Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Forkhead box transcription factors as context-dependent regulators of lymphocyte homeostasis

Abstract

Lymphocytes have evolved to react rapidly and robustly to changes in their local environment by using transient adaptations and by regulating their terminal differentiation programmes. Forkhead box transcription factors (FTFs) can direct leukocyte-specific responses, and their functional diversification promotes a high degree of context-dependent specification. Many, often antagonistic, FTFs have overlapping expression patterns and can thereby compete for binding to the same chromosomal target sequences. Multiple molecular mechanisms also connect extracellular signals to the expression and functionality of specific FTFs and, in this way, fine-tune their activity. Through these diverse mechanisms, FTFs can function as context-dependent rheostats responding to diverse environmental stimuli. Focusing on the various mechanisms by which their functional activity is modulated, as well as on their mechanisms of action, we discuss how specific FTFs control lymphocyte function, allowing for the establishment and maintenance of immune homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Role of FTFs during B cell maturation and functioning.
Fig. 2: Role of FTFs during T cell maturation and functioning.
Fig. 3: FOXO-mediated regulation of T cell homing.
Fig. 4: Control of memory CD8+ T cell generation by FOXO1.
Fig. 5: Interactions between FTFs and cofactors in lymphocytes.
Fig. 6: Post-translational modifications control FTF transcriptional output.

Similar content being viewed by others

References

  1. Coffer, P. J. & Burgering, B. M. Forkhead-box transcription factors and their role in the immune system. Nat. Rev. Immunol. 4, 889–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Carlsson, P. & Mahlapuu, M. Forkhead transcription factors: key players in development and metabolism. Dev. Biol. 250, 1–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Benayoun, B. A., Caburet, S. & Veitia, R. A. Forkhead transcription factors: key players in health and disease. Trends Genet. 27, 224–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Hedrick, S. M. The cunning little vixen: Foxo and the cycle of life and death. Nat. Immunol. 10, 1057–1063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hedrick, S. M., Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Stone, E. L. FOXO transcription factors throughout T cell biology. Nat. Rev. Immunol. 12, 649–661 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Wildin, R. S. et al. X-Linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Feuerer, M., Hill, J. A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol. 10, 689–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Khattri, R. et al. The amount of scurfin protein determines peripheral T cell number and responsiveness. J. Immunol. 167, 6312–6320 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Schubert, L. A., Jeffery, E., Zhang, Y., Ramsdell, F. & Ziegler, S. F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem. 276, 37672–37679 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y. et al. FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat. Med. 20, 272–282 (2014). This is a description of a novel, FOXA1-dependent type of T reg cell.

    Article  CAS  PubMed  Google Scholar 

  16. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, C. S., Friedman, J. R., Fulmer, J. T. & Kaestner, K. H. The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944–947 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Hu, H. et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat. Immunol. 7, 819–826 (2006). This describes a role for FOXP1 during B cell maturation.

    Article  CAS  PubMed  Google Scholar 

  20. van Keimpema, M. et al. FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-kappaB to promote survival of human B cells. Blood 124, 3431–3440 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Sagardoy, A. et al. Downregulation of FOXP1 is required during germinal center B cell function. Blood 121, 4311–4320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Keimpema, M. et al. The forkhead transcription factor FOXP1 represses human plasma cell differentiation. Blood 126, 2098–2109 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Feng, X. et al. Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood 115, 510–518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feng, X. et al. Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells. Nat. Immunol. 12, 544–550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei, H. et al. Cutting edge: Foxp1 controls naive CD8+ T cell quiescence by simultaneously repressing key pathways in cellular metabolism and cell cycle progression. J. Immunol. 196, 3537–3541 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Durek, P. et al. Epigenomic profiling of human CD4(+) T cells supports a linear differentiation model and highlights molecular regulators of memory development. Immunity 45, 1148–1161 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, H. et al. The transcription factor Foxp1 is a critical negative regulator of the differentiation of follicular helper T cells. Nat. Immunol. 15, 667–675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ouyang, W., Beckett, O., Flavell, R. A. & Li, M. O. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009). This study describes a role for FOXO proteins in T reg cell function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009). This is a description of a role for FOXO1 in naive T cell survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van der Horst, A. & Burgering, B. M. Stressing the role of FoxO proteins in lifespan and disease. Nat. Rev. Mol. Cell Biol. 8, 440–450 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. Deng, Y. et al. Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function. Immunity 42, 457–470 (2015). This is a description of a role for FOXO1 in NK cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stone, E. L. et al. ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote Tfh cell differentiation. Immunity 42, 239–251 (2015). This study describes a role for FOXO1 in T FH cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Laine, A. et al. Foxo1 is a T cell-intrinsic inhibitor of the RORgammat-Th17 program. J. Immunol. 195, 1791–1803 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Ichiyama, K. et al. The microRNA-183-96-182 cluster promotes T Helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity 44, 1284–1298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wohlfert, E. A., Gorelik, L., Mittler, R., Flavell, R. A. & Clark, R. B. Cutting edge: deficiency in the E3 ubiquitin ligase Cbl-b results in a multifunctional defect in T cell TGF-beta sensitivity in vitro and in vivo. J. Immunol. 176, 1316–1320 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Harada, Y. et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 207, 1381–1391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491, 554–559 (2012). This study demonstrates that FOXO1 has an essential role in T reg cell function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 11, 618–627 (2010). This paper reveals that both FOXO1 and FOXO3 collaborate in the induction of T reg cells.

    Article  CAS  PubMed  Google Scholar 

  40. Fabre, S. et al. FOXO1 regulates L-Selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J. Immunol. 181, 2980–2989 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Debes, G. F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6, 889–894 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bromley, S. K., Thomas, S. Y. & Luster, A. D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6, 895–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Luo, C. T., Liao, W., Dadi, S., Toure, A. & Li, M. O. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature 529, 532–536 (2016). This paper shows that the TCR-mediated activation of T reg cells leads to FOXO1 degradation and, in this way, promotes the egress of cells from the lymph node.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, N. et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity 30, 458–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin, L. & Peng, S. L. Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1. J. Immunol. 176, 4793–4803 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Srivatsan, S. & Peng, S. L. Cutting edge: Foxj1 protects against autoimmunity and inhibits thymocyte egress. J. Immunol. 175, 7805–7809 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Lin, L., Spoor, M. S., Gerth, A. J., Brody, S. L. & Peng, S. L. Modulation of Th1 activation and inflammation by the NF-kappaB repressor Foxj1. Science 303, 1017–1020 (2004). This paper demonstrates a role for FOXJ1 in T cell homeostasis.

    Article  CAS  PubMed  Google Scholar 

  49. Lin, L., Brody, S. L. & Peng, S. L. Restraint of B cell activation by Foxj1-mediated antagonism of NF-kappa B and IL-6. J. Immunol. 175, 951–958 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rao, R. R., Li, Q., Gubbels Bupp, M. R. & Shrikant, P. A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity 36, 374–387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huster, K. M. et al. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc. Natl Acad. Sci. USA 101, 5610–5615 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Tejera, M. M., Kim, E. H., Sullivan, J. A., Plisch, E. H. & Suresh, M. FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory. J. Immunol. 191, 187–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Hedrick, S. M. Differentiation of CD8 memory T cells depends on Foxo1. J. Exp. Med. 210, 1189–1200 (2013).

    Article  PubMed  CAS  Google Scholar 

  56. Kim, M. V., Ouyang, W., Liao, W., Zhang, M. Q. & Li, M. O. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity 39, 286–297 (2013). References 51, 54, 55 and 56 describe a role for FOXO1 in memory T cell formation.

    Article  CAS  PubMed  Google Scholar 

  57. Delpoux, A., Lai, C. Y., Hedrick, S. M. & Doedens, A. L. FOXO1 opposition of CD8(+) T cell effector programming confers early memory properties and phenotypic diversity. Proc. Natl Acad. Sci. USA 114, E8865–E8874 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, L. et al. Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner. Cell Rep. 14, 1206–1217 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Utzschneider, D. T. et al. Active maintenance of T cell memory in acute and chronic viral infection depends on continuous expression of FOXO1. Cell Rep. 22, 3454–3467 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Delpoux, A. et al. Continuous activity of Foxo1 is required to prevent anergy and maintain the memory state of CD8(+) T cells. J. Exp. Med. 215, 575–594 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Araki, K. et al. mTOR regulates memory CD8 T cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pearce, E. L. et al. Enhancing CD8 T cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sullivan, J. A., Kim, E. H., Plisch, E. H., Peng, S. L. & Suresh, M. FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms. PLOS Pathog. 8, e1002533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tzelepis, F. et al. Intrinsic role of FoxO3a in the development of CD8+ T cell memory. J. Immunol. 190, 1066–1075 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Amin, R. H. & Schlissel, M. S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Herzog, S. et al. SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway. Nat. Immunol. 9, 623–631 (2008). References 65 and 66 demonstrate a role for FOXO1 in B cell maturation.

    Article  CAS  PubMed  Google Scholar 

  67. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Sander, S. et al. PI3 kinase and FOXO1 transcription factor activity differentially control B cells in the germinal center light and dark zones. Immunity 43, 1075–1086 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Dominguez-Sola, D. et al. The FOXO1 transcription factor instructs the germinal center dark zone program. Immunity 43, 1064–1074 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Inoue, T. et al. The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. J. Exp. Med. 214, 1181–1198 (2017). References 68–70 reveal that FOXO1 is involved in the regulation of B cell GC reactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eijkelenboom, A. et al. Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Mol. Syst. Biol. 9, 638 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Eijkelenboom, A., Mokry, M., Smits, L. M., Nieuwenhuis, E. E. & Burgering, B. M. FOXO3 selectively amplifies enhancer activity to establish target gene regulation. Cell Rep. 5, 1664–1678 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012). This study demonstrates complex interactions between FTFs that govern T reg cell development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rudra, D. et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat. Immunol. 13, 1010–1019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van Boxtel, R. et al. FOXP1 acts through a negative feedback loop to suppress FOXO-induced apoptosis. Cell Death Differ. 20, 1219–1229 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010). This study characterizes the role of FOXO proteins in T reg cell function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ouyang, W. & Li, M. O. Foxo: in command of T lymphocyte homeostasis and tolerance. Trends Immunol. 32, 26–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Essers, M. A. et al. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308, 1181–1184 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Hoogeboom, D. et al. Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity. J. Biol. Chem. 283, 9224–9230 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. van Loosdregt, J. et al. Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity 39, 298–310 (2013).

    Article  PubMed  CAS  Google Scholar 

  81. Walker, M. P. et al. FOXP1 potentiates Wnt/beta-catenin signaling in diffuse large B cell lymphoma. Sci. Signal 8, ra12 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Wehrens, E. J. et al. Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood 118, 3538–3548 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Lozano, T. et al. Inhibition of FOXP3/NFAT interaction enhances T cell function after TCR stimulation. J. Immunol. 195, 3180–3189 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Thompson, M. G. et al. FOXO3-NF-kappaB RelA protein complexes reduce proinflammatory cell signaling and function. J. Immunol. 195, 5637–5647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bettelli, E., Dastrange, M. & Oukka, M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl Acad. Sci. USA 102, 5138–5143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gerondakis, S., Fulford, T. S., Messina, N. L. & Grumont, R. J. NF-kappaB control of T cell development. Nat. Immunol. 15, 15–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Long, M., Park, S. G., Strickland, I., Hayden, M. S. & Ghosh, S. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31, 921–931 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Li, Q. & Verma, I. M. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Tone, Y. et al. Gene expression in the Gitr locus is regulated by NF-kappaB and Foxp3 through an enhancer. J. Immunol. 192, 3915–3924 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, F., Meng, G. & Strober, W. Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 9, 1297–1306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou, L. et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453, 236–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, Z. et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39, 272–285 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. van Loosdregt, J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259–271 (2013). References 80, 93 and 94 show that external signals control T reg cell function by influencing the stability of FOXP3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. van Loosdregt, J. & Coffer, P. J. Post-translational modification networks regulating FOXP3 function. Trends Immunol. 35, 368–378 (2014).

    Article  PubMed  CAS  Google Scholar 

  96. Zhao, Y. et al. E3 ubiquitin ligase Cbl-b regulates thymic-derived CD4+CD25+ regulatory T cell development by targeting Foxp3 for ubiquitination. J. Immunol. 194, 1639–1645 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, J. Y. et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat. Cell Biol. 10, 138–148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hu, M. C. et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Plas, D. R. & Thompson, C. B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 278, 12361–12366 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA 102, 1649–1654 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, D. et al. Inhibition of S-phase kinase-associated protein 2 (Skp2) reprograms and converts diabetogenic T cells to Foxp3 +regulatory T cells. Proc. Natl Acad. Sci. USA 109, 9493–9498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grabbe, C., Husnjak, K. & Dikic, I. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 12, 295–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat. Cell Biol. 8, 1064–1073 (2006).

    Article  PubMed  CAS  Google Scholar 

  104. Chunder, N., Wang, L., Chen, C., Hancock, W. W. & Wells, A. D. Cyclin-dependent kinase 2 controls peripheral immune tolerance. J. Immunol. 189, 5659–5666 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Morawski, P. A., Mehra, P., Chen, C., Bhatti, T. & Wells, A. D. Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J. Biol. Chem. 288, 24494–24502 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nie, H. et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat. Med. 19, 322–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Fox, C. J., Hammerman, P. S. & Thompson, C. B. The Pim kinases control rapamycin-resistant T cell survival and activation. J. Exp. Med. 201, 259–266 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Basu, S., Golovina, T., Mikheeva, T., June, C. H. & Riley, J. L. Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J. Immunol. 180, 5794–5798 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Deng, G. et al. Pim-2 kinase influences regulatory T cell function and stability by mediating Foxp3 protein N-terminal phosphorylation. J. Biol. Chem. 290, 20211–20220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Du, X. et al. Mst1/Mst2 regulate development and function of regulatory T cells through modulation of Foxo1/Foxo3 stability in autoimmune disease. J. Immunol. 192, 1525–1535 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Tomiyama, T. et al. Antigen-specific suppression and immunological synapse formation by regulatory T cells require the Mst1 kinase. PLOS One 8, e73874 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Choi, J. et al. Mst1-FoxO signaling protects naive T lymphocytes from cellular oxidative stress in mice. PLOS One 4, e8011 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  114. van Loosdregt, J. et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115, 965–974 (2010).

    Article  PubMed  CAS  Google Scholar 

  115. Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl Acad. Sci. USA 104, 4571–4576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, Y. et al. Inhibition of p300 impairs Foxp3(+) T regulatory cell function and promotes antitumor immunity. Nat. Med. 19, 1173–1177 (2013). This paper demonstrates the potential for modulating FOXP3 acetylation therapeutically.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. van Loosdregt, J. et al. Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLOS One 6, e19047 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Kwon, H. S. et al. Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. J. Immunol. 188, 2712–2721 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Beier, U. H. et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol. Cell. Biol. 31, 1022–1029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Akimova, T. et al. Histone/protein deacetylase inhibitors increase suppressive functions of human FOXP3+ Tregs. Clin. Immunol. 136, 348–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jeng, M. Y. et al. Metabolic reprogramming of human CD8(+) memory T cells through loss of SIRT1. J. Exp. Med. 215, 51–62 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fagnoni, F. F. et al. Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology 88, 501–507 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Song, X. et al. Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep. 1, 665–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yamagata, K. et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell 32, 221–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, F. et al. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31, 1546–1557 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. van Gent, R. et al. SIRT1 mediates FOXA2 breakdown by deacetylation in a nutrient-dependent manner. PLOS One 9, e98438 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to apologise to any authors whose work could not be cited due to space contstraints. The Zaiss laboratory is supported by the Medical Research Council, grant MR/M011755/1, and the European Union, grant CIG-631413 (“EGF-R for Immunity”). The Coffer laboratory is supported by grants from the Dutch Cancer Society (UU 2015-7838) and Dutch Reumatology Foundation (16-1-301)

Reviewer information

Nature Reviews Immunology thanks M. Suresh and the other anonymous reviewer(s) for their help with the peer review of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the researching of data, discussion of content and writing, reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Dietmar M. W. Zaiss or Paul J. Coffer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaiss, D.M.W., Coffer, P.J. Forkhead box transcription factors as context-dependent regulators of lymphocyte homeostasis. Nat Rev Immunol 18, 703–715 (2018). https://doi.org/10.1038/s41577-018-0048-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0048-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing