Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue-specific functions of invariant natural killer T cells

Abstract

Invariant natural killer T cells (iNKT cells) are an innate-like T cell subset that expresses an invariant T cell receptor (TCR) α-chain and recognizes lipids presented on CD1d. They secrete diverse cytokines and can influence many types of immune responses. Despite having highly similar TCR specificities, iNKT cells differentiate in the thymus into distinct subsets that are analogous to T helper 1 (TH1), TH2 and TH17 cell subsets. Additional iNKT cell subsets that may require peripheral activation have also been described, including one that produces IL-10. In general, iNKT cells are non-circulating, tissue-resident lymphocytes, but the prevalence of different iNKT cell subsets differs markedly between tissues. Here, we summarize the functions of iNKT cells in four tissues in which they are prevalent, namely, the liver, the lungs, adipose tissue and the intestine. Importantly, we explain how local iNKT cell responses at each site contribute to tissue homeostasis and protection from infection but can also contribute to tissue inflammation and damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tissue distribution of iNKT cell subsets in mice.
Fig. 2: iNKT cells in the liver sinusoids.
Fig. 3: iNKT cells in the lung.

Similar content being viewed by others

References

  1. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. Dellabona, P., Padovan, E., Casorati, G., Brockhaus, M. & Lanzavecchia, A. An invariant Vα 4-JαQ/Vβ11 T cell receptor is expressed in all individuals by clonally expanded CD48 T cells. J. Exp. Med. 180, 1171–1176 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol. 161, 3271–3281 (1998).

    PubMed  CAS  Google Scholar 

  6. Brigl, M. & Brenner, M. B. How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin. Immunol. 22, 79–86 (2010).

    Article  PubMed  CAS  Google Scholar 

  7. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. Kinjo, Y. et al. Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat. Immunol. 12, 966–974 (2011). References 7 and 8 identify specific lipid antigens from pathogenic bacteria that activate iNKT cells in a CD1d-dependent manner.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. De Libero, G. & Mori, L. Recognition of lipid antigens by T cells. Nat. Rev. Immunol. 5, 485–496 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Brennan, P. J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat. Immunol. 12, 1202–1211 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Saroha, A. et al. Critical role for very-long chain sphingolipids in invariant natural killer T cell development and homeostasis. Front. Immunol. 8, 1386 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kumar, A. et al. Natural killer T cells: an ecological evolutionary developmental biology perspective. Front. Immunol. 8, 1858 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brossay, L. et al. CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gapin, L. Development of invariant natural killer T cells. Curr. Opin. Immunol. 39, 68–74 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bollino, D. & Webb, T. J. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy. Transl Res. 187, 32–43 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Heczey, A. et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 124, 2824–2833 (2014). This study describes the novel use of iNKT cells as a platform for chimeric antigen receptor (CAR) T cell cancer therapy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wolf, B. J., Choi, J. E. & Exley, M. A. Novel approaches to exploiting invariant NKT cells in cancer immunotherapy. Front. Immunol. 9, 384 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Harrer, D. C., Dörrie, J. & Schaft, N. Chimeric antigen receptors in different cell types: new vehicles join the race. Hum. Gene Ther. 29, 547–558 (2018).

    Article  PubMed  CAS  Google Scholar 

  19. Bennstein, S. B. Unraveling natural killer T-cells development. Front. Immunol. 8, 1950 (2017).

    Article  PubMed  Google Scholar 

  20. Georgiev, H., Ravens, I., Benarafa, C., Förster, R. & Bernhardt, G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat. Commun. 7, 13116 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lee, Y. J. et al. Lineage-specific effector signatures of invariant NKT cells are shared amongst γδ T, innate lymphoid, and Th cells. J. Immunol. 197, 1460–1470 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. Lee, Y. J., Holzapfel, K. L., Zhu, J., Jameson, S. C. & Hogquist, K. A. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Verykokakis, M. & Kee, B. L. Transcriptional and epigenetic regulation of innate-like T lymphocyte development. Curr. Opin. Immunol. 51, 39–45 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Engel, I. et al. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat. Immunol. 17, 728–739 (2016). References 20, 21 and 24 show that the gene programmes of thymic iNKT cell subsets are strikingly different.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Godfrey, D. I., Stankovic, S. & Baxter, A. G. Raising the NKT cell family. Nat. Immunol. 11, 197–206 (2010).

    Article  PubMed  CAS  Google Scholar 

  26. Gumperz, J. E., Miyake, S., Yamamura, T. & Brenner, M. B. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195, 625–636 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lee, P. T., Benlagha, K., Teyton, L. & Bendelac, A. Distinct functional lineages of human Vα24 natural killer T cells. J. Exp. Med. 195, 637–641 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Godfrey, D. I. & Berzins, S. P. Control points in NKT-cell development. Nat. Rev. Immunol. 7, 505 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. Moreira-Teixeira, L. et al. Proinflammatory environment dictates the IL-17-producing capacity of human invariant NKT cells. J. Immunol. 186, 5758–5765 (2011).

    Article  PubMed  CAS  Google Scholar 

  30. Berzins, S. P., McNab, F. W., Jones, C. M., Smyth, M. J. & Godfrey, D. I. Long-term retention of mature NK1.1+ NKT cells in the thymus. J. Immunol. 176, 4059–4065 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. Weinreich, M. A., Odumade, O. A., Jameson, S. C. & Hogquist, K. A. T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 11, 709–716 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Eberl, G., Brawand, P. & MacDonald, H. R. Selective bystander proliferation of memory CD4+ and CD8+ T cells upon NK T or T cell activation. J. Immunol. 165, 4305–4311 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. White, A. J., Lucas, B., Jenkinson, W. E. & Anderson, G. Invariant NKT cells and control of the thymus medulla. J. Immunol. 200, 3333–3339 (2018).

    Article  PubMed  CAS  Google Scholar 

  34. Lynch, L. et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nat. Immunol. 16, 85–95 (2015). This study identifies a regulatory iNKT cell subset in the adipose tissue, which lacks expression of the hallmark transcription factor PLZF and produces IL-10.

    Article  PubMed  CAS  Google Scholar 

  35. Thomas, S. Y. et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J. Exp. Med. 208, 1179–1188 (2011). This is the first demonstration that iNKT cells are tissue resident.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Matsuda, J. L. et al. Homeostasis of Vα14i NKT cells. Nat. Immunol. 3, 966–974 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. McNab, F. W. et al. The influence of CD1d in postselection NKT cell maturation and homeostasis. J. Immunol. 175, 3762–3768 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. Wei, D. G. et al. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J. Exp. Med. 202, 239–248 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Leignadier, J., Hardy, M.-P., Cloutier, M., Rooney, J. & Labrecque, N. Memory T-lymphocyte survival does not require T cell receptor expression. Proc. Natl Acad. Sci. USA 105, 20440–20445 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Boyman, O., Krieg, C., Homann, D. & Sprent, J. Homeostatic maintenance of T cells and natural killer cells. Cell. Mol. Life Sci. 69, 1597–1608 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zeissig, S. et al. CD1d-restricted pathways in hepatocytes control local natural killer T cell homeostasis and hepatic inflammation. Proc. Natl Acad. Sci. USA 114, 10449–10454 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Sáez de Guinoa, J. et al. CD1d-mediated lipid presentation by CD11c+ cells regulates intestinal homeostasis. EMBO J. 37, e97537 (2018). This study shows that CD1d and iNKT cells control intestinal bacteria composition and intestinal homeostasis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ranson, T. et al. IL-15 availability conditions homeostasis of peripheral natural killer T cells. Proc. Natl Acad. Sci. USA 100, 2663–2668 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Webster, K. E. et al. IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival. Mucosal Immunol. 7, 1058–1067 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Lee, Y. J. et al. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 43, 566–578 (2015). This study demonstrates that iNKT cell subsets localize to different tissues and that this affects their ability to respond to antigens.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kastenmüller, W., Torabi-Parizi, P., Subramanian, N., Lämmermann, T. & Germain, R. N. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150, 1235–1248 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gaya, M. et al. Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells. Cell 172, 517–533 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Barral, P. et al. CD169+ macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat. Immunol. 11, 303–312 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Pellicci, D. G. et al. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1CD4+ CD1d-dependent precursor stage. J. Exp. Med. 195, 835–844 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Milpied, P. et al. IL-17-producing invariant NKT cells in lymphoid organs are recent thymic emigrants identified by neuropilin-1 expression. Blood 118, 2993–3002 (2011).

    Article  PubMed  CAS  Google Scholar 

  51. Baev, D. V. et al. Distinct homeostatic requirements of CD4+ and CD4 subsets of Vα24-invariant natural killer T cells in humans. Blood 104, 4150–4156 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. Berzins, S. P., Cochrane, A. D. & Pellicci, D. G. Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur. J. Immunol. 35, 1399–1407 (2005).

    Article  PubMed  CAS  Google Scholar 

  53. Chang, P.-P. et al. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat. Immunol. 13, 35–43 (2011).

    Article  PubMed  CAS  Google Scholar 

  54. King, I. L. et al. Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat. Immunol. 13, 44–50 (2011).

    Article  PubMed  CAS  Google Scholar 

  55. Wingender, G., Sag, D. & Kronenberg, M. NKT10 cells: a novel iNKT cell subset. Oncotarget 6, 26552–26553 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sag, D., Krause, P., Hedrick, C. C., Kronenberg, M. & Wingender, G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J. Clin. Invest. 124, 3725–3740 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Vieth, J. A. et al. TCRα-TCRβ pairing controls recognition of CD1d and directs the development of adipose NKT cells. Nat. Immunol. 18, 36–44 (2017).

    Article  PubMed  CAS  Google Scholar 

  58. Motomura, Y. et al. The transcription factor E4BP4 regulates the production of IL-10 and IL-13 in CD4+ T cells. Nat. Immunol. 12, 450–459 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kim, H. S. & Chung, D. H. IL-9-producing invariant NKT cells protect against DSS-induced colitis in an IL-4-dependent manner. Mucosal Immunol. 6, 347–357 (2013).

    Article  PubMed  CAS  Google Scholar 

  60. Monteiro, M. et al. IL-9 expression by invariant NKT cells is not imprinted during thymic development. J. Immunol. 195, 3463–3471 (2015).

    Article  PubMed  CAS  Google Scholar 

  61. Goto, M. et al. Murine NKT cells produce Th17 cytokine interleukin-22. Cell. Immunol. 254, 81–84 (2009).

    Article  PubMed  CAS  Google Scholar 

  62. Doisne, J. M. et al. Cutting edge: crucial role of IL-1 and IL-23 in the innate IL-17 response of peripheral lymph node NK1.1 invariant NKT cells to bacteria. J. Immunol. 186, 662–666 (2011).

    Article  PubMed  CAS  Google Scholar 

  63. Paget, C. et al. Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza A virus infection: potential role in protection against lung epithelial damages. J. Biol. Chem. 287, 8816–8829 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Monteiro, M. et al. Identification of regulatory Foxp3+ invariant NKT cells induced by TGF. J. Immunol. 185, 2157–2163 (2010).

    Article  PubMed  CAS  Google Scholar 

  65. Brigl, M. et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 208, 1163–1177 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Velazquez, P. et al. Cutting edge: activation by innate cytokines or microbial antigens can cause arrest of natural killer T cell patrolling of liver sinusoids. J. Immunol. 180, 2024–2028 (2008).

    Article  PubMed  CAS  Google Scholar 

  67. Smithgall, M. D. et al. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK Cells. Int. Immunol. 20, 1019–1030 (2008).

    Article  PubMed  CAS  Google Scholar 

  68. Wang, X. et al. Human invariant natural killer T cells acquire transient innate responsiveness via histone H4 acetylation induced by weak TCR stimulation. J. Exp. Med. 209, 987–1000 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Godfrey, D. I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ohteki, T. & MacDonald, H. R. Major histocompatibility complex class I related molecules control the development of CD4+8 and CD48 subsets of natural killer 1.1+ T cell receptor-α/β+ cells in the liver of mice. J. Exp. Med. 180, 699–704 (1994).

    Article  PubMed  CAS  Google Scholar 

  71. Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Santodomingo-Garzon, T. & Swain, M. G. Role of NKT cells in autoimmune liver disease. Autoimmun. Rev. 10, 793–800 (2011).

    Article  PubMed  CAS  Google Scholar 

  73. Syn, W.-K. et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51, 1998–2007 (2010).

    Article  PubMed  CAS  Google Scholar 

  74. Liang, B. et al. Role of hepatocyte-derived IL-7 in maintenance of intrahepatic NKT cells and T cells and development of B cells in fetal liver. J. Immunol. 189, 4444–4450 (2012).

    Article  PubMed  CAS  Google Scholar 

  75. Emoto, M., Mittrücker, H.-W., Schmits, R., Mak, T. W. & Kaufmann, S. H. E. Critical role of leukocyte function-associated antigen-1 in liver accumulation of CD4+NKT Cells. J. Immunol. 162, 5094–5098 (1999).

    PubMed  CAS  Google Scholar 

  76. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLOS Biol. 3, e113 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ohteki, T., Maki, C., Koyasu, S., Mak, T. W. & Ohashi, P. S. Cutting edge: LFA-1 is required for liver NK1.1+TCRαβ+ cell development: evidence that liver NK1.1+TCRαβ+ cells originate from multiple pathways. J. Immunol. 162, 3753–3756 (1999).

    PubMed  CAS  Google Scholar 

  78. Germanov, E. et al. Critical role for the chemokine receptor CXCR6 in homeostasis and activation of CD1d-restricted NKT cells. J. Immunol. 181, 81–91 (2008).

    Article  PubMed  CAS  Google Scholar 

  79. Monticelli, L. A. et al. Transcriptional regulator Id2 controls survival of hepatic NKT cells. Proc. Natl Acad. Sci. USA 106, 19461–19466 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    Article  PubMed  CAS  Google Scholar 

  81. Lee, W.-Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 11, 295–302 (2010). References 76 and 81 use intravital microscopy to characterize the movement of iNKT cells in the liver sinusoids after αGalCer injection and B. burgdorferi infection.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ichikawa, S., Mucida, D., Tyznik, A. J., Kronenberg, M. & Cheroutre, H. Hepatic stellate cells function as regulatory bystanders. J. Immunol. 186, 5549–5555 (2011).

    Article  PubMed  CAS  Google Scholar 

  83. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  PubMed  CAS  Google Scholar 

  84. Tupin, E. et al. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 105, 19863–19868 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Olson, C. M. et al. Local production of IFN-γ by invariant NKT cells modulates acute Lyme carditis. J. Immunol. 182, 3728–3734 (2009).

    Article  PubMed  CAS  Google Scholar 

  86. Kumar, H., Belperron, A., Barthold, S. W. & Bockenstedt, L. K. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete Borrelia burgdorferi. J. Immunol. 165, 4797–4801 (2000).

    Article  PubMed  CAS  Google Scholar 

  87. Miyaki, E. et al. Interferon α treatment stimulates interferon γ expression in type I NKT cells and enhances their antiviral effect against hepatitis C virus. PLOS One 12, e0172412 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Deignan, T. et al. Decrease in hepatic CD56+ T cells and Vα24+ natural killer T cells in chronic hepatitis C viral infection. J. Hepatol. 37, 101–108 (2002).

    Article  PubMed  CAS  Google Scholar 

  89. Lucas, M. et al. Frequency and phenotype of circulating Vα24/Vβ11 double-positive natural killer T cells during hepatitis C virus infection. J. Virol. 77, 2251–2257 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. van der Vliet, H. J. J. et al. Circulating Vα24+Vβ11+ NKT cell numbers and dendritic cell CD1d expression in hepatitis C virus infected patients. Clin. Immunol. 114, 183–189 (2005).

    Article  CAS  Google Scholar 

  91. Jiang, X. et al. Restored circulating invariant NKT cells are associated with viral control in patients with chronic hepatitis B. PLOS One 6, e28871 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zeissig, S. et al. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat. Med. 18, 1060–1068 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Takeda, K. et al. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc. Natl Acad. Sci. USA 97, 5498–5503 (2000).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Ajuebor, M. N. et al. Lack of chemokine receptor CCR5 promotes murine fulminant liver failure by preventing the apoptosis of activated CD1d-restricted NKT cells. J. Immunol. 174, 8027–8037 (2005).

    Article  PubMed  CAS  Google Scholar 

  95. Syn, W.-K. et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 61, 1323–1329 (2012).

    Article  PubMed  CAS  Google Scholar 

  96. Wolf, M. J. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26, 549–564 (2014).

    Article  PubMed  CAS  Google Scholar 

  97. Bhattacharjee, J. et al. Hepatic natural killer T cell and CD8+ T cell signatures in mice with nonalcoholic steatohepatitis. Hepatol. Commun. 1, 299–310 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Tajiri, K., Shimizu, Y., Tsuneyama, K. & Sugiyama, T. Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 21, 673–680 (2009).

    Article  PubMed  CAS  Google Scholar 

  99. Chiaramonte, M. G., Donaldson, D. D., Cheever, A. W. & Wynn, T. A. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J. Clin. Invest. 104, 777–785 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Fichtner-Feigl, S., Strober, W., Kawakami, K., Puri, R. K. & Kitani, A. IL-13 signaling through the IL-13α2 receptor is involved in induction of TGF-β1 production and fibrosis. Nat. Med. 12, 99–106 (2006).

    Article  PubMed  CAS  Google Scholar 

  101. Jiang, W., Sun, R., Zhou, R., Wei, H. & Tian, Z. TLR-9 activation aggravates concanavalin a-induced hepatitis via promoting accumulation and activation of liver CD4+ NKT Cells. J. Immunol. 182, 3768–3774 (2009).

    Article  PubMed  CAS  Google Scholar 

  102. Dong, Z., Zhang, J., Sun, R., Wei, H. & Tian, Z. Impairment of liver regeneration correlates with activated hepatic NKT cells in HBV transgenic mice. Hepatology 45, 1400–1412 (2007).

    Article  PubMed  CAS  Google Scholar 

  103. Ito, H. Role of Vα 14 NKT cells in the development of impaired liver regeneration in vivo. Hepatology 38, 1116–1124 (2003).

    Article  PubMed  CAS  Google Scholar 

  104. Jin, Z. et al. Accelerated liver fibrosis in hepatitis B virus transgenic mice: involvement of natural killer T cells. Hepatology 53, 219–229 (2011).

    Article  PubMed  CAS  Google Scholar 

  105. Hines, I. N., Kremer, M., Moore, S. M. & Wheeler, M. D. Impaired T cell-mediated hepatitis in peroxisome proliferator activated receptor alpha (PPARα)-deficient mice. Biol. Res. 51, 5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schrumpf, E. et al. The role of natural killer T cells in a mouse model with spontaneous bile duct inflammation. Physiol. Rep. 5, e13117 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Chuang, Y.-H. et al. Natural killer T cells exacerbate liver injury in a transforming growth factor β receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 47, 571–580 (2008).

    Article  PubMed  CAS  Google Scholar 

  108. Kita, H. et al. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 123, 1031–1043 (2002).

    Article  PubMed  CAS  Google Scholar 

  109. Lappas, C. M., Day, Y.-J., Marshall, M. A., Engelhard, V. H. & Linden, J. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J. Exp. Med. 203, 2639–2648 (2006). This study provides a demonstration of activation of liver iNKT cells that is induced by sterile inflammation contributing to tissue injury.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Milosavljevic, N. et al. Mesenchymal stem cells attenuate acute liver injury by altering ratio between interleukin 17 producing and regulatory natural killer T cells. Liver Transpl. 23, 1040–1050 (2017).

    Article  PubMed  Google Scholar 

  111. Wu, D. et al. Activated NKT cells facilitated functional switch of myeloid-derived suppressor cells at inflammation sites in fulminant hepatitis mice. Immunobiology 222, 440–449 (2017).

    Article  PubMed  CAS  Google Scholar 

  112. Yin, S. et al. Activation of invariant natural killer T cells impedes liver regeneration by way of both IFN-γ- and IL-4-dependent mechanisms. Hepatology 60, 1356–1366 (2014).

    Article  PubMed  CAS  Google Scholar 

  113. Ben Ya’acov,A., Meir, H., Zolotaryova, L., Ilan, Y. & Shteyer, E. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice. BMC Gastroenterol. 17, 44 (2017).

    Article  CAS  Google Scholar 

  114. Liew, P. X., Lee, W.-Y. & Kubes, P. iNKT cells orchestrate a switch from inflammation to resolution of sterile liver injury. Immunity 47, 752–765.e5 (2017). This study shows how iNKT cells can aid in wound healing in the liver at later times following sterile injury.

    Article  PubMed  CAS  Google Scholar 

  115. Scanlon, S. T. et al. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation. J. Exp. Med. 208, 2113–2124 (2011). This study illustrates the extravasation of lung iNKT cells from the vasculature to the interstitial tissue following airborne lipid antigen exposure, which triggers long-term susceptibility to allergic airway inflammation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Hill, T. M. et al. Border patrol gone awry: lung NKT cell activation by Francisella tularensis exacerbates tularemia-like disease. PLOS Pathog. 11, e1004975 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Thanabalasuriar, A., Neupane, A. S., Wang, J., Krummel, M. F. & Kubes, P. iNKT cell emigration out of the lung vasculature requires neutrophils and monocyte-derived dendritic cells in inflammation. Cell Rep. 16, 3260–3272 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kawakami, K. et al. Critical role of Vα14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur. J. Immunol. 33, 3322–3330 (2003).

    Article  PubMed  CAS  Google Scholar 

  119. Cha, H. et al. Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice. Parasitol. Res. 116, 559–567 (2017).

    Article  PubMed  Google Scholar 

  120. Cohen, N. R. et al. Innate recognition of cell wall β-glucans drives invariant natural killer T cell responses against fungi. Cell Host Microbe 10, 437–450 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Nakamatsu, M. et al. Role of interferon-γ in Vα14+ natural killer T cell-mediated host defense against Streptococcus pneumoniae infection in murine lungs. Microbes Infect. 9, 364–374 (2007).

    Article  PubMed  CAS  Google Scholar 

  122. Nieuwenhuis, E. E. S. et al. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat. Med. 8, 588–593 (2002).

    Article  PubMed  CAS  Google Scholar 

  123. De Santo, C. et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J. Clin. Invest. 118, 4036–4048 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Paget, C. et al. Potential role of invariant NKT cells in the control of pulmonary inflammation and CD8+ T cell response during acute influenza A Virus H3N2 pneumonia. J. Immunol. 186, 5590–5602 (2011).

    Article  PubMed  CAS  Google Scholar 

  125. Kok, W. L. et al. Pivotal advance: invariant NKT cells reduce accumulation of inflammatory monocytes in the lungs and decrease immune-pathology during severe influenza A virus infection. J. Leukocyte Biol. 91, 357–368 (2012).

    Article  PubMed  CAS  Google Scholar 

  126. Barthelemy, A. et al. Influenza A virus-induced release of interleukin-10 inhibits the anti-microbial activities of invariant natural killer T cells during invasive pneumococcal superinfection. Mucosal Immunol. 10, 460–469 (2017).

    Article  PubMed  CAS  Google Scholar 

  127. Ivanov, S. et al. Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection. J. Virol. 87, 6911–6924 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Tsao, C.-C., Tsao, P.-N., Chen, Y.-G. & Chuang, Y.-H. Repeated activation of lung invariant NKT cells results in chronic obstructive pulmonary disease-like symptoms. PLOS One 11, e0147710 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Akbari, O. et al. ICOS/ICOSL interaction is required for CD4+ invariant NKT cell function and homeostatic survival. J. Immunol. 180, 5448–5456 (2008).

    Article  PubMed  CAS  Google Scholar 

  130. Akbari, O. et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9, 582–588 (2003). The data from this study show that iNKT cell production of IL-4 and IL-13 is required for induction of airway hyper reactivity.

    Article  PubMed  CAS  Google Scholar 

  131. Lisbonne, M. et al. Cutting edge: invariant Vα14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J. Immunol. 171, 1637–1641 (2003).

    Article  PubMed  CAS  Google Scholar 

  132. Lee, K.-A. et al. A distinct subset of natural killer T cells produces IL-17, contributing to airway infiltration of neutrophils but not to airway hyperreactivity. Cell. Immunol. 251, 50–55 (2008).

    Article  PubMed  CAS  Google Scholar 

  133. Michel, M.-L. et al. Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007). References 132 and 133 identify an IL-17-producing iNKT cell subset.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Bilenki, L., Yang, J., Fan, Y., Wang, S. & Yang, X. Natural killer T cells contribute to airway eosinophilic inflammation induced by ragweed through enhanced IL-4 and eotaxin production. Eur. J. Immunol. 34, 345–354 (2004).

    Article  PubMed  CAS  Google Scholar 

  135. Kim, H. Y. et al. The development of airway hyperreactivity in T-bet-deficient mice requires CD1d-restricted NKT cells. J. Immunol. 182, 3252–3261 (2009).

    Article  PubMed  CAS  Google Scholar 

  136. Pichavant, M. et al. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J. Exp. Med. 205, 385–393 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Wingender, G. et al. Invariant NKT cells are required for airway inflammation induced by environmental antigens. J. Exp. Med. 208, 1151–1162 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Pichavant, M. et al. Oxidative stress-mediated iNKT-cell activation is involved in COPD pathogenesis. Mucosal Immunol. 7, 568–578 (2014).

    Article  PubMed  CAS  Google Scholar 

  139. Kim, E. Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 14, 633–640 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. McKnight, C. G. et al. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma. PLOS One 12, e0188221 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012). This study shows an accumulation of lung and colon NKT cells in germ-free mice and increased morbidity in IBD and asthma models when there is an absence of commensal bacteria in the early life.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Akbari, O. et al. CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N. Engl. J. Med. 354, 1117–1129 (2006).

    Article  PubMed  CAS  Google Scholar 

  143. Vijayanand, P. et al. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 1410–1422 (2007).

    Article  PubMed  CAS  Google Scholar 

  144. Lynch, L., Nowak, M., Varghese, B., Clark, J. & Hogan, A. E. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity (2012).

  145. Lynch, L. et al. Invariant NKT cells and CD1d+ cells amass in human omentum and are depleted in patients with cancer and obesity. Eur. J. Immunol. 39, 1893–1901 (2009).

    Article  PubMed  CAS  Google Scholar 

  146. Huh, J. Y. et al. A novel function of adipocytes in lipid antigen presentation to iNKT cells. Mol. Cell. Biol. 33, 328–339 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Lynch, L. et al. iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy. Cell Metab. 24, 510–519 (2016). This study provides a demonstration that iNKT cells induce the browning of white fat and regulate metabolism.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Kondo, T., Toyoshima, Y., Ishii, Y. & Kyuwa, S. Natural killer T cells in adipose tissue are activated in lean mice. Exp. Anim. 62, 319–328 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Zhang, H. et al. M2-specific reduction of CD1d switches NKT cell-mediated immune responses and triggers metaflammation in adipose tissue. Cell. Mol. Immunol. https://doi.org/10.1038/cmi.2017.11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Birkholz, A. M. et al. A novel glycolipid antigen for NKT cells that preferentially induces IFN-γ production. J. Immunol. 195, 924–933 (2015).

    Article  PubMed  CAS  Google Scholar 

  151. Ji, Y. et al. Activation of natural killer T cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity. J. Biol. Chem. 287, 13561–13571 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Schipper, H. S. et al. Natural killer T cells in adipose tissue prevent insulin resistance. J. Clin. Invest. 122, 3343–3354 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Ji, Y. et al. Short term high fat diet challenge promotes alternative macrophage polarization in adipose tissue via natural killer T cells and interleukin-4. J. Biol. Chem. 287, 24378–24386 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Wu, L. et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc. Natl Acad. Sci. USA 109, E1143–E1152 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ohmura, K. et al. Natural killer T cells are involved in adipose tissues inflammation and glucose intolerance in diet-induced obese mice. Arterioscler. Thromb. Vasc. Biol. 30, 193–199 (2009).

    Article  PubMed  CAS  Google Scholar 

  156. Mantell, B. S. et al. Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity. PLOS One 6, e19831 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Strodthoff, D. et al. Lack of invariant natural killer T cells affects lipid metabolism in adipose tissue of diet-induced obese mice. Arterioscler. Thromb. Vasc. Biol. 33, 1189–1196 (2013).

    Article  PubMed  CAS  Google Scholar 

  158. Kammoun, H. L., Kraakman, M. J. & Febbraio, M. A. Adipose tissue inflammation in glucose metabolism. Rev. Endocr. Metab. Disord. 15, 31–44 (2014).

    Article  PubMed  CAS  Google Scholar 

  159. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Huh, J. Y. et al. Deletion of CD1d in adipocytes aggravates adipose tissue inflammation and insulin resistance in obesity. Diabetes 66, 835–847 (2017).

    Article  PubMed  CAS  Google Scholar 

  163. Satoh, M. et al. Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice. Sci. Rep. 6, 28473 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Bannai, M. et al. Abundance of unconventional CD8+ natural killer T cells in the large intestine. Eur. J. Immunol. 31, 3361–3369 (2001).

    Article  PubMed  CAS  Google Scholar 

  165. Ishimoto, Y. et al. Age-dependent variation in the proportion and number of intestinal lymphocyte subsets, especially natural killer T cells, double-positive CD4+CD8+ cells and B220+ T cells, in mice. Immunology 113, 371–377 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Wingender, G. & Kronenberg, M. Role of NKT cells in the digestive system. IV. The role of canonical natural killer T cells in mucosal immunity and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1–G8 (2008).

    Article  PubMed  CAS  Google Scholar 

  167. Ronet, C. et al. NKT cells are critical for the initiation of an inflammatory bowel response against Toxoplasma gondii. J. Immunol. 175, 899–908 (2005).

    Article  PubMed  CAS  Google Scholar 

  168. Loh, L., Ivarsson, M. A., Michaëlsson, J., Sandberg, J. K. & Nixon, D. F. Invariant natural killer T cells developing in the human fetus accumulate and mature in the small intestine. Mucosal Immunol. 7, 1233–1243 (2014).

    Article  PubMed  CAS  Google Scholar 

  169. Dowds, C. M., Blumberg, R. S. & Zeissig, S. Control of intestinal homeostasis through crosstalk between natural killer T cells and the intestinal microbiota. Clin. Immunol. 159, 128–133 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Nieuwenhuis, E. E. S. et al. Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J. Clin. Invest. 119, 1241–1250 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Farin, H. F. et al. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-γ. J. Exp. Med. 211, 1393–1405 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Zeissig, S. & Blumberg, R. S. Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr. Opin. Immunol. 25, 690–696 (2013).

    Article  PubMed  CAS  Google Scholar 

  173. Wingender, G. et al. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology 143, 418–428 (2012).

    Article  PubMed  CAS  Google Scholar 

  174. Burrello, C. et al. Short-term oral antibiotics treatment promotes inflammatory activation of colonic invariant natural killer T and conventional CD4+T cells. Front. Med. 5, 21 (2018).

    Article  Google Scholar 

  175. Heller, F., Fuss, I. J., Nieuwenhuis, E. E., Blumberg, R. S. & Strober, W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17, 629–638 (2002).

    Article  PubMed  CAS  Google Scholar 

  176. Fuss, I. J. et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J. Clin. Invest. 113, 1490–1497 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Wieland Brown, L. C. et al. Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLOS Biol. 11, e1001610 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. An, D. et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Montalvillo, E. et al. Increased intraepithelial Vα24 invariant NKT cells in the celiac duodenum. Nutrients 7, 8960–8976 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Grose, R. H., Cummins, A. G. & Thompson, F. M. Deficiency of invariant natural killer T cells in coeliac disease. Gut 56, 790–795 (2007).

    Article  PubMed  CAS  Google Scholar 

  181. Wang, Y. et al. Unique invariant natural killer T cells promote intestinal polyps by suppressing TH1 immunity and promoting regulatory T cells. Mucosal Immunol. 11, 131–143 (2018). This study shows that IL-10 production by intestinal iNKT cells prevents spontaneous polyp formation in mutant mice.

    Article  PubMed  CAS  Google Scholar 

  182. Olszak, T. et al. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 509, 497–502 (2014). This study shows an opposite effect of CD1d expression by epithelial and bone marrow cells, with epithelial cells promoting an IL-10-mediated anti-inflammatory response.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Porcelli, S. A. The CD1 family: a third lineage of antigen-presenting molecules. Adv. Immunol. 59, 1–98 (1995).

    Article  PubMed  CAS  Google Scholar 

  184. Hughes, A. L. Evolutionary origin and diversification of the mammalian CD1 antigen genes. Mol. Biol. Evol. 8, 185–201 (1991).

    PubMed  CAS  Google Scholar 

  185. Teyton, L. New directions for natural killer T cells in the immunotherapy of cancer. Front. Immunol. 8, 1480 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Robertson, F. C., Berzofsky, J. A. & Terabe, M. NKT cell networks in the regulation of tumor immunity. Front. Immunol. 5, 543 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Taniguchi, M., Harada, M., Dashtsoodol, N. & Kojo, S. Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 91, 292–304 (2015).

    Article  CAS  Google Scholar 

  188. Fujii, S.-I. et al. NKT cells as an ideal anti-tumor immunotherapeutic. Front. Immunol. 4, 409 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Li, X. et al. Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc. Natl Acad. Sci. USA 107, 13010–13015 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Cerundolo, V., Silk, J. D., Masri, S. H. & Salio, M. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 9, 28–38 (2009).

    Article  PubMed  CAS  Google Scholar 

  191. Carreño, L. J., Kharkwal, S. S. & Porcelli, S. A. Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy 6, 309–320 (2014).

    Article  PubMed  CAS  Google Scholar 

  192. Kharkwal, S. S., Arora, P. & Porcelli, S. A. Glycolipid activators of invariant NKT cells as vaccine adjuvants. Immunogenetics 68, 597–610 (2016).

    Article  PubMed  CAS  Google Scholar 

  193. Field, J. J. et al. NNKTT120, an anti-iNKT cell monoclonal antibody, produces rapid and sustained iNKT cell depletion in adults with sickle cell disease. PLOS One 12, e0171067 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Field, J. J. Can selectin and iNKT cell therapies meet the needs of people with sickle cell disease? Hematology Am. Soc. Hematol. Educ. Program 2015, 426–432 (2015).

    Google Scholar 

  195. Hongo, D., Tang, X., Zhang, X., Engleman, E. G. & Strober, S. Tolerogenic interactions between CD8+ dendritic cells and NKT cells prevent rejection of bone marrow and organ grafts. Blood 129, 1718–1728 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Mavers, M., Maas-Bauer, K. & Negrin, R. S. Invariant natural killer T cells as suppressors of graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Front. Immunol. 8, 900 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Berzins, S. P. & Ritchie, D. S. Natural killer T cells: drivers or passengers in preventing human disease? Nat. Rev. Immunol. 14, 640–646 (2014).

    Article  PubMed  CAS  Google Scholar 

  198. Dashtsoodol, N. et al. Natural killer T cell-targeted immunotherapy mediating long-term memory responses and strong antitumor activity. Front. Immunol. 8, 1206 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Motohashi, S. et al. A phase I-II study of α-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J. Immunol. 182, 2492–2501 (2009).

    Article  PubMed  CAS  Google Scholar 

  200. Exley, M. A. et al. Adoptive transfer of invariant NKT cells as immunotherapy for advanced melanoma: a phase i clinical trial. Clin. Cancer Res. 23, 3510–3519 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Rampuria, P. & Lang, M. L. CD1d-dependent expansion of NKT follicular helper cells in vivo and in vitro is a product of cellular proliferation and differentiation. Int. Immunol. 27, 253–263 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Bai, L. et al. Natural killer T (NKT)-B cell interactions promote prolonged antibody responses and long-term memory to pneumococcal capsular polysaccharides. Proc. Natl Acad. Sci. USA 110, 16097–16102 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Kawakami, K. et al. Activation of Vα14+ natural killer T cells by α-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect. Immun. 69, 213–220 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Jaiswal, A. K., Sadasivam, M. & Hamad, A. R. A. Syndecan-1-coating of interleukin-17-producing natural killer T cells provides a specific method for their visualization and analysis. World J. Diabetes 8, 130–134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by US National Institutes of Health (NIH) grants AI 71922, AI 92763, AI 105215 and AI 137230. C.M.C. is suqpported by American Lung Association Senior Research Training Fellowship RT-412662. The authors thank their colleagues for many helpful discussions.

Reviewer information

Nature Reviews Immunology thanks P. Brennan, M. Brenner, A. Lehuen and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching, writing and editing the manuscript.

Corresponding author

Correspondence to Mitchell Kronenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

α-Galactosyl ceramide

(αGalCer). A glycosphingolipid that is a specific and highly potent activator of invariant natural killer T cells.

Concanavalin A

(Con A). A mitogenic lectin that stimulates T cell proliferation and activation and has been shown to induce invariant natural killer T cell-activated liver damage.

Myeloid-derived suppressor cells

(MDSCs). A heterogeneous group of myeloid cells that exhibits strong immunosuppressive function.

Visceral adipose tissue

(VAT). Adipose tissue that is located around internal organs in the abdominal cavity. Excess visceral fat has been linked to insulin resistance and other obesity-related diseases.

White adipose tissue

(WAT). White and brown adipose tissues are the two types of adipose tissue found in mammals. WAT is the primary tissue for energy storage and it also serves roles in whole body thermal insulation and endocrine regulation of energy homeostasis.

Meta-inflammation

A metabolically driven, chronic, low-grade inflammation that is manifested by immune cells and adipocytes. This inflammation has been linked to obesity and insulin resistance.

Mucosal-associated invariant T cells

An innate-like T cell type with an invariant T cell receptor α (TCRα) chain that recognizes vitamin B metabolites presented on the MHC class I-like molecule MHC class I-related gene protein (MR1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crosby, C.M., Kronenberg, M. Tissue-specific functions of invariant natural killer T cells. Nat Rev Immunol 18, 559–574 (2018). https://doi.org/10.1038/s41577-018-0034-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0034-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing