Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrating oncolytic viruses in combination cancer immunotherapy

A Correction to this article was published on 21 June 2018

This article has been updated

Abstract

Oncolytic viruses can be usefully integrated into tumour immunotherapies, as they target multiple steps within the cancer–immunity cycle. Oncolytic viruses directly lyse tumour cells, leading to the release of soluble antigens, danger signals and type I interferons, which drive antitumour immunity. In addition, some oncolytic viruses can be engineered to express therapeutic genes or can functionally alter tumour-associated endothelial cells, further enhancing T cell recruitment into immune-excluded or immune-deserted tumour microenvironments. Oncolytic viruses can also utilize established tumours as an in situ source of neoantigen vaccination through cross-presentation, resulting in regression of distant, uninfected tumours. These features make oncolytic viruses attractive agents for combination strategies to optimize cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms that mediate the antitumour activity of oncolytic viruses.
Fig. 2: Antiviral and antitumour immunity during oncolytic virus treatment of cancer.
Fig. 3: Oncolytic viruses as the foundation of combination therapy in cancer.

Similar content being viewed by others

Change history

  • 21 June 2018

    In the initially published version of this article online in advance of print, a reference (Ajina, A. & Maher, J. Prospects for combined use of oncolytic viruses and CAR T-cells. J. Immunother. Cancer 5, 90 (2017)) was omitted in error from the following sentence: “The ability of oncolytic viruses to increase the expression of MHC class I molecules by cancer cells is also predicted to enhance ACT with TILs or TCR-engineered and chimeric antigen receptor (CAR) T cells that target tumour-specific antigens”. This has been corrected in the HTML and PDF versions of the manuscript.

References

  1. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010). This is a randomized clinical trial demonstrating a clinical benefit of ipilimumab, the first immune checkpoint inhibitor that was approved for the treatment of melanoma.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Grosso, J. F. & Jure-Kunkel, M. N. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 13, 5 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Sehgal, A., Whiteside, T. L. & Boyiadzis, M. Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opin. Biol. Ther. 15, 1191–1203 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54, 139–148 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Andrews, A. Treating with checkpoint inhibitors — figure $1 million per patient. Am. Health Drug Benefits 8, 9 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Teng, M. W., Ngiow, S. F., Ribas, A. & Smyth, M. J. Classifying cancers based on T cell infiltration and PD-L1. Cancer Res. 75, 2139–2145 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017). This is an excellent review article describing the cancer–immunity cycle and the three different immunological tumour phenotypes.

    Article  PubMed  CAS  Google Scholar 

  13. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017). This study investigates baseline gene expression signatures in patients who respond to PD1 therapy and establishes a T cell-inflamed gene expression signature as a predictive biomarker.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Prat, A. et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017).

    Article  PubMed  CAS  Google Scholar 

  16. Bommareddy, P. K., Patel, A., Hossain, S. & Kaufman, H. L. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am. J. Clin. Dermatol. 18, 1–15 (2017).

    Article  PubMed  Google Scholar 

  17. Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015). This is a comprehensive review of oncolytic viruses in clinical development and of key considerations in drug development using oncolytic virus platforms.

    Article  PubMed  CAS  Google Scholar 

  18. Zamarin, D. et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl Med. 6, 226ra32 (2014). This is one of the first research articles to report preclinical data demonstrating improved therapeutic responses using combination therapy with an oncolytic virus and an immune checkpoint inhibitor.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Thomann, S. et al. Combined cytotoxic activity of an infectious, but non-replicative herpes simplex virus type 1 and plasmacytoid dendritic cells against tumour cells. Immunology 146, 327–338 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240–273 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bommareddy, P. K., Silk, A. W. & Kaufman, H. L. Intratumoral approaches for the treatment of melanoma. Cancer J. 23, 40–47 (2017).

    Article  PubMed  Google Scholar 

  22. Larocca, C. & Schlom, J. Viral vector-based therapeutic cancer vaccines. Cancer J. 17, 359–371 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Harrop, R. & Carroll, M. W. Viral vectors for cancer immunotherapy. Front. Biosci. 11, 804–817 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Haseley, A., Alvarez-Breckenridge, C., Chaudhury, A. R. & Kaur, B. Advances in oncolytic virus therapy for glioma. Recent Pat. CNS Drug Discov. 4, 1–13 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Fernandes, J. Oncogenes: the passport for viral oncolysis through PKR inhibition. Biomark Cancer 8, 101–110 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mounir, Z. et al. Tumor suppression by PTEN requires the activation of the PKR-eIF2α phosphorylation pathway. Sci. Signal. 2, ra85 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. Bommareddy, P. K. & Kaufman, H. L. Unleashing the therapeutic potential of oncolytic viruses. J. Clin. Invest. 128, 1258–1260 (2018).

    Article  PubMed  Google Scholar 

  29. Tuve, S. et al. A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells. J. Virol. 80, 12109–12120 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Uchida, H. et al. Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol. Ther. 21, 561–569 (2013).

    Article  PubMed  CAS  Google Scholar 

  31. Xia, T., Konno, H. & Barber, G. N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 76, 6747–6759 (2016).

    Article  PubMed  CAS  Google Scholar 

  32. Xia, T., Konno, H., Ahn, J. & Barber, G. N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 14, 282–297 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Vile, R. G. & Hart, I. R. Targeting of cytokine gene expression to malignant melanoma cells using tissue specific promoter sequences. Ann. Oncol. 5(Suppl. 4), 59–65 (1994).

    Article  PubMed  Google Scholar 

  34. Pelka, P. et al. Adenovirus E1A directly targets the E2F/DP-1 complex. J. Virol. 85, 8841–8851 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Savontaus, M. J., Sauter, B. V., Huang, T. G. & Woo, S. L. Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells. Gene Ther. 9, 972–979 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. Cassady, K. A. & Gross, M. The herpes simplex virus type 1 U(S)11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. J. Virol. 76, 2029–2035 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liu, B. L. et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 10, 292–303 (2003). This is the original paper describing that ICP34.5-deleted HSV-1 encoding GM-CSF has therapeutic activity in preclinical tumour models.

    Article  PubMed  CAS  Google Scholar 

  38. Deng, L. et al. Oncolytic efficacy of thymidine kinase-deleted vaccinia virus strain Guang9. Oncotarget 8, 40533–40543 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Zinn, R. L., Pruitt, K., Eguchi, S., Baylin, S. B. & Herman, J. G. hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res. 67, 194–201 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. Potts, K. G., Hitt, M. M. & Moore, R. B. Oncolytic viruses in the treatment of bladder cancer. Adv. Urol. 2012, 404581 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chung, R. Y., Saeki, Y. & Chiocca, E. A. B-Myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells. J. Virol. 73, 7556–7564 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Singh, P. K., Doley, J., Kumar, G. R., Sahoo, A. P. & Tiwari, A. K. Oncolytic viruses and their specific targeting to tumour cells. Indian J. Med. Res. 136, 571–584 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. Hu, J. C. et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 12, 6737–6747 (2006).

    Article  PubMed  CAS  Google Scholar 

  44. Garg, A. D., Dudek-Peric, A. M., Romano, E. & Agostinis, P. Immunogenic cell death. Int. J. Dev. Biol. 59, 131–140 (2015).

    Article  PubMed  CAS  Google Scholar 

  45. Kepp, O. et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3, e955691 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Haag, F. et al. Extracellular NAD and ATP: Partners in immune cell modulation. Purinerg. Signal. 3, 71–81 (2007).

    Article  CAS  Google Scholar 

  47. Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).

    Article  PubMed  CAS  Google Scholar 

  48. Bracci, L., Schiavoni, G., Sistigu, A. & Belardelli, F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 21, 15–25 (2014).

    Article  PubMed  CAS  Google Scholar 

  49. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723.e4 (2017). This study investigates a potential link between the presence of BATF3-driven DCs within the tumour microenvironment and the recruitment of effector T cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008). This study shows that deletion of the transcription factor BATF3 inhibits the development of CD8α+ DCs and that cross-presentation by these cells mediates antiviral and antitumour immunity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Brendan Horton, L. S. S. The non-T cell-inflamed tumor microenvironment: contributing factors and therapeutic solutions. Emerg. Top. Life Sci. 5, 447–456 (2017).

    Article  Google Scholar 

  52. Dai, P. et al. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Sci. Immunol. 2, eaal1713 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schmidt, S. V., Nino-Castro, A. C. & Schultze, J. L. Regulatory dendritic cells: there is more than just immune activation. Front. Immunol. 3, 274 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Kell, A. M. & Gale, M. Jr. RIG-I in RNA virus recognition. Virology 479–480, 110–121 (2015).

    Article  PubMed  CAS  Google Scholar 

  55. Cai, X., Chiu, Y. H. & Chen, Z. J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    Article  PubMed  CAS  Google Scholar 

  56. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014). This study demonstrates that the host STING pathway is a major mechanism of innate sensing of cancers.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mihret, A., Mamo, G., Tafesse, M., Hailu, A. & Parida, S. Dendritic cells activate and mature after infection with Mycobacterium tuberculosis. BMC Res. Notes 4, 247 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  PubMed  CAS  Google Scholar 

  59. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wakimoto, H., Johnson, P. R., Knipe, D. M. & Chiocca, E. A. Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Ther. 10, 983–990 (2003).

    Article  PubMed  CAS  Google Scholar 

  61. Saha, D., Wakimoto, H. & Rabkin, S. D. Oncolytic herpes simplex virus interactions with the host immune system. Curr. Opin. Virol. 21, 26–34 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zamarin, D. et al. PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. J. Clin. Invest. 128, 1413–1428 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Uehara, J. et al. Intratumoral injection of IFN-beta induces chemokine production in melanoma and augments the therapeutic efficacy of anti-PD-L1 mAb. Biochem. Biophys. Res. Commun. 490, 521–527 (2017).

    Article  PubMed  CAS  Google Scholar 

  64. Cheng, X. et al. The PD-1/PD-L pathway is up-regulated during IL-12-induced suppression of EAE mediated by IFN-gamma. J. Neuroimmunol. 185, 75–86 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. DiPaola, R. S. et al. A phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM) in patients with prostate cancer. J. Transl Med. 4, 1 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zamarin, D. & Wolchok, J. D. Potentiation of immunomodulatory antibody therapy with oncolytic viruses for treatment of cancer. Mol. Ther. Oncolyt. 1, 14004 (2014).

    Article  CAS  Google Scholar 

  67. Grekova, S. et al. Activation of an antiviral response in normal but not transformed mouse cells: a new determinant of minute virus of mice oncotropism. J. Virol. 84, 516–531 (2010).

    Article  PubMed  CAS  Google Scholar 

  68. Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557–569 (2012).

    Article  PubMed  CAS  Google Scholar 

  69. Muller, M., Carter, S., Hofer, M. J. & Campbell, I. L. Review: the chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity — a tale of conflict and conundrum. Neuropathol. Appl. Neurobiol. 36, 368–387 (2010).

    Article  PubMed  CAS  Google Scholar 

  70. Garrido, F., Aptsiauri, N., Doorduijn, E. M., Garcia Lora, A. M. & van Hall, T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 39, 44–51 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Verweij, M. C. et al. Viral inhibition of the transporter associated with antigen processing (TAP): a striking example of functional convergent evolution. PLoS Pathog. 11, e1004743 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Goldsmith, K., Chen, W., Johnson, D. C. & Hendricks, R. L. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J. Exp. Med. 187, 341–348 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Brode, S. & Macary, P. A. Cross-presentation: dendritic cells and macrophages bite off more than they can chew! Immunology 112, 345–351 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Nesslinger, N. J. et al. A viral vaccine encoding prostate-specific antigen induces antigen spreading to a common set of self-proteins in prostate cancer patients. Clin. Cancer Res. 16, 4046–4056 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Russell, S. J. & Peng, K. W. Oncolytic virotherapy: a contest between apples and oranges. Mol. Ther. 25, 1107–1116 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gulley, J. L. et al. Role of antigen spread and distinctive characteristics of immunotherapy in cancer treatment. J. Natl Cancer Inst. 109, djw261 (2017).

    Article  PubMed Central  Google Scholar 

  77. Woller, N. et al. Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T cell responses. Mol. Ther. 23, 1630–1640 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Curtsinger, J. M. & Mescher, M. F. Inflammatory cytokines as a third signal for T cell activation. Curr. Opin. Immunol. 22, 333–340 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lapteva, N. et al. Attraction and activation of dendritic cells at the site of tumor elicits potent antitumor immunity. Mol. Ther. 17, 1626–1636 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Gujar, S. A. & Lee, P. W. Oncolytic virus-mediated reversal of impaired tumor antigen presentation. Front. Oncol. 4, 77 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gujar, S. et al. Multifaceted therapeutic targeting of ovarian peritoneal carcinomatosis through virus-induced immunomodulation. Mol. Ther. 21, 338–347 (2013).

    Article  PubMed  CAS  Google Scholar 

  83. Zamarin, D. et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat. Commun. 8, 14340 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Barber, G. N. Host defense, viruses and apoptosis. Cell Death Differ. 8, 113–126 (2001).

    Article  PubMed  CAS  Google Scholar 

  85. Petersen, J. L., Morris, C. R. & Solheim, J. C. Virus evasion of MHC class I molecule presentation. J. Immunol. 171, 4473–4478 (2003).

    Article  PubMed  CAS  Google Scholar 

  86. Su, X. et al. TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling. Eur. J. Immunol. 36, 199–206 (2006).

    Article  PubMed  CAS  Google Scholar 

  87. Dorner, T. & Radbruch, A. Antibodies and B cell memory in viral immunity. Immunity 27, 384–392 (2007).

    Article  PubMed  CAS  Google Scholar 

  88. Ferguson, M. S., Lemoine, N. R. & Wang, Y. Systemic delivery of oncolytic viruses: hopes and hurdles. Adv. Virol. 2012, 805629 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Bhattacharya, P. et al. Dual role of GM-CSF as a pro-inflammatory and a regulatory cytokine: implications for immune therapy. J. Interferon Cytokine Res. 35, 585–599 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Tahtinen, S. et al. T-cell therapy enabling adenoviruses coding for IL2 and TNFα induce systemic immunomodulation in mice with spontaneous melanoma. J. Immunother. 39, 343–354 (2016).

    Article  PubMed  CAS  Google Scholar 

  91. Passer, B. J. et al. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther. 20, 17–24 (2013).

    Article  PubMed  CAS  Google Scholar 

  92. Uchida, H. et al. Oncolytic herpes simplex virus vectors fully retargeted to tumor- associated antigens. Curr. Cancer Drug Targets 18, 162–170 (2018).

    Article  PubMed  CAS  Google Scholar 

  93. Choi, J. W., Lee, Y. S., Yun, C. O. & Kim, S. W. Polymeric oncolytic adenovirus for cancer gene therapy. J. Control. Release 219, 181–191 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wang, J., Lu, X. X., Chen, D. Z., Li, S. F. & Zhang, L. S. Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer. World J. Gastroenterol. 10, 400–403 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Li, J. M. et al. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol. J. 10, 241 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Ruiz, A. J. & Russell, S. J. MicroRNAs and oncolytic viruses. Curr. Opin. Virol. 13, 40–48 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Breitbach, C. J. et al. Targeting tumor vasculature with an oncolytic virus. Mol. Ther. 19, 886–894 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Eichmann, A. & Simons, M. VEGF signaling inside vascular endothelial cells and beyond. Curr. Opin. Cell Biol. 24, 188–193 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Arulanandam, R. et al. VEGF-mediated induction of PRD1-BF1/Blimp1 expression sensitizes tumor vasculature to oncolytic virus infection. Cancer Cell 28, 210–224 (2015).

    Article  PubMed  CAS  Google Scholar 

  100. Critchley-Thorne, R. J. et al. Impaired interferon signaling is a common immune defect in human cancer. Proc. Natl Acad. Sci. USA 106, 9010–9015 (2009). This study demonstrates that interferon response genes are dysregulated in cancer cells.

    Article  PubMed  Google Scholar 

  101. Eriksson, E. et al. Activation of myeloid and endothelial cells by CD40L gene therapy supports T cell expansion and migration into the tumor microenvironment. Gene Ther. 24, 92–103 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015). This randomized clinical trial demonstrated a therapeutic benefit of treating patients with advanced melanoma with oncolytic HSV encoding GM-CSF; these data led to regulatory approval of this treatment in the USA, Europe and Australia.

    Article  PubMed  CAS  Google Scholar 

  103. Cheng, P. H., Wechman, S. L., McMasters, K. M. & Zhou, H. S. Oncolytic replication of E1b-deleted adenoviruses. Viruses 7, 5767–5779 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Khuri, F. R. et al. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 6, 879–885 (2000).

    Article  PubMed  CAS  Google Scholar 

  105. John, J. et al. Differential effects of Paclitaxel on dendritic cell function. BMC Immunol. 11, 14 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Pfirschke, C. et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 44, 343–354 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Roulstone, V. et al. BRAF- and MEK-targeted small molecule inhibitors exert enhanced antimelanoma effects in combination with oncolytic reovirus through ER stress. Mol. Ther. 23, 931–942 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Gholami, S. et al. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Ther. 21, 283–289 (2014).

    Article  PubMed  CAS  Google Scholar 

  109. Diana, A. et al. Prognostic value, localization and correlation of PD-1/PD-L1, CD8 and FOXP3 with the desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget 7, 40992–41004 (2016).

    PubMed  PubMed Central  Google Scholar 

  110. Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Liu, Z., Ravindranathan, R., Kalinski, P., Guo, Z. S. & Bartlett, D. L. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat. Commun. 8, 14754 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Intlekofer, A. M. & Thompson, C. B. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J. Leukoc. Biol. 94, 25–39 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Bourgeois-Daigneault, M. C. et al. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci. Transl Med. 10, eaao1641 (2018).

    Article  PubMed  Google Scholar 

  114. Kleinpeter, P. et al. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunology 5, e1220467 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ilett, E. et al. Prime-boost using separate oncolytic viruses in combination with checkpoint blockade improves anti-tumour therapy. Gene Ther. 24, 21–30 (2017).

    Article  PubMed  CAS  Google Scholar 

  116. Puzanov, I. et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J. Clin. Oncol. 34, 2619–2626 (2016).

    Article  PubMed  CAS  Google Scholar 

  117. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02263508 (2018).

  118. Silk, A. W. et al. Phase 1b study of intratumoral Coxsackievirus A21 (CVA21) and systemic pembrolizumab in advanced melanoma patients: Interim results of the CAPRA clinical trial [abstract]. Cancer Res. 77 (Suppl), CT026 (2017).

    Article  Google Scholar 

  119. Lichty, B. D., Breitbach, C. J., Stojdl, D. F. & Bell, J. C. Going viral with cancer immunotherapy. Nat. Rev. Cancer 14, 559 (2014).

    Article  PubMed  CAS  Google Scholar 

  120. Ajina, A. & Maher, J. Prospects for combined use of oncolytic viruses and CAR T-cells. J. Immunother. Cancer 5, 90 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nishio, N. & Dotti, G. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. Oncoimmunology 4, e988098 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Sharabi, A. B., Lim, M., DeWeese, T. L. & Drake, C. G. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 16, e498–509 (2015).

    Article  PubMed  Google Scholar 

  123. Kang, J., Demaria, S. & Formenti, S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J. Immunother. Cancer 4, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ottolino-Perry, K., Diallo, J. S., Lichty, B. D., Bell, J. C. & McCart, J. A. Intelligent design: combination therapy with oncolytic viruses. Mol. Ther. 18, 251–263 (2010).

    Article  PubMed  CAS  Google Scholar 

  125. O’Cathail, S. M. et al. Combining oncolytic adenovirus with radiation — a paradigm for the future of radiosensitization. Front. Oncol. 7, 153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kanai, R. et al. Oncolytic virus-mediated manipulation of DNA damage responses: synergy with chemotherapy in killing glioblastoma stem cells. J. Natl Cancer Inst. 104, 42–55 (2012).

    Article  PubMed  CAS  Google Scholar 

  127. Adusumilli, P. S. et al. Radiation therapy potentiates effective oncolytic viral therapy in the treatment of lung cancer. Ann. Thorac Surg. 80, 409–416 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Harrington, K. J. et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin. Cancer Res. 16, 4005–4015 (2010).

    Article  PubMed  CAS  Google Scholar 

  129. Ribas, A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170, 1109–1119.e10 (2017). This study provides preliminary data from the treatment of patients with melanoma with combination therapy of T-VEC and pembrolizumab, which showed a 62% response rate and demonstrated T cell recruitment and PDL1 upregulation in the tumour microenvironment of treated melanomas.

    Article  PubMed  CAS  Google Scholar 

  130. Chesney, J. et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. https://doi.org/10.1200/JCO.2017.73.7379 (2017).

  131. Bommareddy, P. K., Peters, C., Saha, D., Rabkin, S. D. & Kaufman, H. L. Oncolytic herpes simplex viruses as a paradigm for the treatment of cancer. Annu. Rev. Cancer Biol. 2, 155–173 (2018).

    Article  Google Scholar 

  132. Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856 (2015).

    Article  PubMed  CAS  Google Scholar 

  133. Maleki Vareki, S., Garrigos, C. & Duran, I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit. Rev. Oncol. Hematol. 116, 116–124 (2017).

    Article  PubMed  Google Scholar 

  134. Lu, Z., Zhang, C., Sheng, J., Shen, J. & Liu, B. T cell receptor beta-chain repertoire analysis reveals the association between neoantigens and tumour-infiltrating lymphocytes in multifocal papillary thyroid carcinoma. Int. J. Cancer 141, 377–382 (2017).

    Article  PubMed  CAS  Google Scholar 

  135. Pasetto, A. et al. Tumor- and neoantigen-reactive T cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol. Res. 4, 734–743 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Kloos, A., Woller, N., Gerardy-Schahn, R. & Kuhnel, F. Retargeted oncolytic viruses provoke tumor-directed T cell responses. Oncoimmunology 4, e1052933 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Dispenzieri, A. et al. Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma. Leukemia 31, 2791–2798 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Samson, A. et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci. Transl Med. 10, eaam7577 (2018).

    Article  PubMed  Google Scholar 

  139. Garcia-Carbonero, R. et al. Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. J. Immunother. Cancer 5, 71 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Russell, S. J. et al. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin. Proc. 89, 926–933 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Jiang, H. et al. Comparative effect of oncolytic adenoviruses with E1A-55 kDa or E1B-55 kDa deletions in malignant gliomas. Neoplasia 7, 48–56 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Kanai, R. et al. Effect of gamma34.5 deletions on oncolytic herpes simplex virus activity in brain tumors. J. Virol. 86, 4420–4431 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Reinboth, J. et al. Correlates between host and viral transcriptional program associated with different oncolytic vaccinia virus isolates. Hum. Gene Ther. Methods 23, 285–296 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Wollmann, G., Rogulin, V., Simon, I., Rose, J. K. & van den Pol, A. N. Some attenuated variants of vesicular stomatitis virus show enhanced oncolytic activity against human glioblastoma cells relative to normal brain cells. J. Virol. 84, 1563–1573 (2010).

    Article  PubMed  CAS  Google Scholar 

  145. Dobrikova, E. Y. et al. Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol. Ther. 16, 1865–1872 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Allen, C. et al. Oncolytic measles virus strains in the treatment of gliomas. Expert Opin. Biol. Ther. 8, 213–220 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Zamarin, D. & Palese, P. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol. 7, 347–367 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Nakaya, T. et al. Recombinant Newcastle disease virus as a vaccine vector. J. Virol. 75, 11868–11873 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Coffin for review of the manuscript and helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

P.K.B. and H.L.K. researched data for the article; P.K.B., M.S. and H.L.K. contributed to discussion of content and to writing the article; and P.K.B. and H.L.K. reviewed and edited the article before submission.

Corresponding author

Correspondence to Howard L. Kaufman.

Ethics declarations

Competing interests

H.L.K. is an employee of Replimune, Inc. The remaining authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bommareddy, P.K., Shettigar, M. & Kaufman, H.L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 18, 498–513 (2018). https://doi.org/10.1038/s41577-018-0014-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0014-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer