Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diverse developmental pathways of intestinal intraepithelial lymphocytes

Abstract

The intestinal epithelial barrier is patrolled by resident intraepithelial lymphocytes (IELs) that are involved in host defence against pathogens, wound repair and homeostatic interactions with the epithelium, microbiota and nutrients. Intestinal IELs are one of the largest populations of lymphocytes in the body and comprise several distinct subsets, the identity and lineage relationships of which have long remained elusive. Here, we review advances in unravelling the complexity of intestinal IEL populations, which comprise conventional αβ T cell receptor (TCRαβ)+ subsets, unconventional TCRαβ+ and TCRγδ+ subsets, group 1 innate lymphoid cells (ILC1s) and ILC1-like cells. Although these intestinal IEL lineages have partially overlapping effector programmes and recognition properties, they have strikingly different developmental pathways. We suggest that evolutionary pressure has driven the recurrent generation of cytolytic effector lymphocytes to protect the intestinal epithelial layer, but they may also precipitate intestinal inflammatory disorders, such as coeliac disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiple pathways for the development of intestinal IEL lineages.
Fig. 2: Stereotypic functions of intestinal IEL lineages.

Similar content being viewed by others

References

  1. Poussier, P., Edouard, P., Lee, C., Binnie, M. & Julius, M. Thymus-independent development and negative selection of T cells expressing T cell receptor αβ in the intestinal epithelium: evidence for distinct circulation patterns of gut- and thymus-derived T lymphocytes. J. Exp. Med. 176, 187–199 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. Abadie, V., Discepolo, V. & Jabri, B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin. Immunopathol. 34, 551–566 (2012).

    Article  PubMed  CAS  Google Scholar 

  3. Guy-Grand, D. et al. Origin, trafficking, and intraepithelial fate of gut-tropic T cells. J. Exp. Med. 210, 1839–1854 (2013). This study demonstrates that unconventional TCRγδ + IELs exit the thymus as naive cells and acquire effector properties in gut-associated lymphoid tissues.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013). This study characterizes ILC1s found in the human and mouse small intestinal epithelium.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Van Kaer, L. et al. CD8αα+ innate-type lymphocytes in the intestinal epithelium mediate mucosal immunity. Immunity 41, 451–464 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424, 88–93 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  PubMed  CAS  Google Scholar 

  10. Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell 167, 203–218.e7 (2016). This study demonstrates that TCRVγ7 + IEL precursors acquire effector properties after recognition of the self ligands BTNL1 and BTNL6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. McDonald, B. D., Bunker, J. J., Ishizuka, I. E., Jabri, B. & Bendelac, A. Elevated T cell receptor signaling identifies a thymic precursor to the TCRαβ+CD4CD8β intraepithelial lymphocyte lineage. Immunity 41, 219–229 (2014). This study identifies the unconventional TCRαβ + IEL thymic precursor and shows its overlap with DP low PD1 hi autoreactive thymocytes. Furthermore, this paper identifies both MHC class I and MHC class II ligands of unconventional IELs.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ruscher, R., Kummer, R. L., Lee, Y. J., Jameson, S. C. & Hogquist, K. A. CD8αα intraepithelial lymphocytes arise from two main thymic precursors. Nat. Immunol. 18, 771–779 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. El-Asady, R. et al. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med. 201, 1647–1657 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Konkel, J. E. et al. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nat. Immunol. 12, 312–319 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Schon, M. P. et al. Mucosal T lymphocyte numbers are selectively reduced in integrin αE (CD103)-deficient mice. J. Immunol. 162, 6641–6649 (1999).

    PubMed  CAS  Google Scholar 

  16. Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity 40, 747–757 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Chandele, A. & Kaech, S. M. Cutting edge: memory CD8 T cell maturation occurs independently of CD8αα. J. Immunol. 175, 5619–5623 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zhong, W. & Reinherz, E. L. CD8αα homodimer expression and role in CD8 T cell memory generation during influenza virus A infection in mice. Eur. J. Immunol. 35, 3103–3110 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. Mucida, D. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14, 281–289 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Reis, B. S., Rogoz, A., Costa-Pinto, F. A., Taniuchi, I. & Mucida, D. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 14, 271–280 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357, 806–810 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Sujino, T. et al. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science 352, 1581–1586 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Bilate, A. M. et al. Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor. Sci. Immunol. 1, eaaf7471 (2016). References 22 and 23 demonstrate plasticity between lamina propria FOXP3 + T reg cells and IELs in response to microbial stimulation.

    Article  PubMed  Google Scholar 

  24. Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Hayday, A., Theodoridis, E., Ramsburg, E. & Shires, J. Intraepithelial lymphocytes: exploring the third way in immunology. Nat. Immunol. 2, 997–1003 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. Guy-Grand, D. et al. Different expression of the recombination activity gene RAG-1 in various populations of thymocytes, peripheral T cells and gut thymus-independent intraepithelial lymphocytes suggests two pathways of T cell receptor rearrangement. Eur. J. Immunol. 22, 505–510 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. Poussier, P. & Julius, M. Thymus independent T cell development and selection in the intestinal epithelium. Annu. Rev. Immunol. 12, 521–553 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. Rocha, B., Vassalli, P. & Guy-Grand, D. The Vβ repertoire of mouse gut homodimeric α CD8+ intraepithelial T cell receptor αβ+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J. Exp. Med. 173, 483–486 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. Pobezinsky, L. A. et al. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nat. Immunol. 13, 569–578 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Lambolez, F. et al. The thymus exports long-lived fully committed T cell precursors that can colonize primary lymphoid organs. Nat. Immunol. 7, 76–82 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. Hendricks, D. W. & Fink, P. J. Uneven colonization of the lymphoid periphery by T cells that undergo early TCRα rearrangements. J. Immunol. 182, 4267–4274 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Leishman, A. J. et al. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. Immunity 16, 355–364 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. Levelt, C. N. et al. High- and low-affinity single-peptide/MHC ligands have distinct effects on the development of mucosal CD8αα and CD8αβ T lymphocytes. Proc. Natl Acad. Sci. USA 96, 5628–5633 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. Rocha, B., von Boehmer, H. & Guy-Grand, D. Selection of intraepithelial lymphocytes with CD8αα co-receptors by self-antigen in the murine gut. Proc. Natl Acad. Sci. USA 89, 5336–5340 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nat. Immunol. 5, 597–605 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. McDonald, B. D., Bunker, J. J., Erickson, S. A., Oh-Hora, M. & Bendelac, A. Crossreactive αβ T cell receptors are the predominant targets of thymocyte negative selection. Immunity 43, 859–869 (2015). This paper shows that the DP low PD1 hi thymocyte population is the predominant precursor to unconventional TCRαβ + IELs and that TCRs from these unconventional IELs exhibit cross reactivity towards multiple MHC haplotypes.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Oh-Hora, M. et al. Agonist-selected T cell development requires strong T cell receptor signaling and store-operated calcium entry. Immunity 38, 881–895 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Bruno, L., Fehling, H. J. & von Boehmer, H. The αβ T cell receptor can replace the γδ receptor in the development of γδ lineage cells. Immunity 5, 343–352 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. Fritsch, M., Andersson, A., Petersson, K. & Ivars, F. A. TCR α chain transgene induces maturation of CD4 CD8 αβ+ T cells from γδ T cell precursors. Eur. J. Immunol. 28, 828–837 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. Terrence, K., Pavlovich, C. P., Matechak, E. O. & Fowlkes, B. J. Premature expression of T cell receptor (TCR) αβ suppresses TCRγδ gene rearrangement but permits development of γδ lineage T cells. J. Exp. Med. 192, 537–548 (2000).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Baldwin, T. A., Sandau, M. M., Jameson, S. C. & Hogquist, K. A. The timing of TCR α expression critically influences T cell development and selection. J. Exp. Med. 202, 111–121 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Mayans, S. et al. αβT cell receptors expressed by CD4CD8αβ intraepithelial T cells drive their fate into a unique lineage with unusual MHC reactivities. Immunity 41, 207–218 (2014). Together with reference 11, this paper demonstrates that unconventional TCRαβ + IELs can respond to various MHC ligands including non-classical MHC class I molecules.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Regnault, A., Cumano, A., Vassalli, P., Guy-Grand, D. & Kourilsky, P. Oligoclonal repertoire of the CD8αα and the CD8αβ TCRαβ murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J. Exp. Med. 180, 1345–1358 (1994).

    Article  PubMed  CAS  Google Scholar 

  44. Regnault, A. et al. The expansion and selection of T cell receptor αβ intestinal intraepithelial T cell clones. Eur. J. Immunol. 26, 914–921 (1996).

    Article  PubMed  CAS  Google Scholar 

  45. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. Kreslavsky, T. et al. Negative selection, not receptor editing, is a physiological response of autoreactive thymocytes. J. Exp. Med. 210, 1911–1918 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. McCaughtry, T. M., Baldwin, T. A., Wilken, M. S. & Hogquist, K. A. Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J. Exp. Med. 205, 2575–2584 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Stritesky, G. L. et al. Murine thymic selection quantified using a unique method to capture deleted T cells. Proc. Natl Acad. Sci. USA 110, 4679–4684 (2013).

    Article  PubMed  Google Scholar 

  49. Wang, X., Sumida, H. & Cyster, J. G. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. J. Exp. Med. 211, 2351–2359 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Sumida, H. et al. GPR55 regulates intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage. Sci. Immunol. 2, eaao1135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Golec, D. P. et al. Thymic progenitors of TCRαβ+ CD8αα intestinal intraepithelial lymphocytes require RasGRP1 for development. J. Exp. Med. 214, 2421–2435 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Klose, C. S. N. et al. A committed postselection precursor to natural TCRαβ+ intraepithelial lymphocytes. Mucosal Immunol. https://doi.org/10.1038/mi.2017.54 (2017).

  53. Gangadharan, D. et al. Identification of pre- and postselection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. Immunity 25, 631–641 (2006).

    Article  PubMed  CAS  Google Scholar 

  54. Das, G. & Janeway, C. A. Jr. Development of CD8αα and CD8αβ T cells in major histocompatibility complex class I-deficient mice. J. Exp. Med. 190, 881–884 (1999).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Gapin, L., Cheroutre, H. & Kronenberg, M. Cutting edge: TCRαβ+ CD8αα+ T cells are found in intestinal intraepithelial lymphocytes of mice that lack classical MHC class I molecules. J. Immunol. 163, 4100–4104 (1999).

    PubMed  CAS  Google Scholar 

  56. Park, S. H. et al. Selection and expansion of CD8αα1 T cell receptor αβ1 intestinal intraepithelial lymphocytes in the absence of both classical major histocompatibility complex class I and nonclassical CD1 molecules. J. Exp. Med. 190, 885–890 (1999).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Huseby, E. S. et al. How the T cell repertoire becomes peptide and MHC specific. Cell 122, 247–260 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. Zerrahn, J., Held, W. & Raulet, D. H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).

    Article  PubMed  CAS  Google Scholar 

  59. Leishman, A. J. et al. T cell responses modulated through interaction between CD8αα and the nonclassical MHC class I molecule, TL. Science 294, 1936–1939 (2001).

    Article  PubMed  CAS  Google Scholar 

  60. Olivares-Villagomez, D. et al. Thymus leukemia antigen controls intraepithelial lymphocyte function and inflammatory bowel disease. Proc. Natl Acad. Sci. USA 105, 17931–17936 (2008).

    Article  PubMed  Google Scholar 

  61. Bandeira, A. et al. Localization of γδ T cells to the intestinal epithelium is independent of normal microbial colonization. J. Exp. Med. 172, 239–244 (1990).

    Article  PubMed  CAS  Google Scholar 

  62. Guy-Grand, D. et al. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J. Exp. Med. 173, 471–481 (1991).

    Article  PubMed  CAS  Google Scholar 

  63. Klose, C. S. et al. The transcription factor T-bet is induced by IL-15 and thymic agonist selection and controls CD8αα+ intraepithelial lymphocyte development. Immunity 41, 230–243 (2014).

    Article  PubMed  CAS  Google Scholar 

  64. Lefrancois, L. & Goodman, T. In vivo modulation of cytolytic activity and Thy-1 expression in TCR-γδ+ intraepithelial lymphocytes. Science 243, 1716–1718 (1989).

    Article  PubMed  CAS  Google Scholar 

  65. Reis, B. S., Hoytema van Konijnenburg, D. P., Grivennikov, S. I. & Mucida, D. Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. Immunity 41, 244–256 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Ebihara, T. et al. Runx3 specifies lineage commitment of innate lymphoid cells. Nat. Immunol. 16, 1124–1133 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Lai, Y. G. et al. IL-15 does not affect IEL development in the thymus but regulates homeostasis of putative precursors and mature CD8αα+ IELs in the intestine. J. Immunol. 180, 3757–3765 (2008).

    Article  PubMed  CAS  Google Scholar 

  68. Verstichel, G. et al. The checkpoint for agonist selection precedes conventional selection in human thymus. Sci. Immunol. 2, eaah4232 (2017). This paper identifies CD8αα-expressing human IELs.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Balk, S. P. et al. Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science 253, 1411–1415 (1991).

    Article  PubMed  CAS  Google Scholar 

  70. Rhodes, D. A., Reith, W. & Trowsdale, J. Regulation of immunity by butyrophilins. Annu. Rev. Immunol. 34, 151–172 (2016).

    Article  PubMed  CAS  Google Scholar 

  71. Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity 40, 490–500 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Russano, A. M. et al. CD1-restricted recognition of exogenous and self-lipid antigens by duodenal γδ+ T lymphocytes. J. Immunol. 178, 3620–3626 (2007).

    Article  PubMed  CAS  Google Scholar 

  73. Luoma, A. M. et al. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39, 1032–1042 (2013).

    Article  PubMed  CAS  Google Scholar 

  74. Denning, T. L. et al. Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J. Immunol. 178, 4230–4239 (2007).

    Article  PubMed  CAS  Google Scholar 

  75. Shires, J., Theodoridis, E. & Hayday, A. C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    Article  PubMed  CAS  Google Scholar 

  76. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011). This study demonstrates that environmental stimuli modulate IEL development and maintenance through AHR.

    Article  PubMed  CAS  Google Scholar 

  77. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  PubMed  CAS  Google Scholar 

  78. Ishizuka, I. E., Constantinides, M. G., Gudjonson, H. & Bendelac, A. The innate lymphoid cell precursor. Annu. Rev. Immunol. 34, 299–316 (2016).

    Article  PubMed  CAS  Google Scholar 

  79. Robinette, M. L. et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16, 306–317 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Cortez, V. S. et al. Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity 44, 1127–1139 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  PubMed  CAS  Google Scholar 

  82. Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246.e13 (2016).

    Article  PubMed  CAS  Google Scholar 

  83. Van Acker, A. et al. A murine intestinal intraepithelial NKp46-negative innate lymphoid cell population characterized by group 1 properties. Cell Rep. 19, 1431–1443 (2017).

    Article  PubMed  CAS  Google Scholar 

  84. Wang, S. et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171, 201–216.e8 (2017).

    Article  PubMed  CAS  Google Scholar 

  85. Schmitz, F. et al. Identification of a potential physiological precursor of aberrant cells in refractory coeliac disease type II. Gut 62, 509–519 (2013).

    Article  PubMed  CAS  Google Scholar 

  86. Ettersperger, J. et al. Interleukin-15-dependent T-cell-like innate intraepithelial lymphocytes develop in the intestine and transform into lymphomas in celiac disease. Immunity 45, 610–625 (2016). This study suggests that a human IEL subset similar to mouse innate CD8αα + IELs is the precursor to the lymphomas that occur in refractory sprue.

    Article  PubMed  CAS  Google Scholar 

  87. Guy-Grand, D., Cuenod-Jabri, B., Malassis-Seris, M., Selz, F. & Vassalli, P. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. Eur. J. Immunol. 26, 2248–2256 (1996).

    Article  PubMed  CAS  Google Scholar 

  88. Faria, A. M. C., Reis, B. S. & Mucida, D. Tissue adaptation: implications for gut immunity and tolerance. J. Exp. Med. 214, 1211–1226 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Vely, F. et al. Evidence of innate lymphoid cell redundancy in humans. Nat. Immunol. 17, 1291–1299 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Ismail, A. S. et al. γδ Intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl Acad. Sci. USA 108, 8743–8748 (2011).

    Article  PubMed  Google Scholar 

  91. Graff, J. W., Ettayebi, K. & Hardy, M. E. Rotavirus NSP1 inhibits NFκB activation by inducing proteasome-dependent degradation of β-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog. 5, e1000280 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Sen, A., Rott, L., Phan, N., Mukherjee, G. & Greenberg, H. B. Rotavirus NSP1 protein inhibits interferon-mediated STAT1 activation. J. Virol. 88, 41–53 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Jabri, B. & Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15, 771–783 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Zhu, S. et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Wencker, M. et al. Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat. Immunol. 15, 80–87 (2014).

    Article  PubMed  CAS  Google Scholar 

  96. Hoytema van Konijnenburg, D. P. et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171, 783–794.e13 (2017). References 90 and 96 demonstrate the importance of IEL–IEC crosstalk for intestinal homeostasis and antimicrobial responses.

    Article  PubMed  CAS  Google Scholar 

  97. Edelblum, K. L. et al. Dynamic migration of γδ intraepithelial lymphocytes requires occludin. Proc. Natl Acad. Sci. USA 109, 7097–7102 (2012).

    Article  PubMed  Google Scholar 

  98. Shui, J. W. et al. HVEM signalling at mucosal barriers provides host defence against pathogenic bacteria. Nature 488, 222–225 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Sedy, J. R. et al. CD160 activation by herpesvirus entry mediator augments inflammatory cytokine production and cytolytic function by NK cells. J. Immunol. 191, 828–836 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255 (1994).

    Article  PubMed  CAS  Google Scholar 

  101. Komano, H. et al. Homeostatic regulation of intestinal epithelia by intraepithelial γδ T cells. Proc. Natl Acad. Sci. USA 92, 6147–6151 (1995).

    Article  PubMed  CAS  Google Scholar 

  102. Poussier, P., Ning, T., Banerjee, D. & Julius, M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J. Exp. Med. 195, 1491–1497 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  103. Kumar, A. A., Delgado, A. G., Piazuelo, M. B., Van Kaer, L. & Olivares-Villagomez, D. Innate CD8αα+ lymphocytes enhance anti-CD40 antibody-mediated colitis in mice. Immun. Inflamm. Dis. 5, 109–123 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  104. Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).

    Article  PubMed  CAS  Google Scholar 

  105. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    Article  PubMed  CAS  Google Scholar 

  106. Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 494, 261–265 (2013).

    Article  PubMed  CAS  Google Scholar 

  107. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33, 736–751 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. Jabri, B. & Sollid, L. M. T. Cells in celiac disease. J. Immunol. 198, 3005–3014 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. Lundin, K. E. et al. Gliadin-specific, HLA-DQ(α1*0501, β1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J. Exp. Med. 178, 187–196 (1993).

    Article  PubMed  CAS  Google Scholar 

  110. Jabri, B. et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 118, 867–879 (2000).

    Article  PubMed  CAS  Google Scholar 

  111. Jabri, B. et al. TCR specificity dictates CD94/NKG2A expression by human CTL. Immunity 17, 487–499 (2002).

    Article  PubMed  CAS  Google Scholar 

  112. Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004). This paper demonstrates that dysregulated IL-15-induced signalling in patients with coeliac disease allows for TCR-independent, NKG2D-mediated cytotoxicity.

    Article  PubMed  CAS  Google Scholar 

  113. Meresse, B. et al. Reprogramming of CTLs into natural killer-like cells in celiac disease. J. Exp. Med. 203, 1343–1355 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  114. Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

    Article  PubMed  Google Scholar 

  115. Liu, R. B. et al. IL-15 in tumor microenvironment causes rejection of large established tumors by T cells in a noncognate T cell receptor-dependent manner. Proc. Natl Acad. Sci. USA 110, 8158–8163 (2013).

    Article  PubMed  Google Scholar 

  116. Halstensen, T. S., Scott, H. & Brandtzaeg, P. Intraepithelial T cells of the TCR γδ+ CD8 and Vδ1/Jδ1+ phenotypes are increased in coeliac disease. Scand. J. Immunol. 30, 665–672 (1989).

    Article  PubMed  CAS  Google Scholar 

  117. Troncone, R. et al. In siblings of celiac children, rectal gluten challenge reveals gluten sensitization not restricted to celiac HLA. Gastroenterology 111, 318–324 (1996).

    Article  PubMed  CAS  Google Scholar 

  118. Han, A. et al. Dietary gluten triggers concomitant activation of CD4+ and CD8+ αβ T cells and γδ T cells in celiac disease. Proc. Natl Acad. Sci. USA 110, 13073–13078 (2013).

    Article  PubMed  Google Scholar 

  119. Calleja, S. et al. Dynamics of non-conventional intraepithelial lymphocytes – NK, NKT, and γδ T – in celiac disease: relationship with age, diet, and histopathology. Dig. Dis. Sci. 56, 2042–2049 (2011).

    Article  PubMed  CAS  Google Scholar 

  120. Kutlu, T. et al. Numbers of T cell receptor (TCR) αβ+ but not of TCR γδ+ intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients on a long term normal diet. Gut 34, 208–214 (1993).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  121. Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996–1006 (2013).

    Article  PubMed  CAS  Google Scholar 

  122. Thomas, S. Y. et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J. Exp. Med. 208, 1179–1188 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  123. Seehus, C. R. et al. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat. Immunol. 16, 599–608 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  124. Verhoef, P. A. et al. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice. J. Allergy Clin. Immunol. 137, 591–600.e1 (2016).

    Article  PubMed  CAS  Google Scholar 

  125. Pantelyushin, S. et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Gray, E. E., Friend, S., Suzuki, K., Phan, T. G. & Cyster, J. G. Subcapsular sinus macrophage fragmentation and CD169+ bleb acquisition by closely associated IL-17-committed innate-like lymphocytes. PloS One 7, e38258 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  127. Kastenmuller, W., Torabi-Parizi, P., Subramanian, N., Lammermann, T. & Germain, R. N. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150, 1235–1248 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. J. Bunker, S. A. Erickson and T. Mayassi for discussions and collaborations. B.D.M. is supported by the University of Chicago Physician Scientist Development Program. These studies were supported by US National Institutes of Health (NIH) grants RO1-AI038339 and UO1-AI125250 (A.B.) and RO1-DK067180 and RO1-DK100619 (B.J.) and by Digestive Diseases Research Core Center grant P30-DK42086.

Author information

Authors and Affiliations

Authors

Contributions

B.D.M. and A.B. were responsible for researching, writing, reviewing and editing the manuscript. B.J. made a substantial contribution to the discussion of content.

Corresponding author

Correspondence to Albert Bendelac.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

CD8αα

A homodimer of CD8α molecules (in contrast to the CD8αβ heterodimer found on conventional CD8+ T cells) that is expressed by most intestinal intraepithelial lymphocytes; its function is not known, although it is known to bind the MHC class Ib molecule thymus leukaemia antigen (TL).

Innate lymphoid cells

(ILCs). Cells that develop from a common lymphoid progenitor but do not express lineage markers associated with other lymphocytes, such as recombined antigen receptors. These cells rapidly secrete effector cytokines in response to activation and have been subdivided into three main groups on the basis of whether they produce T helper 1 (TH1) cell-type, TH2 cell-type or TH17 cell-type cytokines.

Peyer’s patches

Highly specialized lymph node-like structures found on the anti-mesenteric side of the small intestine. They orchestrate immune responses against luminal antigens taken up by M cells.

Aryl hydrocarbon receptor

(AHR). A ligand-dependent transcription factor that is activated by dietary and microbial metabolites and that regulates the development of most intestinal intraepithelial lymphocytes.

αGalCer–CD1d tetramers

Tetrameric forms of CD1d molecules bound to α-galactosylceramide (αGalCer) that have sufficient affinity for the T cell receptor of natural killer T (NKT) cells to allow the detection of NKT cells by flow cytometry.

Refractory sprue

Pathological changes of the small intestine, including crypt hyperplasia and villous atrophy, that do not resolve in patients with coeliac disease on a gluten-free diet.

Mucosa-associated invariant T (MAIT) cells

A population of T cells with a semi-invariant αβ T cell receptor that recognizes riboflavin metabolites presented by the non-classical MHC class I molecule MHC class I-related gene protein (MR1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, B.D., Jabri, B. & Bendelac, A. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat Rev Immunol 18, 514–525 (2018). https://doi.org/10.1038/s41577-018-0013-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0013-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing