Perspective | Published:

Timeline

An early history of T cell-mediated cytotoxicity

Abstract

After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin–granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note

Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Govaerts, A. Cellular antibodies in kidney homotransplantation. J. Immunol. 85, 516–522 (1960).

  2. 2.

    Rosenau, W. & Moon, H. D. Lysis of homologous cells by sensitized lymphocytes in tissue culture. J. Natl Cancer Inst. 27, 471–483 (1961).

  3. 3.

    Amos, D. B. The use of simplified systems as an aid to the interpretation of mechanisms of graft rejection. Prog. Allergy 6, 468–538 (1962).

  4. 4.

    Wilson, D. B. The reaction of immunologically activated lymphoid cells against homologous lymphoid cells against homologous target tissue cells in vitro. J. Cell. Comp. Physiol. 62, 273–286 (1963).

  5. 5.

    Brunner, K. T., Mauel, J. & Schindler, R. In vitro studies of cell-bound immunity; cloning assay of the cytotoxic action of sensitized lymphoid cells on allogeneic target cells. Immunology 11, 499–506 (1966).

  6. 6.

    Friedman, H. Inhibition of antibody plaque formation by sensitized lymphoid cells: rapid indicator of transplantation immunity. Science 145, 607–609 (1964).

  7. 7.

    Granger, G. A. & Weiser, R. S. Homograft target cells: specific destruction in vitro by contact interaction with immune macrophages. Science 145, 1427–1429 (1964).

  8. 8.

    Möller, E. Antagonistic effects of humoral isoantibodies on the in vitro cytotoxicity of immune lymphoid cells. J. Exp. Med. 122, 11–23 (1965).

  9. 9.

    Stuart, A. E. The cytotoxic effect of heterologous lymphoid cells. Lancet 2, 180–182 (1962).

  10. 10.

    Granger, G. A. & Williams, T. W. Lymphocyte cytotoxicity in vitro: activation and release of a cytotoxic factor. Nature 218, 1253–1254 (1968).

  11. 11.

    Ruddle, N. H. & Waksman, B. H. Cytotoxicity mediated by soluble antigen and lymphocytes in delayed hypersensitivity. III. Analysis of mechanism. J. Exp. Med. 128, 1267–1279 (1968).

  12. 12.

    Koprowski, H. & Fernandes, M. V. Autosensitization reaction in vitro. Contactual agglutination of sensitized lymph node cells in brain tissue culture accompanied by destruction of glial elements. J. Exp. Med. 116, 467–476 (1962).

  13. 13.

    Berg, O. & Kallen, B. White blood cells from animals with experimental allergic encephalomyelitis tested on glia cells in tissue culture. Acta Pathol. Microbiol. Scand. 58, 33–42 (1963).

  14. 14.

    Perlmann, P. & Broberger, O. In vitro studies of ulcerative colitis. II. Cytotoxic action of white blood cells from patients on human fetal colon cells. J. Exp. Med. 117, 717–733 (1963).

  15. 15.

    Vainio, T., Koskimies, O., Perlmann, P., Perlmann, H. & Klein, G. In vitro cytotoxic effect of lymphoid cells from mice immunized with allogeneic tissue. Nature 204, 453–455 (1964).

  16. 16.

    Sanderson, A. R. Cytotoxic reactions of mouse iso-antisera: preliminary considerations. Br. J. Exp. Pathol. 45, 398–408 (1964).

  17. 17.

    Sanderson, A. R. Applications of iso-immune cytolysis using radiolabelled target cells. Nature 204, 250–253 (1964).

  18. 18.

    Wigzell, H. Quantitative titrations of mouse H-2 antibodies using Cr-51-labelled target cells. Transplantation 3, 423–431 (1965).

  19. 19.

    Holm, G. & Perlmann, P. Quantitative studies on phytohaemagglutinin-induced cytotoxicity by human lymphocytes against homologous cells in tissue culture. Immunology 12, 525–536 (1967).

  20. 20.

    Brunner, K. T., Mauel, J., Cerottini, J.-C. & Chapuis, B. Quantitative assay of the lytic action of immune lymphoid cells on 51Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14, 181–196 (1968).

  21. 21.

    Henry, C. M., Hollville, E. & Martin, S. J. Measuring apoptosis by microscopy and flow cytometry. Methods 61, 90–97 (2013).

  22. 22.

    Frick, M. et al. Distinct patterns of cytolytic T cell activation by different tumour cells revealed by Ca2+ signalling and granule mobilization. Immunology 150, 199–212 (2017).

  23. 23.

    Vanden Berghe, T. et al. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 61, 117–129 (2013).

  24. 24.

    Perlmann, P. & Holm, G. Cytotoxic effects of lymphoid cells in vitro. Adv. Immunol. 11, 117–193 (1969).

  25. 25.

    Cerottini, J.-C., Nordin, A. A. & Brunner, K. T. Specific in vitro cytotoxicity of thymus-derived lymphocytes sensitized to alloantigens. Nature 228, 1308–1309 (1970).

  26. 26.

    Lonai, P., Clark, W. R. & Feldman, M. Participation of theta-bearing cell in an in vitro assay of transplantation immunity. Nature 229, 566–567 (1971).

  27. 27.

    Golstein, P. & Blomgren, H. Further evidence for autonomy of T cells mediating specific in vitro cytotoxicity: efficiency of very small amounts of highly purified T cells. Cell. Immunol. 9, 127–141 (1973).

  28. 28.

    Golstein, P., Wigzell, H., Blomgren, H. & Svedmyr, E. A. Cells mediating specific in vitro cytotoxicity. II. Probable autonomy of thymus-processed lymphocytes (T cells) for the killing of allogeneic target cells. J. Exp. Med. 135, 890–906 (1972).

  29. 29.

    Cantor, H. & Boyse, E. A. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T cell subclasses is a differentiative process independent of antigen. J. Exp. Med. 141, 1376–1389 (1975).

  30. 30.

    Golstein, P., Wigzell, H., Blomgren, H. & Svedmyr, E. A. J. Autonomy of thymus-processed lymphocytes (T cells) for their education into cytotoxic T cells. Eur. J. Immunol. 2, 498–501 (1972).

  31. 31.

    Sprent, J. & Miller, J. F. Activation of thymus cells by histocompatibility antigens. Nat. New Biol. 234, 195–198 (1971).

  32. 32.

    Blomgren, H. & Svedmyr, E. In vitro stimulation of mouse thymus cells by PHA and allogeneic cells. Cell. Immunol. 2, 285–299 (1971).

  33. 33.

    Lohmann-Matthes, M. L. & Fischer, H. Specific cytotoxicity of a mouse thymocyte population sensitized in vitro against H-2 alloantigens. Eur. J. Immunol. 2, 290–292 (1972).

  34. 34.

    Crone, M., Koch, C. & Simonsen, M. The elusive T cell receptor. Transplant. Rev. 10, 36–56 (1972).

  35. 35.

    Wigzell, H. & Andersson, B. Cell separation on antigen-coated columns. Elimination of high rate antibody-forming cells and immunological memory cells. J. Exp. Med. 129, 23–36 (1969).

  36. 36.

    Wigzell, H. Specific fractionation of immunocompetent cells. Transplant. Rev. 5, 76–104 (1970).

  37. 37.

    Kindred, B. & Shreffler, D. C. H-2 dependence of co-operation between T and B cells in vivo. J. Immunol. 109, 940–943 (1972).

  38. 38.

    Katz, D. H., Hamaoka, T., Dorf, M. E. & Benacerraf, B. Cell interactions between histoincompatible T and B lymphocytes. The H-2 gene complex determines successful physiologic lymphocyte interactions. Proc. Natl Acad. Sci. USA 70, 2624–2628 (1973).

  39. 39.

    Shearer, G. M. Cell-mediated cytotoxicity to trinitrophenyl-modified syngeneic lymphocytes. Eur. J. Immunol. 4, 527–533 (1974).

  40. 40.

    Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

  41. 41.

    Brondz, B. D. Interaction of immune lymphocytes in vitro with normal and neoplastic tissue cells. Folia Biol. 10, 164–175 (1964).

  42. 42.

    Brondz, B. D. Complex specificity of immune lymphocytes in allogeneic cell cultures. Folia Biol. 14, 115–131 (1968).

  43. 43.

    Brondz, B. D. & Snegirova, A. E. Interaction of immune lymphocytes with the mixtures of target cells possessing selected specificities of the H-2 immunizing allele. Immunology 20, 457–468 (1971).

  44. 44.

    Brondz, B. D. Lymphocyte receptors and mechanisms of in vitro cell-mediated immune reactions. Transplant. Rev. 10, 112–151 (1972).

  45. 45.

    Golstein, P., Svedmyr, E. A. J. & Wigzell, H. Cells mediating specific in vitro cytotoxicity. I. Detection of receptor-bearing lymphocytes. J. Exp. Med. 134, 1385–1402 (1971).

  46. 46.

    Berke, G. & Levey, R. H. Cellular immunoabsorbents in transplantation immunity. Specific in vitro deletion and recovery of mouse lymphoid cells sensitized against allogeneic tumors. J. Exp. Med. 135, 972–984 (1972).

  47. 47.

    Altman, A., Cohen, I. R. & Feldman, M. Normal T cell receptors for alloantigens. Cell. Immunol. 7, 134–142 (1973).

  48. 48.

    Zagury, D., Bernard, J., Thiernesse, N., Feldman, M. & Berke, G. Isolation and characterization of individual functionally reactive cytotoxic T lymphocytes: conjugation, killing and recycling at the single cell level. Eur. J. Immunol. 5, 818–822 (1975).

  49. 49.

    Berke, G., Sullivan, K. A. & Amos, B. Rejection of ascites tumor allografts. I. Isolation, characterization, and in vitro reactivity of peritoneal lymphoid effector cells from BALB/c mice immune to EL4 leukosis. J. Exp. Med. 135, 1334–1350 (1972).

  50. 50.

    Ax, W., Malchow, H., Zeiss, I. & Fischer, H. The behaviour of lymphocytes in the process of target cell destruction in vitro. Exp. Cell Res. 53, 108–116 (1968).

  51. 51.

    Koren, H. S., Ax, W. & Freund-Moelbert, E. Morphological observations on the contact-induced lysis of target cells. Eur. J. Immunol. 3, 32–37 (1973).

  52. 52.

    Sanderson, C. J. The mechanism of T cell mediated cytotoxicity. II. Morphological studies of cell death by time-lapse microcinematography. Proc. R. Soc. Lond. B. Biol. Sci. 192, 241–255 (1976).

  53. 53.

    Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

  54. 54.

    Golstein, P. Sensitivity of cytotoxic T cells to T cell-mediated cytotoxicity. Nature 252, 81–83 (1974).

  55. 55.

    Wagner, H. & Röllinghoff, M. T cell-mediated cytotoxicity: discrimination between antigen recognition, lethal hit and cytolysis phase. Eur. J. Immunol. 4, 745–750 (1974).

  56. 56.

    Gately, M. K. & Martz, E. Early steps in specific tumor cell lysis by sensitized mouse T lymphocytes. III. Resolution of two distinct roles for calcium in the cytolytic process. J. Immunol. 122, 482–489 (1979).

  57. 57.

    Cerottini, J.-C. & Brunner, K. T. Cell-mediated cytotoxicity, allograft rejection, and tumor immunity. Adv. Immunol. 18, 67–132 (1974).

  58. 58.

    Henney, C. S. T cell-mediated cytolysis: an overview of some current issues. Contemp. Top. Immunobiol. 7, 245–272 (1977).

  59. 59.

    Martz, E. Mechanism of specific tumor-cell lysis by alloimmune T lymphocytes: resolution and characterization of discrete steps in the cellular interaction. Contemp. Top. Immunobiol. 7, 301–361 (1977).

  60. 60.

    Golstein, P. & Smith, E. T. Mechanism of T cell-mediated cytolysis: the lethal hit stage. Contemp. Top. Immunobiol. 7, 273–300 (1977).

  61. 61.

    Sanderson, C. J. The mechanism of lymphocyte-mediated cytotoxicity. Biol. Rev. Camb. Philos. Soc. 56, 153–197 (1981).

  62. 62.

    Bonavida, B. et al. Molecular interactions in T cell-mediated cytotoxicity. Immunol. Rev. 72, 119–141 (1983).

  63. 63.

    Russell, J. H. Internal disintegration model of cytotoxic lymphocyte-induced target damage. Immunol. Rev. 72, 97–118 (1983).

  64. 64.

    Martz, E., Heagy, W. & Gromkowski, S. H. The mechanism of CTL-mediated killing: monoclonal antibody analysis of the roles of killer and target-cell membrane proteins. Immunol. Rev. 72, 73–96 (1983).

  65. 65.

    Berke, G. Cytotoxic T-lymphocytes. How do they function? Immunol. Rev. 72, 5–42 (1983).

  66. 66.

    Baker, P. E., Gillis, S. & Smith, K. A. Monoclonal cytolytic T cell lines. J. Exp. Med. 149, 273–278 (1979).

  67. 67.

    Nabholz, M. et al. Established murine cytolytic T cell lines as tools for a somatic cell genetic analysis of T cell functions. Immunol. Rev. 51, 125–156 (1980).

  68. 68.

    Albert, F., Buferne, M., Boyer, C. & Schmitt-Verhulst, A.-M. Interactions between MHC-encoded products and cloned T cells. I. Fine specificity for induction of proliferation and lysis. Immunogenetics 16, 533–549 (1982).

  69. 69.

    Dourmashkin, R. R., Deteix, P., Simone, C. B. & Henkart, P. Electron microscopic demonstration of lesions in target cell membranes associated with antibody-dependent cellular cytotoxicity. Clin. Exp. Immunol. 42, 554–560 (1980).

  70. 70.

    Dennert, G. & Podack, E. R. Cytolysis by H-2-specific T killer cells. Assembly of tubular complexes on target membranes. J. Exp. Med. 157, 1483–1495 (1983).

  71. 71.

    Criado, M., Lindstrom, J. M., Anderson, C. G. & Dennert, G. Cytotoxic granules from killer cells: specificity of granules and insertion of channels of defined size into target membranes. J. Immunol. 135, 4245–4251 (1985).

  72. 72.

    Podack, E. R. & Konigsberg, P. J. Cytolytic T cell granules. Isolation, structural, biochemical, and functional characterization. J. Exp. Med. 160, 695–710 (1984).

  73. 73.

    Henkart, P. A., Millard, P. J., Reynolds, C. W. & Henkart, M. P. Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J. Exp. Med. 160, 75–93 (1984).

  74. 74.

    Podack, E. R., Young, J. D.-E. & Cohn, Z. A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T cell granules. Proc. Natl Acad. Sci. USA 82, 8629–8633 (1985).

  75. 75.

    Henkart, P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 3, 31–58 (1985).

  76. 76.

    Masson, D. & Tschopp, J. Isolation of a lytic, pore-forming protein (perforin) from cytolytic T lymphocytes. J. Biol. Chem. 260, 9069–9072 (1985).

  77. 77.

    Young, J. D.-E., Hengartner, H., Podack, E. R. & Cohn, Z. A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44, 849–859 (1986).

  78. 78.

    Shinkai, Y., Takio, K. & Okumura, K. Homology of perforin to the ninth component of complement (C9). Nature 334, 525–527 (1988).

  79. 79.

    Acha-Orbea, H., Scarpellino, L., Hertig, S., Dupuis, M. & Tschopp, J. Inhibition of lymphocyte mediated cytotoxicity by perforin antisense oligonucleotides. EMBO J. 9, 3815–3819 (1990).

  80. 80.

    Kägi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

  81. 81.

    Lowin, B., Beermann, F., Schmidt, A. & Tschopp, J. A null mutation in the perforin gene impairs cytolytic T lymphocyte- and natural killer cell-mediated cytotoxicity. Proc. Natl Acad. Sci. USA 91, 11571–11575 (1994).

  82. 82.

    Chang, T. W. & Eisen, H. N. Effects of N α-tosyl-L-lysyl-chloromethylketone on the activity of cytotoxic T lymphocytes. J. Immunol. 124, 1028–1033 (1980).

  83. 83.

    Redelman, D. & Hudig, D. The mechanism of cell-mediated cytotoxicity. I. Killing by murine cytotoxic T lymphocytes requires cell surface thiols and activated proteases. J. Immunol. 124, 870–878 (1980).

  84. 84.

    Pasternack, M. S. & Eisen, H. N. A novel serine esterase expressed by cytotoxic T lymphocytes. Nature 314, 743–745 (1985).

  85. 85.

    Pasternack, M. S., Verret, C. R., Liu, M. A. & Eisen, H. N. Serine esterase in cytolytic T lymphocytes. Nature 322, 740–743 (1986).

  86. 86.

    Kramer, M. D. et al. Characterization and isolation of a trypsin-like serine protease from a long-term culture cytolytic T cell line and its expression by functionally distinct T cells. J. Immunol. 136, 4644–4651 (1986).

  87. 87.

    Simon, M. M., Hoschützky, H., Fruth, U., Simon, H.-G. & Kramer, M. D. Purification and characterization of a T cell specific serine proteinase (TSP-1) from cloned cytolytic T lymphocytes. EMBO J. 5, 3267–3274 (1986).

  88. 88.

    Young, J. D.-E. et al. Isolation and characterization of a serine esterase from cytolytic T cell granules. Cell 47, 183–194 (1986).

  89. 89.

    Masson, D., Nabholz, M., Estrade, C. & Tschopp, J. Granules of cytolytic T-lymphocytes contain two serine esterases. EMBO J. 5, 1595–1600 (1986).

  90. 90.

    Masson, D. & Tschopp, J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 49, 679–685 (1987).

  91. 91.

    Brunet, J.-F., Denizot, F. & Golstein, P. A differential molecular biology search for genes preferentially expressed in functional T lymphocytes: the CTLA genes. Immunol. Rev. 103, 21–36 (1988).

  92. 92.

    Brunet, J.-F. et al. The inducible cytotoxic-T-lymphocyte-associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature 322, 268–271 (1986).

  93. 93.

    Brunet, J.-F. et al. CTLA-1 and CTLA-3 serine-esterase transcripts are detected mostly in cytotoxic cells, but not only and not always. J. Immunol. 138, 4102–4105 (1987).

  94. 94.

    Gershenfeld, H. K. & Weissman, I. L. Cloning of a cDNA for a T cell-specific serine protease from a cytotoxic T lymphocyte. Science 232, 854–858 (1986).

  95. 95.

    Lobe, C. G., Finlay, B. B., Paranchych, W., Paetkau, V. H. & Bleackley, R. C. Novel serine proteases encoded by two cytotoxic T lymphocyte-specific genes. Science 232, 858–861 (1986).

  96. 96.

    Shiver, J. W., Su, L. & Henkart, P. A. Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71, 315–322 (1992).

  97. 97.

    Shi, L., Kam, C.-M., Powers, J. C., Aebersold, R. & Greenberg, A. H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J. Exp. Med. 176, 1521–1529 (1992).

  98. 98.

    Shi, L., Kraut, R. P., Aebersold, R. & Greenberg, A. H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 175, 553–566 (1992).

  99. 99.

    Chowdhury, D. & Lieberman, J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol. 26, 389–420 (2008).

  100. 100.

    Ewen, C. L., Kane, K. P. & Bleackley, R. C. A quarter century of granzymes. Cell Death Differ. 19, 28–35 (2012).

  101. 101.

    Voskoboinik, I., Whisstock, J. C. & Trapani, J. A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol. 15, 388–400 (2015).

  102. 102.

    Dotiwala, F. et al. Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites. Nat. Med. 22, 210–216 (2016).

  103. 103.

    Chiusolo, V. et al. Granzyme B enters the mitochondria in a Sam50-, Tim22- and mtHsp70-dependent manner to induce apoptosis. Cell Death Differ. 24, 747–758 (2017).

  104. 104.

    Berke, G. The cytolytic T lymphocyte and its mode of action. Immunol. Lett. 20, 169–178 (1989).

  105. 105.

    Berke, G. T cell-mediated cytotoxicity. Curr. Opin. Immunol. 3, 320–325 (1991).

  106. 106.

    MacLennan, I. C. M., Gotch, F. M. & Golstein, P. Limited specific T cell mediated cytolysis in the absence of extracellular Ca2+. Immunology 39, 109–117 (1980).

  107. 107.

    Tirosh, R. & Berke, G. T lymphocyte-mediated cytolysis as an excitatory process of the target. I. Evidence that the target may be the site of Ca2+ action. Cell. Immunol. 95, 113–123 (1985).

  108. 108.

    Trenn, G., Takayama, H. & Sitkovsky, M. V. Exocytosis of cytolytic granules may not be required for target cell lysis by cytotoxic T-lymphocytes. Nature 330, 72–74 (1987).

  109. 109.

    Ostergaard, H. L., Kane, K. P., Mescher, M. F. & Clark, W. R. Cytotoxic T lymphocyte mediated lysis without release of serine esterase. Nature 330, 71–72 (1987).

  110. 110.

    Young, J. D.-E., Clark, W. R., Liu, C.-C. & Cohn, Z. A. A calcium- and perforin-independent pathway of killing mediated by murine cytolytic lymphocytes. J. Exp. Med. 166, 1894–1899 (1987).

  111. 111.

    Golstein, P. Cytotoxic-T cell melodrama. Nature 327, 12 (1987).

  112. 112.

    Conzelmann, A., Corthésy, P., Cianfriglia, M., Silva, A. & Nabholz, M. Hybrids between rat lymphoma and mouse T cells with inducible cytolytic activity. Nature 298, 170–172 (1982).

  113. 113.

    Golstein, P., Mattéi, M.-G., Foa, C. & Luciani, M.-F. in Apoptosis and the Immune Response (ed. Gregory, C. D.) 143–168 (John Wiley and Sons, New York, 1995).

  114. 114.

    Rouvier, E., Luciani, M.-F. & Golstein, P. Fas involvement in Ca2+-independent T cell-mediated cytotoxicity. J. Exp. Med. 177, 195–200 (1993).

  115. 115.

    Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

  116. 116.

    Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (Anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747–1756 (1989).

  117. 117.

    Trauth, B. C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).

  118. 118.

    Kägi, D. et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528–530 (1994).

  119. 119.

    Lowin, B., Hahne, M., Mattmann, C. & Tschopp, J. Cytolytic T cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370, 650–652 (1994).

  120. 120.

    Walsh, C. M. et al. Immune function in mice lacking the perforin gene. Proc. Natl Acad. Sci. USA 91, 10854–10858 (1994).

  121. 121.

    Kojima, H. et al. Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity 1, 357–364 (1994).

  122. 122.

    Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

  123. 123.

    Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

  124. 124.

    Krammer, P. H. CD95’s deadly mission in the immune system. Nature 407, 789–795 (2000).

  125. 125.

    Glimcher, L. H., Townsend, M. J., Sullivan, B. M. & Lord, G. M. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat. Rev. Immunol. 4, 900–911 (2004).

  126. 126.

    Man, K. & Kallies, A. Synchronizing transcriptional control of T cell metabolism and function. Nat. Rev. Immunol. 15, 574–584 (2015).

  127. 127.

    Xin, A. et al. A molecular threshold for effector CD8( + ) T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat. Immunol. 17, 422–432 (2016).

  128. 128.

    Ahrends, T. et al. CD4 + T cell help confers a cytotoxic T cell effector program including coinhibitory receptor downregulation and increased tissue invasiveness. Immunity 47, 848–861 (2017).

  129. 129.

    Burkhardt, J. K., Hester, S., Lapham, C. K. & Argon, Y. The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments. J. Cell Biol. 111, 2327–2340 (1990).

  130. 130.

    Peters, P. J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173, 1099–1109 (1991).

  131. 131.

    Stepp, S. E. et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286, 1957–1959 (1999).

  132. 132.

    Pachlopnik Schmid, J. et al. Inherited defects in lymphocyte cytotoxic activity. Immunol. Rev. 235, 10–23 (2010).

  133. 133.

    Poenie, M., Tsien, R. Y. & Schmitt-Verhulst, A.-M. Sequential activation and lethal hit measured by (Ca2+)i in individual cytolytic T cells and targets. EMBO J. 6, 2223–2232 (1987).

  134. 134.

    Bykovskaya, S. N., Rytenko, A. N., Rauschenbach, M. O. & Bykovsky, A. F. Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. I. Hypertrophy and change of orientation of the golgi apparatus. Cell. Immunol. 40, 164–174 (1978).

  135. 135.

    Geiger, B., Rosen, D. & Berke, G. Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J. Cell Biol. 95, 137–143 (1982).

  136. 136.

    Kupfer, A., Dennert, G. & Singer, S. J. Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc. Natl Acad. Sci. USA 80, 7224–7228 (1983).

  137. 137.

    Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

  138. 138.

    Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

  139. 139.

    Stinchcombe, J. C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G. M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465 (2006).

  140. 140.

    Lopez, J. A. et al. Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood 121, 2659–2668 (2013).

  141. 141.

    Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).

  142. 142.

    Ochoa, M. T. et al. T cell release of granulysin contributes to host defense in leprosy. Nat. Med. 7, 174–179 (2001).

  143. 143.

    Stegelmann, F. et al. Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8+ T cells provides a host defense mechanism against Mycobacterium tuberculosis. J. Immunol. 175, 7474–7483 (2005).

  144. 144.

    Dotiwala, F. et al. Granzyme B disrupts central metabolism and protein synthesis in bacteria to promote an immune cell death program. Cell 171, 1125–1137 (2017).

  145. 145.

    Tanaka, M., Itai, T., Adachi, M. & Nagata, S. Downregulation of Fas ligand by shedding. Nat. Med. 4, 31–36 (1998).

  146. 146.

    Bossi, G. & Griffiths, G. M. Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat. Med. 5, 90–96 (1999).

  147. 147.

    Zuccato, E. et al. Sorting of Fas ligand to secretory lysosomes is regulated by mono-ubiquitylation and phosphorylation. J. Cell Sci. 120, 191–199 (2007).

  148. 148.

    Martinez-Lorenzo, M. J. et al. Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J. Immunol. 163, 1274–1281 (1999).

  149. 149.

    Lee, J., Dieckmann, N. M., Edgar, J., Griffiths, G. M. & Siegel, R. M. Fas Ligand localizes to intraluminal vesicles within NK cell cytolytic granules, delivering membrane-bound FasL to the immune synapse. Immun. Inflamm. Dis. https://doi.org/10.1002/iid3.219 (2018).

  150. 150.

    Schneider, P. et al. Characterization of Fas (Apo-1, CD95)-Fas ligand interaction. J. Biol. Chem. 272, 18827–18833 (1997).

  151. 151.

    Boldin, M. P. et al. A novel protein that interacts with the death domains of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270, 7795–7798 (1995).

  152. 152.

    Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).

  153. 153.

    Hueber, A. O., Bernard, A. M., Herincs, Z., Couzinet, A. & He, H. T. An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep. 3, 190–196 (2002).

  154. 154.

    Rossin, A. et al. Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability. Cell Death Differ. 22, 643–653 (2015).

  155. 155.

    Desbarats, J. & Newell, M. K. Fas engagement accelerates liver regeneration after partial hepatectomy. Nat. Med. 6, 920–923 (2000).

  156. 156.

    Peter, M. E. et al. The CD95 receptor: apoptosis revisited. Cell 129, 447–450 (2007).

  157. 157.

    Yamada, A., Arakaki, R., Saito, M., Kudo, Y. & Ishimaru, N. Dual role of Fas/FasL-mediated signal in peripheral immune tolerance. Front. Immunol. 8, 403 (2017).

  158. 158.

    Le Gallo, M., Poissonnier, A., Blanco, P. & Legembre, P. CD95/Fas, non-apoptotic signaling pathways, and kinases. Front. Immunol. 8, 1216 (2017).

  159. 159.

    Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

  160. 160.

    Balomenos, D., Shokri, R., Daszkiewicz, L., Vazquez-Mateo, C. & Martinez, A. C. On how Fas apoptosis-independent pathways drive T cell hyperproliferation and lymphadenopathy in lpr mice. Front. Immunol. 8, 237 (2017).

  161. 161.

    Van den Broek, M. F. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

  162. 162.

    Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

  163. 163.

    Rosenberg, S. A. & Lotze, M. T. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu. Rev. Immunol. 4, 681–709 (1986).

  164. 164.

    Brunet, J.-F. et al. A new member of the immunoglobulin superfamily - CTLA-4. Nature 328, 267–270 (1987).

  165. 165.

    Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

  166. 166.

    Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

  167. 167.

    Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

  168. 168.

    Kuehn, H. S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014).

  169. 169.

    Schubert, D. et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20, 1410–1416 (2014).

  170. 170.

    Nishimura, H., Minato, N., Nakano, T. & Honjo, T. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 10, 1563–1572 (1998).

  171. 171.

    Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

  172. 172.

    Nishimura, H. & Honjo, T. PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol. 22, 265–268 (2001).

  173. 173.

    Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133 (2017).

  174. 174.

    Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

  175. 175.

    Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

  176. 176.

    Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

  177. 177.

    Blank, C. et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 64, 1140–1145 (2004).

  178. 178.

    Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

  179. 179.

    Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

  180. 180.

    Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

  181. 181.

    Sharpe, A. H. Introduction to checkpoint inhibitors and cancer immunotherapy. Immunol. Rev. 276, 5–8 (2017).

  182. 182.

    Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 18, 91–104 (2018).

  183. 183.

    Dyck, L. & Mills, K. H. G. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur. J. Immunol. 47, 765–779 (2017).

  184. 184.

    Linsley, P. S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991).

  185. 185.

    Adams, A. B., Ford, M. L. & Larsen, C. P. Costimulation blockade in autoimmunity and transplantation: The CD28 pathway. J. Immunol. 197, 2045–2050 (2016).

  186. 186.

    Ceeraz, S., Nowak, E. C., Burns, C. M. & Noelle, R. J. Immune checkpoint receptors in regulating immune reactivity in rheumatic disease. Arthritis Res. Ther. 16, 469 (2014).

  187. 187.

    Lin, H. et al. Review of CTLA4Ig use for allograft immunosuppression. Transplant. Proc. 26, 3200–3201 (1994).

  188. 188.

    Huber, M., Kemmner, S., Renders, L. & Heemann, U. Should belatacept be the centrepiece of renal transplantation? Nephrol. Dial. Transplant. 31, 1995–2002 (2016).

  189. 189.

    Sandigursky, S., Silverman, G. J. & Mor, A. Targeting the programmed cell death-1 pathway in rheumatoid arthritis. Autoimmun. Rev. 16, 767–773 (2017).

  190. 190.

    June, C. H. Adoptive T cell therapy for cancer in the clinic. J. Clin. Invest. 117, 1466–1476 (2007).

  191. 191.

    Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

  192. 192.

    Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

  193. 193.

    Gross, G. & Eshhar, Z. Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy. Annu. Rev. Pharmacol. Toxicol. 56, 59–83 (2016).

  194. 194.

    Schmidt, H. et al. Effector granules in human T lymphocytes: proteomic evidence for two distinct species of cytotoxic effector vesicles. J. Proteome Res. 10, 1603–1620 (2011).

Download references

Acknowledgements

P.G. thanks Association pour la Recherche sur le Cancer for support and Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique and Aix Marseille University for institutional support to the Centre d’Immunologie de Marseille-Luminy (CIML). G.M.G. thanks the Wellcome Trust for research funding (grants 103930 and 100140). The authors thank all past and present members of their laboratories for their contributions to this research.

Reviewer information

Nature Reviews Immunology thanks J. Lieberman, J. Sprent and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Both authors researched data for the article, discussed its content and wrote, reviewed and edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Correspondence to Pierre Golstein or Gillian M. Griffiths.

Glossary

51Cr release assay

An assay that evaluates the percentage of target cells that are lysed by cytotoxic T cells by measuring the proportion of radioactivity released from pre-labelled target cells.

Allogeneic

A term that describes tissues or cells that are of the same species but are not genetically identical.

Antibody plaque formation

The ability of haemolytic antibody-forming lymphocytes to form plaques of lysed red blood cells in agar after being subjected to, for example, cytotoxic T cells.

Clonogenic assays

Assays used to determine the percentage of cells that are able to form colonies in vitro after being subjected to, for example, cytotoxic T cells.

Congenic

A term that describes tissues or cells that genetically differ by only one chromosomal region.

Haemophagocytic lymphohistiocytosis

(HLH). A human autosomal recessive disorder that results from mutation of one of five genes, including the gene encoding perforin, and that leads to T cell hyperproliferation.

Homograft

A graft from a donor of the same species as the recipient.

lpr mice

Mice bearing the lpr mutation of the Fas gene, which leads to a lymphoproliferative phenotype.

Syngeneic

A term that describes tissues or cells that are genetically identical.

Xenogeneic

A term that describes tissues or cells that are of different species.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Timeline of the history of research on CTLs.
Fig. 2: Chronological scheme of research on the mechanisms of CTL-mediated cytotoxicity.