Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perivascular macrophages in health and disease

An Author Correction to this article was published on 21 September 2021

This article has been updated

Abstract

Macrophages are a heterogeneous group of cells that are capable of carrying out distinct functions in different tissues, as well as in different locations within a given tissue. Some of these tissue macrophages lie on, or close to, the outer (abluminal) surface of blood vessels and perform several crucial activities at this interface between the tissue and the blood. In steady-state tissues, these perivascular macrophages maintain tight junctions between endothelial cells and limit vessel permeability, phagocytose potential pathogens before they enter tissues from the blood and restrict inappropriate inflammation. They also have a multifaceted role in diseases such as cancer, Alzheimer disease, multiple sclerosis and type 1 diabetes. Here, we examine the important functions of perivascular macrophages in various adult tissues and describe how these functions are perturbed in a broad array of pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interactions between perivascular macrophages and blood vessels in steady-state tissues.
Fig. 2: Role of perivascular macrophages in diseased tissues.

Similar content being viewed by others

Change history

References

  1. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baer, C., Squadrito, M. L., Iruela-Arispe, M. L. & De Palma, M. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches. Exp. Cell Res. 319, 1626–1634 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stefater, J. A. et al. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474, 511–515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Faraco, G., Park, L., Anrather, J. & Iadecola, C. Brain perivascular macrophages: characterization and functional roles in health and disease. J. Mol. Med. (Berl.) 95, 1143–1152 (2017).

    Article  CAS  Google Scholar 

  5. Wang, X. N. et al. A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood vessels. J. Invest. Dermatol. 134, 965–974 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Berry, M. & Clatworthy, M. R. Kidney macrophages: unique position solves a complex problem. Cell 166, 799–801 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Unanue, E. R., Ferris, S. T. & Carrero, J. A. The role of islet antigen presenting cells and the presentation of insulin in the initiation of autoimmune diabetes in the NOD mouse. Immunol. Rev. 272, 183–201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lewis, C. E., Harney, A. S. & Pollard, J. W. The multifaceted role of perivascular macrophages in tumors. Cancer Cell 30, 365 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, W. et al. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc. Natl Acad. Sci. USA 109, 10388–10393 (2012). This study shows that PVMs in the stria vascularis of the cochlea regulate the permeability of the intrastrial fluid–blood barrier to maintain a normal electrolyte balance in the endolymph. This is essential for normal hearing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Zenker, D., Begley, D., Bratzke, H., Rubsamen-Waigmann, H. & von Briesen, H. Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. J. Physiol. 551, 1023–1032 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He, H. et al. Perivascular macrophages limit permeability. Arterioscler Thromb. Vasc. Biol. 36, 2203–2212 (2016). This paper shows that mesenteric PVMs are as abundant around capillaries as are pericytes and that their depletion results in vessel hyperpermeability. This effect could be rescued when M2-like macrophages, but not M1-like macrophages or dendritic cells, were reconstituted in vivo, which suggests that macrophages have subtype-specific roles in the regulation of vascular permeability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wiktor-Jedrzejczak, W. et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl Acad. Sci. USA 87, 4828–4832 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287–292 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Wessel, F. et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat. Immunol. 15, 223–230 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Mato, N. et al. Involvement of specific macrophage-lineage cell surrounding arterioles in barrier and scavenger function in brain cortex. Proc. Natl Acad. Sci. USA 93, 3269–3274 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mendes-Jorge, L. et al. Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood-retinal barrier. Invest. Ophthalmol. Vis. Sci. 50, 5997–6005 (2009).

    Article  PubMed  Google Scholar 

  20. Stamatiades, E. G. et al. Immune monitoring of trans-endothelial transport by kidney-resident macrophages. Cell 166, 991–1003 (2016). The authors of this study identify a kidney-specific anatomical and functional unit formed by resident PVMs and peritubular capillaries. These PVMs detect and scavenge circulating immune complexes, which are delivered into the interstitium via transendothelial transport and trigger an FcγRIV-dependent inflammatory response with the consequent recruitment of monocytes and neutrophils.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi, X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res. 342, 21–30 (2010).

    Article  PubMed  Google Scholar 

  22. Niemi, M., Sharpe, R. M. & Brown, W. R. Macrophages in the interstitial tissue of the rat testis. Cell Tissue Res. 243, 337–344 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Kaur, C., Wu, C. H. & Ling, E. A. Immunohistochemical and tracer studies of macrophages/microglia in the pineal gland of postnatal rats. J. Pineal Res. 22, 137–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Ferris, S. T. et al. A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity 41, 657–669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Calderon, B., Carrero, J. A., Miller, M. J. & Unanue, E. R. Cellular and molecular events in the localization of diabetogenic T cells to islets of Langerhans. Proc. Natl Acad. Sci. USA 108, 1561–1566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vomund, A. N. et al. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells. Proc. Natl Acad. Sci. USA 112, E5496–5502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Aichele, P. et al. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J. Immunol. 171, 1148–1155 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Gordon, S., Pluddemann, A. & Mukhopadhyay, S. Sinusoidal immunity: macrophages at the lymphohematopoietic interface. Cold Spring Harb. Perspect. Biol. 7, a016378 (2015).

    Article  PubMed Central  Google Scholar 

  30. Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Backer, R. et al. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells. Proc. Natl Acad. Sci. USA 107, 216–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Pinto, A. R. et al. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLOS One 7, e36814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Franke-Ullmann, G. et al. Characterization of murine lung interstitial macrophages in comparison with alveolar macrophages in vitro. J. Immunol. 157, 3097–3104 (1996).

    CAS  PubMed  Google Scholar 

  35. De Falco, T. et al. Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep. 12, 1107–1119 (2015). This paper describes a subset of PVMs in the testis that make contact with blood vessels and lie on the surface of seminiferous tubules in apposition to areas of tubules containing undifferentiated spermatogonia. The transient depletion of these PVMs leads to reduced spermatogonial differentiation.

    Article  CAS  Google Scholar 

  36. Moller, M., Rath, M. F. & Klein, D. C. The perivascular phagocyte of the mouse pineal gland: an antigen-presenting cell. Chronobiol. Int. 23, 393–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Gregerson, D. S. & Yang, J. CD45-positive cells of the retina and their responsiveness to in vivo and in vitro treatment with IFN-gamma or anti-CD40. Invest. Ophthalmol. Vis. Sci. 44, 3083–3093 (2003).

    Article  PubMed  Google Scholar 

  38. Roche, P. A. & Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bedoret, D. et al. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 119, 3723–3738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Winnall, W. R., Muir, J. A. & Hedger, M. P. Rat resident testicular macrophages have an alternatively activated phenotype and constitutively produce interleukin-10 in vitro. J. Leukoc. Biol. 90, 133–143 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, M. et al. Characterization of the micro-environment of the testis that shapes the phenotype and function of testicular macrophages. J. Immunol. 198, 4327–4340 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Serrats, J. et al. Dual roles for perivascular macrophages in immune-to-brain signaling. Neuron 65, 94–106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwandt, T. et al. Expression of type I interferon by splenic macrophages suppresses adaptive immunity during sepsis. EMBO J. 31, 201–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Honke, N. et al. Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat. Immunol. 13, 51–57 (2011).

    Article  PubMed  CAS  Google Scholar 

  45. Hickman, H. D. et al. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat. Immunol. 9, 155–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Miyake, Y. et al. Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associated antigens. J. Clin. Invest. 117, 2268–2278 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGaha, T. L., Chen, Y., Ravishankar, B., van Rooijen, N. & Karlsson, M. C. Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood 117, 5403–5412 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Steiniger, B., Barth, P., Herbst, B., Hartnell, A. & Crocker, P. R. The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immunology 92, 307–316 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, J. J., Lukyanenko, Y. & Hutson, J. C. 25-hydroxycholesterol is produced by testicular macrophages during the early postnatal period and influences differentiation of Leydig cells in vitro. Biol. Reprod. 66, 1336–1341 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Nes, W. D. et al. Identification of the lipophilic factor produced by macrophages that stimulates steroidogenesis. Endocrinology 141, 953–958 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Lukyanenko, Y., Chen, J. J. & Hutson, J. C. Testosterone regulates 25-hydroxycholesterol production in testicular macrophages. Biol. Reprod. 67, 1435–1438 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Oatley, J. M., Oatley, M. J., Avarbock, M. R., Tobias, J. W. & Brinster, R. L. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 136, 1191–1199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Griswold, M. D. et al. Function of vitamin A in normal and synchronized seminiferous tubules. Ann. NY Acad. Sci. 564, 154–172 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, R., Van der Hoek, K. H., Ryan, N. K., Norman, R. J. & Robker, R. L. Macrophage contributions to ovarian function. Hum. Reprod. Update 10, 119–133 (2004).

    Article  PubMed  Google Scholar 

  55. Brannstrom, M., Pascoe, V., Norman, R. J. & McClure, N. Localization of leukocyte subsets in the follicle wall and in the corpus luteum throughout the human menstrual cycle. Fertil. Steril. 61, 488–495 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Hume, D. A., Halpin, D., Charlton, H. & Gordon, S. The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc. Natl Acad. Sci. USA 81, 4174–4177 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gaytan, F. et al. Macrophages, cell proliferation, and cell death in the human menstrual corpus luteum. Biol. Reprod. 59, 417–425 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Care, A. S. et al. Macrophages regulate corpus luteum development during embryo implantation in mice. J. Clin. Invest. 123, 3472–3487 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Turner, E. C. et al. Conditional ablation of macrophages disrupts ovarian vasculature. Reproduction 141, 821–831 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Venneri, M. A. et al. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109, 5276–5285 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9, 789–795 (2003).

    Article  PubMed  CAS  Google Scholar 

  62. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).

    Article  PubMed  CAS  Google Scholar 

  63. Ji, J. D. et al. The frequency of tumor-infiltrating tie-2-expressing monocytes in renal cell carcinoma: its relationship to angiogenesis and progression. Urology 82, 974.e9–974.e13 (2013).

    Article  Google Scholar 

  64. Matsubara, T. et al. TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology 57, 1416–1425 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Pucci, F. et al. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 114, 901–914 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Murdoch, C., Tazzyman, S., Webster, S. & Lewis, C. E. Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J. Immunol. 178, 7405–7411 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Coffelt, S. B. et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res. 70, 5270–5280 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19, 512–526 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Mossadegh-Keller, N. et al. Developmental origin and maintenance of distinct testicular macrophage populations. J. Exp. Med. 214, 2829–2841 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. DeFalco, T., Bhattacharya, I., Williams, A. V., Sams, D. M. & Capel, B. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc. Natl Acad. Sci. USA 111, E2384–E2393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eubank, T. D., Galloway, M., Montague, C. M., Waldman, W. J. & Marsh, C. B. M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J. Immunol. 171, 2637–2643 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Forget, M. A. et al. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLOS One 9, e98623 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Cortesi, F. et al. Bimodal CD40/Fas-Dependent Crosstalk between iNKT cells and tumor-associated macrophages impairs prostate cancer progression. Cell Rep. 22, 3006–3020 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2(hi) macrophage-derived VEGFA. Cancer Discov. 5, 932–943 (2015). The authors of this study show that VEGFA released by TIE2hi PVMs reduces the number of tight junctions in tumour blood vessels, which transiently increases vascular permeability. This increases cancer cell intravasation at these sites and, in doing so, stimulates metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ireland, L. et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene 37, 2022–2036 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rohan, T. E. et al. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J. Natl Cancer Inst. 106, dju136 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Qian, B. et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLOS One 4, e6562 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75, 3479–3491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Welford, A. F. et al. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J. Clin. Invest. 121, 1969–1973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694–705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kozin, S. V. et al. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 70, 5679–5685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Polfliet, M. M. et al. A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J. Neuroimmunol. 116, 188–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Hawkes, C. A. & McLaurin, J. Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc. Natl Acad. Sci. USA 106, 1261–1266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Elieh Ali Komi, D., Sharma, L. & Dela Cruz, C. S. Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy Immunol. 54, 213–223 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Thanopoulou, K., Fragkouli, A., Stylianopoulou, F. & Georgopoulos, S. Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc. Natl Acad. Sci. USA 107, 20816–20821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Park, L. et al. Brain perivascular macrophages initiate the neurovascular dysfunction of alzheimer Aβ peptides. Circ. Res. 121, 258–269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126, 4674–4689 (2016). This paper reports that PVMs in the brain promote alterations in neurovascular regulation in mouse models of hypertension. This effect is mediated by an increase in the permeability of the blood–brain barrier, which indicates that PVMs could be a therapeutic target in diseases associated with cerebrovascular oxidative stress.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Polfliet, M. M. et al. Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J. Immunol. 167, 4644–4650 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Steel, C. D. et al. Distinct macrophage subpopulations regulate viral encephalitis but not viral clearance in the CNS. J. Neuroimmunol. 226, 81–92 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Williams, K. C. et al. Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J. Exp. Med. 193, 905–915 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nowlin, B. T. et al. SIV encephalitis lesions are composed of CD163(+) macrophages present in the central nervous system during early SIV infection and SIV-positive macrophages recruited terminally with AIDS. Am. J. Pathol. 185, 1649–1665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Filipowicz, A. R. et al. Proliferation of perivascular macrophages contributes to the development of encephalitic lesions in HIV-infected humans and in SIV-infected macaques. Sci. Rep. 6, 32900 (2016). This study examines the expression of the proliferation marker Ki-67 in the brains of uninfected and SIV-infected macaques with or without encephalitis. The authors find a significant increase in the number of proliferating PVMs in macaques with SIV encephalitis compared with that in uninfected and SIV-infected animals without encephalitis. These findings suggest a mechanism of viral accumulation in the brain through the proliferation of PVMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim, W. K. et al. CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am. J. Pathol. 168, 822–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, Z. et al. Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains. J. Neuroimmunol. 237, 73–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Polfliet, M. M. et al. The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis. J. Neuroimmunol. 122, 1–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Hofmann, N. et al. Increased expression of ICAM-1, VCAM-1, MCP-1, and MIP-1 alpha by spinal perivascular macrophages during experimental allergic encephalomyelitis in rats. BMC Immunol. 3, 11 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jais, A. et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165, 882–895 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Cuff, C. A., Berman, J. W. & Brosnan, C. F. The ordered array of perivascular macrophages is disrupted by IL-1-induced inflammation in the rabbit retina. Glia 17, 307–316 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Gullapalli, V. K., Zhang, J., Pararajasegaram, G. & Rao, N. A. Hematopoietically derived retinal perivascular microglia initiate uveoretinitis in experimental autoimmune uveitis. Graefes Arch. Clin. Exp. Ophthalmol. 238, 319–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, J. et al. Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins. PLOS One 10, e0122572 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zhang, F. et al. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma-a salient feature of strial barrier associated hearing loss. FASEB J. 27, 3730–3740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Neng, L. et al. Structural changes in the strial blood–labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res. 361, 685–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Abtin, A. et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 15, 45–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Inoshima, N., Wang, Y. & Bubeck Wardenburg, J. Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. J. Invest. Dermatol. 132, 1513–1516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sackstein, R., Falanga, V., Streilein, J. W. & Chin, Y. H. Lymphocyte adhesion to psoriatic dermal endothelium is mediated by a tissue-specific receptor/ligand interaction. J. Invest. Dermatol. 91, 423–428 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Natsuaki, Y. et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat. Immunol. 15, 1064–1069 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Cao, Z. et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat. Med. 22, 154–162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hu, B. & Phan, S. H. Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol. Res. 108, 57–64 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mohan, J. F. et al. Imaging the emergence and natural progression of spontaneous autoimmune diabetes. Proc. Natl Acad. Sci. USA 114, E7776–E7785 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Padgett, L. E., Burg, A. R., Lei, W. & Tse, H. M. Loss of NADPH oxidase-derived superoxide skews macrophage phenotypes to delay type 1 diabetes. Diabetes 64, 937–946 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Burg, A. R. et al. Superoxide production by NADPH oxidase intensifies macrophage antiviral responses during diabetogenic coxsackievirus infection. J. Immunol. 200, 61–70 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Ferris, S. T. et al. The islet-resident macrophage is in an inflammatory state and senses microbial products in blood. J. Exp. Med. 214, 2369–2385 (2017). This paper shows that in the pancreas, islet PVMs express a pro-inflammatory activation signature at steady state that supports diabetogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Filippi, C. M. & von Herrath, M. G. Viral trigger for type 1 diabetes. Diabetes 57, 2863–2871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    Article  PubMed  CAS  Google Scholar 

  117. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Arwert, E. N. et al. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 23, 1239–1248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Calderon, B. et al. The pancreas anatomy conditions the origin and properties of resident macrophages. J. Exp. Med. 212, 1497–1512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Nakasone, E. S. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cassier, P. A. et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 16, 949–956 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kennedy, D. W. & Abkowitz, J. L. Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood 90, 986–993 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10, 1544–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Klein, I. et al. Kupffer cell heterogeneity: functional properties of bone marrow-derived and sessile hepatic macrophages. Blood 110, 4077–4085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kohyama, M. et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457, 318–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Wiegard, C. et al. Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology 42, 193–199 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. McCuskey, R. S. & McCuskey, P. A. Fine structure and function of Kupffer cells. J. Electron. Microsc. Tech. 14, 237–246 (1990).

    Article  CAS  PubMed  Google Scholar 

  135. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Fabriek, B. O. et al. CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51, 297–305 (2005).

    Article  PubMed  Google Scholar 

  137. Provis, J. M. et al. Human retinal microglia: expression of immune markers and relationship to the glia limitans. Glia 14, 243–256 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Byrne, A. J., Maher, T. M. & Lloyd, C. M. Pulmonary macrophages: a new therapeutic pathway in lung disease? Trends Mol. Med. 22, 303–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Zaba, L. C. et al. Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J. Clin. Invest. 117, 2517–2525 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.E.L. thanks Yorkshire Cancer Research, Prostate Cancer UK, Breast Cancer Now and the European Commission (MSCA-ITN-2015-ETN, project acronym ‘ISPIC’; and H2020-MSCA-RISE-2017, project acronym ‘Cancer’) for grant support of her work in this area. A.L. thanks Yorkshire Cancer Research for its support of his current work on perivascular macrophages in cancer. M.D.P. acknowledges grant support from the Swiss National Science Foundation (31003A-165963), Swiss Cancer League (KFS-3759-08-2015) and European Research Council (EVOLVE_725051).

Reviewer information

Nature Reviews Immunology thanks G. Faracco, L. Iruela-Arispe and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and C.E.L. conceived the topic. All authors provided intellectual input and contributed to writing, reviewing and editing the article.

Corresponding author

Correspondence to Claire E. Lewis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The originally published article contained an error in the acknowledgements section in which a RISE grant from the European Commission to C.E.L was given an incorrect date. This has been corrected in the HTML and PDF versions of the manuscript to ‘H2020-MSCA-RISE-2017’.

Glossary

Stria vascularis

A highly vascularized area in the lateral wall of the cochlea (a sensory organ of the inner ear) that produces endolymph and is responsible for generating the endocochlear potential that is required for the transduction of sound.

Blood–brain barrier

(BBB). A tightly regulated, protective, vascular interface that separates the peripheral blood and central nervous system.

Alternative (M2) macrophage activation

Activation to a group of polarized, anti-inflammatory phenotypes (M2a, M2b and M2c) that is induced by type 2 cytokines such as IL-4 and IL-13 (M2a), immune complexes and Toll-like receptor or IL-1 receptor ligands (M2b), and IL-10 and glucocorticoids (M2c).

Classical (M1) macrophage activation

Activation to a polarized, pro-inflammatory and antimicrobial phenotype that is induced by the type 1 cytokine interferon-γ, various microbial molecules (such as lipopolysaccharide) or other inflammatory cytokines (such as tumour necrosis factor and granulocyte–macrophage colony-stimulating factor).

Islets of Langerhans

Regions of the pancreas that contain the hormone-producing cells.

Reticuloendothelial system

A network of cells sharing a common function, namely, phagocytosis.

Bowman capsule

A cup-like sac at the beginning of the tubular component of a nephron in the mammalian kidney that encloses a cluster of microscopic blood vessels known as the glomerulus and filters the blood to form urine.

Dense core granules

Subcellular organelles in the β-cells of the pancreatic islets that store and release various peptide hormones, including insulin.

Subcapsular sinus

The space between the capsule and the cortex of a lymph node that enables the free movement of lymphatic fluid.

Sinusoids

Capillaries with a fenestrated, discontinuous endothelium.

Seminiferous tubules

Structures in the testis that contain epithelium enveloping and supporting germ cells that are undergoing progressive differentiation and development into mature spermatozoa.

Leydig cells

Cells in the connective tissue between the seminiferous tubules that produce testosterone.

Corpus luteum

A temporary, hormone-secreting structure that develops in an ovary after an ovum has been discharged at ovulation.

Intravasation

Movement of cells through a basement membrane into a blood or lymphatic vessel.

Clodronate-containing liposomes

(CCLs). Synthesized liposomes containing the bisphosphonate clodronate, which kills macrophages when taken up by them.

Cerebral amyloid angiopathy

A condition in which β-amyloid is deposited around the small-sized and mid-sized arteries (and, sometimes, the veins) of the cerebral cortex.

Experimental autoimmune uveitis

A mouse or rat model of inflammation in the uveal component of the eye caused by an autoimmune reaction to self antigens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapenna, A., De Palma, M. & Lewis, C.E. Perivascular macrophages in health and disease. Nat Rev Immunol 18, 689–702 (2018). https://doi.org/10.1038/s41577-018-0056-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0056-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing