. 30, 594–605 (2011).

    CAS  PubMed  Google Scholar 

  180. Qiao, G. et al. T cell receptor-induced NF-kappaB activation is negatively regulated by E3 ubiquitin ligase Cbl-b. Mol. Cell. Biol. 28, 2470–2480 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kojo, S. et al. Mechanisms of NKT cell anergy induction involve Cbl-b-promoted monoubiquitination of CARMA1. Proc. Natl Acad. Sci. USA 106, 17847–17851 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Ishiguro, K., Ando, T., Goto, H. & Xavier, R. Bcl10 is phosphorylated on Ser138 by Ca2+/calmodulin-dependent protein kinase II. Mol. Immunol. 44, 2095–2100 (2007).

    CAS  PubMed  Google Scholar 

  183. Wegener, E. et al. Essential role for IkappaB kinase beta in remodeling Carma1-Bcl10-Malt1 complexes upon T cell activation. Mol. Cell 23, 13–23 (2006).

    CAS  PubMed  Google Scholar 

  184. Lin, Q. et al. Cutting edge: the “death” adaptor CRADD/RAIDD targets BCL10 and suppresses agonist-induced cytokine expression in T lymphocytes. J. Immunol. 188, 2493–2497 (2012).

    CAS  PubMed  Google Scholar 

  185. Lamason, R. L., Kupfer, A. & Pomerantz, J. L. The dynamic distribution of CARD11 at the immunological synapse is regulated by the inhibitory kinesin GAKIN. Mol. Cell 40, 798–809 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Qiao, H., Liu, Y., Veach, R. A., Wylezinski, L. & Hawiger, J. The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli. J. Biol. Chem. 289, 21973–21983 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Duwel, M. et al. A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J. Immunol. 182, 7718–7728 (2009).

    PubMed  Google Scholar 

  188. Lobry, C., Lopez, T., Israel, A. & Weil, R. Negative feedback loop in T cell activation through IkappaB kinase-induced phosphorylation and degradation of Bcl10. Proc. Natl Acad. Sci. USA 104, 908–913 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Pedersen, S. M., Chan, W., Jattani, R. P., Mackie d, S. & Pomerantz, J. L. Negative regulation of CARD11 signaling and lymphoma cell survival by the E3 ubiquitin ligase RNF181. Mol. Cell. Biol. 36, 794–808 (2015).

    PubMed  Google Scholar 

  190. Scharschmidt, E., Wegener, E., Heissmeyer, V., Rao, A. & Krappmann, D. Degradation of Bcl10 induced by T cell activation negatively regulates NF-kappa B signaling. Mol. Cell. Biol. 24, 3860–3873 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Moreno-Garcia, M. E. et al. MAGUK-controlled ubiquitination of CARMA1 modulates lymphocyte NF-kappaB activity. Mol. Cell. Biol. 30, 922–934 (2010).

    CAS  PubMed  Google Scholar 

  192. Paul, S., Kashyap, A. K., Jia, W., He, Y. W. & Schaefer, B. C. Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB. Immunity 36, 947–958 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Yang, H. et al. pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. Mol. Cell 28, 15–27 (2007).

    PubMed  PubMed Central  Google Scholar 

  194. Yang, C. S. et al. The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity. Cell Host Microbe 11, 277–289 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are affiliated with the Center for Translational Cancer Research (TranslaTUM), Munich, Germany, the German Cancer Consortium (DKTK), Heidelberg, Germany, and the German Center for Infection Research (DZIF), partner site Munich, Germany. Work in the authors’ laboratory is supported by research grants from the Deutsche Forschungsgemeinschaft (SFB 1054/B01, SFB 1335/P01 and P08) and the European Research Council (FP7, grant agreement No. 322865) to J.R. and the international doctoral programme ‘i-Target: Immunotargeting of Cancer’, funded by the Elite Network of Bavaria. The authors apologize to individuals whose work could not be cited in this article owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content and wrote, reviewed and edited the article.

Corresponding author

Correspondence to Jürgen Ruland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Glossary

Psoriasis

A chronic inflammatory skin disease that can also manifest in the joints and vasculature.

Experimental autoimmune encephalomyelitis

An animal model of the autoimmune disease multiple sclerosis, which affects the central nervous system.

Neutrophilic myeloid-derived suppressor cells

(N-MDSCs). Innate immune cells that can suppress T cell proliferation in inflammatory environments.

Crohn’s disease

An inflammatory bowel disease with abnormal immune responses and an altered commensal microbiome caused by hereditary and environmental factors.

Aryl hydrocarbon receptor

A basic helix–loop–helix transcription factor that functions as a receptor for environmental cues such as xenobiotics or metabolites.

Sezary syndrome

A leukaemic form of cutaneous T cell lymphoma.

Dermatophytes

A group of fungi causing common superficial skin and nail infections.

Ankylosing spondylitis

A form of severe arthritis primarily affecting the spine, which is caused by genetic and environmental factors.

Primary sclerosing cholangitis

A multifactorial progressive inflammatory disorder of the liver resulting in scarring of bile ducts, cholestasis and liver cirrhosis.

IgA nephropathy

A kidney disease of unknown aetiology with genetic contribution that is characterized by IgA deposits that cause glomerulonephritis and ultimately renal failure.

Primary open-angle glaucoma

A multifactorial neurodegenerative disease that primarily affects the optic nerve and is a prevalent cause of irreversible blindness.

Pityriasis rubra pilaris

(PRP). A rare chronic inflammatory skin disease related to psoriasis with distinct clinical and histopathological features.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruland, J., Hartjes, L. CARD–BCL-10–MALT1 signalling in protective and pathological immunity. Nat Rev Immunol 19, 118–134 (2019). https://doi.org/10.1038/s41577-018-0087-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0087-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing