
Animal models of human viral infections are criti-
cal for understanding disease pathogenesis, vaccine 
modalities and therapeutic interventions in vivo. 
Ideally, studies of human viral infections would ben-
efit from the ability to perform experiments using 
humans and samples from humans. Indeed, this is 
sometimes possible, as immune responses in humans 
can be measured before and after vaccination in 
peripheral blood, bronchoalveolar lavage, peripheral 
lymph nodes and the upper and lower gastrointestinal 
tract (via endoscopy). Moreover, vaccine development 
studies for certain infectious diseases can directly 
investigate the efficacy of the vaccine with pathogen 
challenge after vaccination (for example, Zika virus 
(ZIKV)). However, there are many important research 
questions that cannot directly be answered with exper-
iments using human subjects; thus, animal models 
are required. Indeed, some infections result in high 
morbidity or mortality in humans; therefore, vaccine 
and/or challenge experiments in humans are not pos-
sible. Moreover, comparative observations that require 
substantial tissue volumes from multiple anatomical 
sites can negate the possibility of performing experi-
ments in humans, especially if tissues are difficult to 
access. Finally, the outbred nature of the human pop-
ulation, coupled with demographic differences, creates 
substantial amounts of variation, which considerably 
complicates many research projects. Therefore, the 
development and detailed study of animal models for 
human diseases are absolutely critical.

Small animals, particularly rodents, are a mainstay 
of biological and immunological research. Indeed, 
studies in mice offer specific advantages: the ability to 
perform adoptive transfers of immune cells; the selec-
tive deletion of genes, embryonically or in specific cell 

types; the ability to control for MHC types1; selective 
colonization with controlled microbiota or removal of 
the microbiota2; the ability to intravitally image lympho-
cytes responding to antigens3,4; and the ability to create 
transgenic animals that express only specific antigen 
recognition receptors1. Moreover, small animals such as 
mice are fairly inexpensive to house, mature to adult-
hood rapidly, have short gestation periods and give birth 
to multiple offspring simultaneously. Indeed, the vast 
majority of our current knowledge of the immune sys-
tem has, at some level, involved experiments with mice. 
Thus, Mus musculus is an extremely useful animal model 
for which the utility cannot be overstated.

Unfortunately, there are numerous biological phe-
nomena that occur in humans that cannot be perfectly 
modelled in mice. Specifically, many viruses that cause 
disease in humans do not replicate in mice. Furthermore, 
human viruses that do replicate in mice may not result 
in the same types of pathologies that occur in humans. 
However, human viruses that are not well modelled 
in mice often do cause human- like disease in non-
human primates (NHPs). Moreover, many of the rea-
gents that are used to study immune responses in humans 
cross- react with NHPs (Table 1); as such, NHPs have 
become important animal models to study human viral 
infections (Fig. 1).

In this Review, we introduce species of NHPs that 
are experimentally used to recapitulate salient fea-
tures of viral diseases in humans. We then discuss the 
immunological similarities and differences between 
NHPs and humans and the advantages and disadvan-
tages of using NHP models of viral diseases (box 1). 
Finally, we consider several key examples of human 
viruses that have been experimentally modelled in 
NHP species.
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Abstract | Humans have a close phylogenetic relationship with nonhuman primates (NHPs) and 
share many physiological parallels, such as highly similar immune systems, with them. Importantly , 
NHPs can be infected with many human or related simian viruses. In many cases, viruses replicate 
in the same cell types as in humans, and infections are often associated with the same 
pathologies. In addition, many reagents that are used to study the human immune response 
cross- react with NHP molecules. As such, NHPs are often used as models to study viral vaccine 
efficacy and antiviral therapeutic safety and efficacy and to understand aspects of viral 
pathogenesis. With several emerging viral infections becoming epidemic, NHPs are proving to be 
a very beneficial benchmark for investigating human viral infections.
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Nonhuman primates as models
For many different viruses, NHPs offer a window into 
the pathogenesis of human disease and into developing 
vaccine and therapeutic interventions aimed at treat-
ing and preventing viral infections (Fig. 1). Importantly, 
the innate and adaptive immune responses that NHPs 
elicit against viruses are, for the most part, very simi-
lar to human responses, meaning that these animals are 
more appropriate for some viral infections that cannot 
be modelled in mice. Moreover, many of the immuno-
logical reagents that are routinely used to identify human 
immunological molecules also cross- react with NHP 
molecules, which makes the transition to NHP studies 
less problematic, as information specific for NHPs is 
available on databases on the World Wide Web (Table 1).

Old World monkey species
Old World macaque NHP species are, by far, the most 
commonly used primate species for biomedical research. 
There are three species of Asian macaques that are 
commonly used for viral and/or immunological studies: 
Macaca mulatta (rhesus macaque), Macaca fascicularis 
(cynomolgus macaque), and Macaca nemestrina (pigtail 
macaque)5–8. A wide variety of reagents (most of which 
are monoclonal antibodies against human proteins, 
which also cross- react with NHP antigens) are availa-
ble to interrogate immunological responses to viruses, 
overt inflammation and immunological abnormalities. 
Moreover, viral epitope- loaded MHC tetramers exist for 
rhesus macaques9–11 (at least three different MHC alleles) 

and pigtail macaques12 (at least one MHC allele) to study 
virus- specific CD8+ T cells (Table 1). Although there are 
no viral epitope- loaded MHC tetramers that are widely 
used for studies in cynomolgus macaques, the fairly 
limited MHC diversity of these animals makes them 
particularly attractive for studies involving allogenic 
responses and/or adoptive transfer experiments13–15.

Although rhesus, pigtail and cynomolgus macaques 
are very similar in genetic sequences and susceptibility to 
most of the viral infections we discuss herein, important 
differences exist that create particular nuances across 
these three species. For example, the type I interferon- 
induced, antiviral protein tripartite motif- containing 
protein 5 (TRIM5) has multiple genetic isoforms that 
have differing antiviral activity in each NHP species16. 
Rhesus macaques express heterogeneous TRIM5 
genotypes, which differentially restrict simian immu-
nodeficiency virus (SIV); however, pigtail macaques 
express only one TRIM5 genotype, which does not 
restrict SIV17. Of the three Asian macaque species typ-
ically used to study host and virus interactions, rhesus 
macaques are the most often studied, largely owing to 
their availability.

In addition to Asian macaques, several other Old 
World NHP species are employed for virology studies. 
In Africa, there are more than 50 species of NHPs that 
are natural hosts for SIV18. These species are often exper-
imentally studied to understand how SIV has co- evolved 
with the natural hosts such that these NHP species do 
not develop simian AIDS (discussed below). The two 

Table 1 | Nonhuman primate resources and Web databases

Database Website address Information

NIH Office of Research Infrastructure 
Programs — Comparative Medicine: 
Vertebrate Models

https://orip.nih.gov/
comparative- medicine/programs/
vertebrate- models

Contains information pertaining to available vertebrate 
models that are supported through the NIH Office of Research 
Infrastructure Programs

National Primate Research Centers https://nprcresearch.org/primate/ National resource for the scientific research community

Biomedical Primate Research Centre http://www.bprc.nl/en/home/ Primate research centre in the Netherlands that is committed 
to using NHPs for crucial research when there are no suitable 
alternatives

NIH NHP Reagent Resource http://www.nhpreagents.org/NHP/
default.aspx

NIH- supported resource to facilitate the optimal use of NHP 
models in biomedical research. The resource identifies and can 
provide specific validated reagents for in vitro and in vivo analysis

NHP MHC web portal https://dholk.primate.wisc.edu/_
webdav/dho/mhc_contract/web_
portal/%40files/prototype/index.html 

Contains information and protocols for genotyping and allele 
discovery in macaques

IPD- MHC database https://www.ebi.ac.uk/ipd/mhc/
group/NHP

NHP database for MHC genes

Macaque Genotype and Phenotype 
Database

https://mgap.ohsu.edu/ Provides access to genotype data collected on a large, pedigreed 
rhesus macaque colony housed at the Oregon National Primate 
Research Center

Baylor College of Medicine Human 
Genome Sequencing Center — NHP 
Genome Sequencing

https://www.hgsc.bcm.edu/
non- human-primates

Sequence genomes from representative species from most of the 
major branches of the phylogeny , including hominoids, Old World 
monkeys, New World monkeys and lemurs

NHP Reference Transcriptome 
Resource

http://nhprtr.org/ Phase I: RNA- seq analysis of tissue pools for individual NHP species

Phase II: RNA- seq analysis of NHP tissue- specific transcriptomes

Phase III: Tissue- specific small- RNA data for rhesus macaques

Virus Pathogen Resource https://www.viprbrc.org Database of genomic sequences of virus pathogen strains and 
analysis tools

NHP, nonhuman primate; NIH, US National Institutes of Health; RNA- seq, RNA sequencing.

MHC tetramers
biotinylated, peptide- loaded, 
MHC- i proteins produced in 
bacteria, which are 
tetramerized with fluorophore- 
conjugated streptavidin. MHC 
tetramers can be used to 
identify epitope- specific CD8+ 
T cells.
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most commonly used NHP SIV natural host species are 
sooty mangabeys (Cercocebus atys) and African green 
monkeys (Chlorocebus pygerythrus and Chlorocebus 
sabaeus)18. However, ethical issues have limited the use 
of sooty mangabey subspecies (box 2), which confines 
the types of experiments that can be performed in all 
subspecies of Cercocebus atys. Therefore, the African 
green monkey Chlorocebus species have become a main-
stay in natural host studies of SIV. In addition, African 
green monkeys can be infected with orthomyxoviruses19 
(discussed below). Baboons (Papio sp.) are one of the 
more rarely used species of the Old World primates to 
study host and virus interactions20. These animals can 
be infected with many of the viruses discussed below; 

however, their availability and increased size (relative to 
other species) can prove limiting.

New World monkey species
Old World primates are the most frequently employed 
experimental primates for virology studies; however, 
New World primates, when appropriate, have distinct 
advantages. In particular, the marmosets (Callilthrix 
jacchus) are less expensive than the larger Old World 
primates and can be experimentally infected with several 
viruses that cause disease in humans (herpesviruses in 
particular, discussed below). Thus, it is more feasible to 
conduct studies that require larger numbers of animals 
than to conduct studies involving Old World primates. 
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Fig. 1 | Nonhuman primate models to study viral diseases in humans. a | A phylogenetic tree demonstrating that 
nonhuman primates (NHPs) are the animals most closely related to humans, whereas mice are highly genetically distant.  
b | Many viruses that cause disease in humans also cause diseases in NHPs (Old World monkeys, New World monkeys or 
apes); alternatively , there are similar viruses that recapitulate the salient aspects of viral disease in humans. Thus, NHPs 
provide a valuable window into mechanisms of viral diseases and into developing novel therapeutic interventions to treat 
or vaccine modalities to prevent viral diseases. CHIKV, Chikungunya virus; DENV, dengue virus; EBV, Epstein–Barr virus; 
FDA , US Food and Drug Administration; GBV- B, hepatitis GB virus B; HCMV, human cytomegalovirus; HCV, hepatitis C virus; 
HEV, hepatitis E virus; KSHV, Kaposi’s sarcoma- associated herpesvirus; LCV, lymphocryptovirus; RhCMV, rhesus CMV; RRV, 
rhesus macaque rhadinovirus; SHIV, simian HIV; SIV, simian immunodeficiency virus; stHIV, simian- tropic HIV; SVV, simian 
varicella virus; VZV, varicella zoster virus; ZIKV, zika virus. Part a is adapted with permission from ReF.181, Cold Spring Harbor 
Laboratory Press.
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However, New World primate- specific reagents are not 
as abundantly available to interrogate host responses to 
viruses or viral- mediated pathogenesis.

Ape species
Ape species are evolutionarily more closely related to 
humans than are any other primate species (Fig. 1); thus, 
they are ideally suited as animal models aimed at studying 
phenomena that occur in humans. Indeed, experiments 
with chimpanzees were crucial for understanding the 
ontogeny of HIV, and chimpanzees are the only NHP spe-
cies that support viral replication of HIV and hepatitis C 
virus (HCV). However, particular ethical concerns have 
dramatically limited the use of ape species as experimental 
animal models (box 2). In summary, NHPs can be appro-
priate animals to model many viral infections that cause 
diseases in humans. However, NHPs should be employed 
only when appropriate, and careful attention should be 
given to understanding the particular nuances and advan-
tages that each NHP and viral species pair contains so that 
experiments may be designed appropriately.

Immune responses in nonhuman primates
In NHPs, immune responses to antigens, from both the 
adaptive and the innate arms of the immune system, 

are highly similar to those in humans. Although innate 
immune responses (which are commonly measured 
by expression patterns of interferon- stimulated genes) 
to viral infections are fairly widely conserved between 
NHPs and humans21–24, the most commonly measured 
immunological parameters in viral infections of primates 
are the magnitude and functionalities of virus- specific  
T cells and B cells.

The MHC region maps to chromosome 6 of 
humans; in rhesus macaques the MHC class I region 
is expanded and seemingly more complex. Humans 
contain one copy of the HLA- A, HLA- B and HLA- C 
genes per haplotype, whereas rhesus macaque and 
other macaque species can have multiple MHC- A and  
MHC- B genes per chromosome. Macaques can pos-
sess up to three MHC- A genes per haplotype. More is 
known about macaque MHC- A genes than about the 
MHC- B genes. The MHC- A1 gene is the most poly-
morphic, whereas the other MHC- A genes are more 
conserved and show lower levels of transcription. The 
MHC- A1 gene is thought to encode MHC molecules 
that carry out classical peptide presentation whereas the  
other MHC- A genes are thought to share features with 
the nonclassical MHC- I genes25,26. A similar increased 
diversity exists for NHP MHC- II alleles, compared 

Box 1 | The advantages and disadvantages of nonhuman primates over other models

viral infections have been modelled in mice and humans. However, nonhuman primate (nHP) models present an 
alternative approach with unique advantages and challenges.

The advantages of NHP versus mouse models
•	mice are not suitable for modelling many viral diseases owing to a lack of viral replication or inappropriate pathology

•	nHP biology and physiology are most similar to those of humans

•	Human- specific reagents can be used

•	many human viruses are overly sensitive to mouse type I interferon

•	Disparate genotypes of nHPs better reflect the outbred human population

The disadvantages of NHP versus mouse models
•	Increased cost and increased gestation period

•	It is not possible to create gene- knockout or transgenic nHPs

•	It is not possible to create germ- free nHPs or to perform parabiosis; experiments are limited to specific pathogen- free 
animals

•	It is not possible to perform congenic animal studies

The advantages of NHP models versus human studies
•	nHP and human immune systems are highly similar

•	It is possible to perform longitudinal studies

•	environmental factors can be controlled

•	Any anatomical site can be sampled

•	The effects of additional infections can be studied

•	Preventive vaccine or therapeutic efficacy can be studied with lethal viruses

•	It	is	possible	to	deplete	lymphocyte	populations	in	NHPs	in vivo

The disadvantages of NHP models versus human studies
•	nHPs are not suitable for many viral diseases owing to a lack of viral replication or inappropriate pathology

•	Some nHP genes exert antiviral activities differently than the equivalent human genes

•	nHPs express a greater variety of mHC genes than humans

•	nHP studies are limited to smaller numbers of animals

•	Studies in nHPs are costly

•	The genotypes of interferon- stimulated genes (for example, tripartite motif- containing protein 5 (TRIm5)) can influence 
antiviral responses
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to the equivalent human HLA- DR, HLA- DP and  
HLA- DQ genes27.

Importantly, the canonical flow cytometric and intra-
cellular cytokine staining modalities that are used for 
measuring antigen- specific T cell responses in humans 
are also meaningful for the analysis of virus- specific 
T cell responses in NHPs. Nucleated cells that express 
surface MHC from NHPs can be loaded with overlap-
ping peptide pools that span pathogen open reading 
frames. Pathogen- specific T cells then become stimu-
lated and produce effector cytokines that can be meas-
ured by standard enzyme- linked immunospot (ELISpot) 
assay or intracellular cytokine staining and flow cytom-
etry22,28. Indeed, the number and variability of antigen- 
specific T cells that recognize individual MHC–peptide 
complexes are quite similar in NHPs and humans, 
providing additional value to the NHP models.

The analysis of virus- specific B cells is also now 
possible in many species of NHPs. Traditionally, B cell 
responses were evaluated by removing B cells from 
peripheral blood by negative selection and then assess-
ing antibody production after antigen stimulation 
using ELISpot technology29. However, recent advances 
have used fluorochrome- conjugated viral antigens to 
isolate and analyse virus- specific B cells from multiple 
anatomical sites using flow cytometry. Moreover, the 
immunoglobulin locus of macaque species has recently 
been sequenced and studied in great detail30,31. Similar 
to the increased diversity of NHP MHCs, macaque 
immunoglobulin loci are substantially more diverse 
than in humans, with higher sequence diversity and 
copy- number variation. Although the antibody isotypes 
of NHP antibodies broadly reflect those found in both 
humans and mice, there are subtle differences, with 
NHPs having four immunoglobulin G (IgG) isotypes. 
Moreover, the different isotypes bind to individual  
Fc receptors (such as CD16, CD32 and CD64) and 
complement similarly32. Thus, NHPs are a good model 
to understand antibody development against viruses 
in vivo.

RNA viruses
Numerous RNA virus families cause diseases in humans. 
RNA viruses can have a double- stranded or single- 
stranded genome, which may be negative or positive 
sense. Many of the RNA viruses that cause disease in 
humans induce similar diseases in NHPs, making NHPs 
phenomenal animal models.

Lentiviruses
HIV is responsible for the AIDS pandemic, and infec-
tion results in the progressive loss of CD4+ T cells and 
lymphoid tissue pathology.

The HIV-1 pandemic in humans resulted from 
cross- species transmissions of a strain of SIV (SIVCPZ) 
that infects central African chimpanzees (Pan troglodytes 
troglodytes). SIVCPZ is associated with increased mor-
tality and AIDS- like immunopathology in wild- living 
chimpanzee communities and, in one case, a captive 
chimpanzee (reviewed in ReF.33). Importantly, chimpan-
zees are the only NHP species that can be persistently 
infected with unmodified HIV-1; however, owing to 
their endangered status, the high costs of upkeep and 
the long duration of infection that is required to defin-
itively assess AIDS development, chimpanzees are not 
a practical model for HIV infection and AIDS (box 2).

An extremely useful primate model of HIV is SIVMAC 
(also known as SIVSMM), which was first isolated from 
captive rhesus macaque monkeys with an AIDS- like 
illness in US primate centres34–36 (Tables 1,2). SIVMAC was 
discovered to have arisen from a cross- species trans-
mission between SIVSMM- infected sooty mangabeys (the 
natural host, which do not develop disease) and rhesus 
macaques in captivity37,38. Importantly, SIVSMM from 
infected sooty mangabeys was also discovered to have 
established HIV-2 infection in humans39. Asian macaques 
are not natural hosts for primate lentiviruses and, when 
infected with certain strains of SIV, they develop a disease 
that resembles HIV-1 infection in humans. This discov-
ery has led to the development of many SIV NHP mod-
els of HIV-1 infection. Collectively, these models have 

Box 2 | Special ethical considerations for nonhuman primate research

All experiments that involve live animals require special ethical considerations. Given the close phylogenic similarities of 
nonhuman primates (nHPs) to humans, special concerns arise. Indeed, most animal care and use committees (ACuCs) set 
up specific review procedures to gauge the scientific validity of experiments that use nHPs, in addition to reviewing 
concerns related to the safety and well- being of animals enrolled in animal protocols.

Recently, the sooty mangabey subspecies Cercocebus atys lunulatus (the white- crowned mangabey) was added to the 
uS Fish and Wildlife Service (FWS) list of endangered species. C. atys are natural hosts for certain strains of simian 
immunodeficiency virus (SIv). These animals exhibit nonprogressive infections with SIv and were the source of cross- 
species transmission of the sooty mangabey strain of SIv (SIvSmm) into humans, which gave rise to HIv-2. However, 
because the C. atys lunulatus subspecies was put on the endangered list, it has considerably limited the types of 
experiments that can be performed in all subspecies of C. atys. This limitation is imposed despite the fact that one of the 
major atys subspecies (atys) is thriving in its natural environment and there are colonies of these animals at primate 
centres.

Chimpanzees also present specific considerations. These animals are genetically the most closely related nHPs to 
humans (Fig. 1) and, as such, they are highly relevant for studying viral diseases that affect humans. For example, a strain 
of SIv infects chimpanzees in the wild (SIvCPZ); cross- species transmission of SIvCPZ gave rise to the HIv-1 epidemic, and 
chimpanzees	are	the	only	NHPs	in	which	HIV-1	replicates	efficiently	in vivo.	Moreover,	chimpanzees	were	the	gold-	
standard model for vaccine and pathogenesis studies of hepatitis C virus (HCv). Indeed, HCv does not replicate in other 
species of nHPs. However, in 2015, the FWS announced that it is categorizing captive chimpanzees as an endangered 
species, which are subject to legal protections. This announcement has almost negated research involving chimpanzees, 
substantially slowing progress on vaccine and antiviral therapeutic development.
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provided exceptional insight into fundamental aspects of 
HIV-1 transmission, prevention and pathogenesis.

Mucosal transmission. NHPs closely resemble humans 
in their physiology and immune system development40; 
thus, these animal models have been utilized extensively 
for lentiviral transmission studies. NHPs, primarily rhe-
sus macaques, have been used for intravaginal, intrarectal, 
penile, oral and mother- to-child transmission studies41; 
these studies have imparted a better understanding of 
viral transmission across mucosal surfaces, the early 
host–viral dynamics within mucosal tissues, the first cells 
to be infected and the process of viral dissemination and 
establishment42–47.

Vaginal transmission studies in NHPs suggest that 
SIV initially infects antigen- presenting cells in the 
vagina, with the virus subsequently disseminating 
into genital- draining lymph nodes before spreading 
to proximal lymphoid nodes and finally systemically48. 
Subsequent vaginal challenge studies demonstrated 
that although macrophages and dendritic cells can be 
infected (vRNA+), the vast majority of infected cells 
(~90%) at the initial site of infection, in the lymph nodes 
and in other sites of dissemination were CD4+ T cells49. 
Importantly, the predominant infected (vRNA+) CD4+ 
T cell population within the female genital tract at the 
early time points was demonstrated to be a popula-
tion of HLA- DR− and Ki67− ‘resting’ effector memory 
T cells49. This study also suggested that expanding viral 
replication in local CD4+ T cells at the mucosal portal of 
entry, which is fuelled by a robust innate inflammatory 
response to the virus, is required for the establishment 
of productive infection50. In addition, NHP vaginal 
transmission studies have highlighted the importance 
of resident and recruited CD4+ T cells in mucosal tissues 
for HIV mucosal transmission49,51.

NHP mucosal transmission experiments that use a 
high- dose inoculum have demonstrated the importance 
of the mucosal barrier as a ‘bottleneck’ to sexual trans-
mission. In these studies, the initial high amount of viral 
RNA in the inoculum was reduced to very low levels of 
tissue- associated viral RNA shortly after challenge, sug-
gesting that the virus initially gains access to a small num-
ber of susceptible target cells through vulnerable mucosal 
sites. Thus, there may be only small populations of 
founder- infected cells at the portal of entry51. Importantly, 
this finding was recapitulated using low- dose, repeated- 
challenge transmission models via the rectal, vaginal or 
penile routes in rhesus macaques using distinct SIV iso-
lates (SIVMAC251 and SIVSME660)52. Many preclinical NHP 
vaccine and prevention studies now utilize the evaluation 
of the numbers of transmitted/founder viruses to determine 
efficacy, thus showing the important role that NHP mod-
els have played in delineating and recapitulating HIV-1 
transmission53–57.

Prevention. NHP models have been at the forefront of 
efforts to identify the types of immune responses needed 
for protection against HIV-1 and have become an 
accepted essential preclinical step for assessing vaccine 
strategies58. Currently, the only HIV vaccine clinical trial 
that has demonstrated any protective efficacy was the 
RV144 trial, in which HIV-1 gp120 variable regions 1 
and 2 (V1/V2)-specific IgG antibody titres were asso-
ciated with some protection against HIV-1 acquisi-
tion59,60. Importantly, this finding was supported by 
studies in NHPs, as in macaques that were vaccinated 
with an ‘RV144-like’ immunization regimen, vaccine- 
induced protection from SIV acquisition was associated 
with non- neutralizing antibodies against gp120, which 
mapped to the V1/V2 region of the SIV envelope61. 
Additional evidence for the critical role of antibodies in 
protecting from HIV-1 transmission came from proof- 
of-concept passive immunization NHP SIV studies62,63. 
Subsequent passive transfer experiments have demon-
strated that certain HIV- specific neutralizing antibodies 
can provide complete protection against transmission 
of chimeric simian HiVs (SHIVs), which express HIV-1 
envelope glycoproteins64–66.

The induction of broadly neutralizing antibod-
ies (bNAbs) remains a major goal of HIV-1 vaccine 
development67. However, none of the previously tested 
HIV-1 vaccine candidates have been effective in eliciting 
bNAbs67. Because of the challenges in designing vaccine 
candidates that could induce bNAbs, alternative vaccine 
approaches were pursued, which focused on generating 
CD8+ cytotoxic T lymphocyte responses68. This approach 
was based, in part, on studies of ‘elite’ controllers; there 
was initial hope that powerful prime–boost vaccine 
approaches, which could greatly increase the magnitude 
and function of CD8+ T cell responses, would provide 
meaningful efficacy69.

Disease pathogenesis. Although SIV infection of Asian 
macaques (rhesus, cynomolgus and pigtail) is not 
identical to HIV-1 infection of humans, SIV infec-
tion of macaques does recapitulate key pathological 
features of HIV-1 infection, including CD4+ T cell 

Table 2 | Key nonhuman primate models of human virus infections

Human virus Equivalent NHP virusa

NHP species: Asian macaque

HIV-1 Simian immunodeficiency virus

Simian HIV

Simian- tropic HIV

Dengue virus Dengue virus

Zika virus Zika virus

Ebola virus Ebola virus

Chikungunya virus Chikungunya virus

Varicella zoster virus Simian varicella virus

Cytomegalovirus Rhesus cytomegalovirus

Epstein–Barr virus Rhesus lymphocryptovirus

Kaposi’s sarcoma- associated herpesvirus Rhesus rhadinovirus

Pox viruses Monkeypox

NHP species: marmoset

Hepatitis C Hepatitis GB virus B

NHP, nonhuman primate. aAll of the listed NHP models have been used to study disease 
pathogenesis and the development of vaccines and therapeutics, apart from the NHP HIV 
models, which have also been used to study transmission.

Transmitted/founder viruses
The specific viral clone that 
initiates infection from a 
polyclonal infectious challenge 
swarm.

Simian HIVs
(sHiVs). Chimeric simian 
immunodeficiency viruses  
that encode portions of the  
HiV genome (generally  
the envelope).

‘Elite’ controllers
individuals with protective 
MHC- i alleles that exert CD8+ 
T cell control of HiV or simian 
immunodeficiency virus viral 
replication.
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tropism, progressive CD4+ T cell depletion, lymphoid 
tissue pathology, establishment of the latent reservoir, 
neuropathology and progression to AIDS70. The range 
of both non- pathogenic and pathogenic NHP models 
utilized for HIV and AIDS research has authoritatively 
contributed to the discovery and establishment of key 
hallmarks of HIV-1 pathogenesis71.

Chronic immune activation and inflammation 
has emerged as one of the central features in HIV-1 
pathogenesis72,73. Importantly, chronic immune acti-
vation is a hallmark of pathogenic HIV-1 infection in 
humans and SIV infection in macaques, whereas SIV 
chronically infected natural hosts (sooty mangabeys and 
African green monkeys) show an absence of immune 
activation74. Studies in HIV- infected humans and SIV- 
infected NHPs demonstrate that HIV- associated or  
SIV- associated inflammation is a complex and multi-
factorial phenomenon that ultimately plays a major 
part in disrupting T cell homeostasis and driving lym-
phoid tissue pathology75,76. However, many studies have 
demonstrated that the elevation of microbial products 
(such as lipopolysaccharide (LPS), flagellin and bacterial 
DNA) that translocate from the damaged gastrointesti-
nal tract into the systemic circulation of HIV- infected 
individuals may be a cause of chronic immune activation 
during progressive HIV-1 infection77–79. Moreover, stud-
ies in SIV- infected Asian macaques that capitalized on 
large tissue collections at necropsy demonstrated direct 
in situ evidence for microbial translocation into the gut 
parenchyma and subsequently into draining lymph 
nodes, liver and distal peripheral lymph nodes80, which 
does not occur in SIV- infected natural hosts77,80,81. Of 
note, a novel SIV- negative NHP model of experimental 
colitis demonstrated that gastrointestinal tract barrier 
damage was sufficient to drive local and systemic micro-
bial translocation, inflammation and AIDS virus- like 
pathology, independently of SIV infection82. Collectively, 
human and NHP studies support a model of early struc-
tural and immunological damage to the gastrointestinal 
tract in progressive HIV-1 or SIV infections in humans 
and macaques, which leads to microbial translocation 
that contributes to persistent chronic immune activation.

Soon after initial studies described numerous histo-
pathological changes to lymphoid tissue in HIV- infected 
humans, studies in SIV- infected NHPs also demon-
strated similar pathology to HIV- infected humans, with 
parallel histological features such as lymphadenopathy 
with follicular hyperplasia to severe lymphoid deple-
tion83. Since these early reports, NHP models have 
proved to be an invaluable tool to elucidate the timing 
and mechanisms driving the progressive immunopa-
thology of lymphoid tissue in HIV infection76. Studies 
in HIV- infected patients have demonstrated consider-
able lymphoid tissue damage associated with the dep-
osition of fibrotic collagen84 — an observation that was 
subsequently confirmed in an NHP model of SIV infec-
tion, which linked fibrosis to immune activation and 
the induction of lymphocytes expressing transforming 
growth factor- β (TGFβ)76. In addition, the rapid induc-
tion of a heterogeneous immunosuppressive regula-
tory T (Treg) cell response shortly after SIV infection in 
rhesus macaques recapitulates the reported increases 

and accumulation of Treg cells and TGFβ expression in 
peripheral lymph nodes in HIV- infected humans85,86. 
Taken together, SIV infection of Asian macaques 
has recapitulated salient pathologies that occur in  
HIV- infected humans and has provided insights into 
novel therapeutic interventions and vaccine modalities 
to prevent HIV infection and improve the prognosis of 
HIV- infected humans.

Hepatitis viruses
Hepatitis viruses are important human pathogens that 
infect cells of the liver and cause liver damage (Table 2). 
The following section summarizes important NHP 
research on HCV and hepatitis E virus (HEV).

Hepatitis C virus. HCV is a blood- borne virus that can 
cause both acute and chronic hepatitis. Although there 
is currently no vaccine to prevent HCV infection, new 
US Food and Drug Administration (FDA)-approved 
direct- acting antivirals that target the HCV replication 
cycle have been demonstrated to cure more than 95% of 
HCV- infected individuals. However, access to diagnosis 
and treatment remains low worldwide87,88. One substan-
tial barrier to developing new, inexpensive and more 
potent treatments and an efficacious vaccine is the lack 
of a suitable animal model. Currently, chimpanzees are 
the only known animal species that it is possible to infect 
with HCV. However, because of the high costs, ethical 
concerns and regulatory restrictions (box 2), this NHP 
model has a very limited future89–91.

The NHP chimpanzee model played an instrumental 
role in the identification of HCV in 1989 and in advanc-
ing our understanding of HCV infection and disease, the 
study of immune responses to HCV and the pathogenesis 
of the disease92. Numerous reports have demonstrated 
the importance of the innate (for example, type I IFNα 
and IFNβ responses) and adaptive (for example, CD4+ 
and CD8+ T cell responses and B cell responses) arms 
of the immune system in the spontaneous resolution 
of acute HCV infection in chimpanzees, which confers 
long- lived immunity that considerably reduces the risk 
of reinfection92. One important caveat of the chimpanzee 
NHP model is that the natural course of HCV infection 
in chimpanzees is substantially different from that in 
humans93. Typically, HCV- induced hepatitis in chim-
panzees is milder than in human HCV infection; how-
ever, severe hepatitis has been reported94. In addition, the 
progression to chronic hepatitis is much less common in 
chimpanzees, and in contrast to humans, liver cirrhosis 
is extremely rare95. Currently, it is unclear why the patho-
genic course of HCV infection differs between chimpan-
zees and humans, but it may be owing, in part, to the lack 
of liver disease contributing cofactors (for example, alco-
hol consumption, obesity and a high- iron diet) in HCV- 
infected chimpanzees92. Alternatively, this difference may 
be a reflection of the low number of animals that have 
been followed in long- term studies to effectively evaluate 
the pathological consequences of long- term HCV infec-
tion; however, given the current US National Institutes 
of Health (NIH) policy to stop funding research in 
chimpanzees, the US Fish and Wildlife policy to restrict 
research in chimpanzees, and the limited resources 
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available at national primate centres and Chimp Haven, 
where most HCV- infected chimpanzees are located, it is 
unlikely that the differences in HCV infection between 
chimpanzees and humans will ever be fully understood92.

Although an alternative NHP HCV model remains 
elusive, hepatitis GB virus B (GBV- B), which is closely 
related to HCV and efficiently replicates in mar-
mosets, represents a surrogate model for the study 
of HCV infection and disease96. The sequencing of  
GBV- B and the generation of a GBV- B molecular clone 
revealed important differences and similarities between  
GBV- B and HCV that has allowed for the construction 
of chimeric viruses96. Although GBV- B–HCV chimeric 
viruses do not perfectly recapitulate HCV biology, they 
do infect and replicate in New World NHPs and may 
serve as an important model for the development of 
HCV- targeting drugs that target specific regions of 
these chimeric viruses.

Hepatitis E virus. HEV is in the genus Orthohepevirus in 
the Hepeviridae family97 and shares many features with 
hepatitis A virus (HAV); however, HEV causes disease in 
humans and NHPs, whereas HAV does not cause disease 
in NHPs. The inoculation of NHPs with material from 
patients infected with water- borne non- A hepatitis was 
instrumental in the identification of HEV98,99. A number 
of NHP species (for example, chimpanzees, marmosets 
and macaques) are susceptible to experimental infection 
with HEV; however, cynomolgus macaques and rhesus 
macaques are the most commonly used species for stud-
ying HEV infection and disease100–105. The severity of 
disease appears to be dependent on both the strain and 
the dose of virus used; however, cynomolgus macaques 
may be more sensitive to HEV infection, demonstrating 
more severe acute hepatitis than rhesus macaques or 
chimpanzees103,106,107.

As with HAV infection, damage to liver cells is 
thought to result more from the host immune response 
than from the direct effects of viral infection of hepat-
ocytes108. Histological changes in the liver of NHPs and 
patients are characteristic of acute hepatitis, including 
focal necrosis with lesions found in all regions of the 
lobule108. Similar to infection in humans, HEV infec-
tion in NHPs often leads to inflammation, consisting 
of Kupffer cells and polymorphonuclear leukocytes in 
focal lesions that are typical of hepatitis108. In contrast 
to humans, pregnancy does not exacerbate the disease 
course in cynomolgus macaques104. Importantly, NHP 
models have been extensively used for the preclinical 
testing of vaccines against HEV, and a vaccine to pre-
vent HEV infection has been developed but is not yet 
available worldwide109–114.

Flaviviruses
Pathogenic viruses belonging to the family Flaviviridae 
are transmitted to humans principally by arthropods and 
include yellow fever virus (YFV), dengue virus (DENV), 
West Nile virus (WNV), Japanese encephalitis virus 
(JEV) and ZIKV115. Mice can be infected with many spe-
cies of flaviviruses; however, these viruses are extremely 
sensitive to type I interferons. Consequently, most 
mouse models of flavivirus infection and pathogenesis 

use mice deficient in type I interferon signalling116–118. 
Thus, the mouse model of flavivirus infection may not 
recapitulate all of the salient aspects of virus and host 
interactions that occur in vivo in humans. As such, 
NHPs have become an important model to study these 
important viral infections.

Dengue virus. Given the enormous public health con-
cerns associated with DENV infection (Table 2), it is 
important to develop animal models that recapitulate 
key features of human infection119. Wild- type mice are 
not susceptible to DENV infection; thus, considerable 
effort has been made to identify appropriate NHP mod-
els119. There are at least four serotypes of DENV, each 
of which shares approximately 65% genetic similarity 
with the other three, which further complicates the 
modelling of DENV infection in NHPs120. Moreover, 
there is substantial evidence that preinfection with one 
serotype of DENV can result in more severe disease 
upon challenge with another DENV serotype, which 
may be facilitated by weakly cross- reacting antibodies 
binding the different serotypes120. Thus, ideally, sev-
eral serotypes of DENV would need to be capable of 
replicating and causing disease in NHPs. Many strains 
of DENV, routes of infections, sources of virus and 
species of NHPs have been tested119,121. The most com-
monly studied NHPs for DENV infections are macaque 
species, Old World patas monkeys and African green 
monkeys119,121. All of the serotypes of DENV that have 
been tested (DENV 1–4) replicate to high levels (up to 
100 million copies per millilitre of plasma), and virae-
mia lasts for approximately 1 week, which is similar to 
infection in humans. However, NHPs do not seem to 
manifest the same types of symptoms that are observed 
in DENV- infected humans119,121.

NHPs have been employed to measure vaccine- 
induced immunity against DENVs and to ensure that 
attenuated viral vaccines lack the ability to replicate to 
high levels in vivo121,122. Many vaccine modalities that 
have been shown to be safe in NHPs and that induce 
high titres of neutralizing antibodies against DENV 
have been advanced to human clinical trials121,123,124, and 
one has even shown protection after human challenge 
with DENV124.

Zika virus. ZIKV was first identified as a human path-
ogen in Africa in 1952, but the first human epidemic 
was recognized in Yap Island in 2007, which spread to 
a larger epidemic in French Polynesia in 2013–2014 
(ReF.125). Subsequently, ZIKV has spread widely in 
warmer climates, with infections numbering in the tens 
of thousands and coinciding with mosquito life cycles125. 
ZIKV infections are generally not life- threatening; 
however, infection is associated with a rare chance of 
guillain–barre syndrome. In addition, ZIKV infection of 
pregnant women has been linked with birth defects.

Several studies have employed NHPs (cynomolgus 
macaques, rhesus macaques and pigtail macaques) 
to study salient features of ZIKV pathogenesis126–129 
(Table 2). In general, ZIKV infection of NHPs is facilitated 
by subcutaneous injection, which models infection via 
mosquito bite, and recapitulates many features of human 

Lobule
small division of the liver 
defined at a histological scale.

Kupffer cells
specialized liver- resident 
macrophages involved in 
recycling iron from dying red 
blood cells and in phagocytosis 
of microbial antigens that drain 
into the liver from the portal vein.

Guillain–Barre syndrome
Rare autoimmune disease 
associated with neurological 
symptoms that can lead to 
paralysis.
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infection, including mild weight loss, slight fever and 
elevated liver enzymes126–129. NHPs infected with ZIKV 
became viraemic, and plasma viraemia peaked between 
2 and 6 days after infection; subsequently, these animals 
seemed to clear plasma viraemia within 10 days126–129. 
ZIKV was detected in semen, vaginal fluid, urine, saliva, 
cerebrospinal fluid and lymphoid tissue as well as in the 
gastrointestinal tract and the central nervous system 
(CNS) after the resolution of viraemia in the blood127,128. 
Finally, NHPs infected with ZIKV mount virus- specific 
humoral and cellular immune responses, which protect 
against subsequent homologous and heterologous chal-
lenges, suggesting that NHPs are an appropriate animal 
model to study vaccine- mediated protection22,127,128. 
Indeed, multiple vaccine modalities have been tested 
in NHPs, which induce the production of neutraliz-
ing antibodies against ZIKV and are protective against 
subsequent challenge130–132. Having shown protection in 
NHPs, many of these vaccines are moving forwards into 
human clinical trials.

One of the most worrisome aspects of ZIKV infection 
is the apparent ability of ZIKV to cross the placenta dur-
ing pregnancy and infect the developing fetus. Indeed, 
ZIKV infection during pregnancy is associated with fetal 
developmental abnormalities leading to microcephaly. 
An animal model that recapitulates this phenomenon 
would be important for developing therapeutic inter-
ventions. Pregnant rhesus macaques infected with ZIKV 
had viraemia lasting up to 55 days, which was far longer 
than in nonpregnant animals and similar to what has 
been reported in pregnant women127,133. Importantly, in 
pregnant pigtail macaques infected with ZIKV, the fetus 
showed reduced brain growth, neuronal damage, white 
matter deficiency and gliosis, and the virus was detected 
in the placenta and fetal brain and liver134. Finally, recent 
work has suggested that ZIKV RNA can persist in the 
tissues of NHPs for prolonged periods of time after the 
resolution of viraemia22,135. Thus, NHPs may represent 
an appropriate animal model to understand the mech-
anisms of maternal–fetal ZIKV transmission, patho-
genesis and persistence and to develop vaccines and/or 
therapeutic interventions.

West Nile virus. Multiple NHP species have been experi-
mentally infected with WNV. WNV is spread by mosqui-
toes, and infection in humans is usually asymptomatic; 
however, ~20% of infected humans may have fevers, 
aches, vomiting, diarrhoea or rash. Moreover, ~0.5% of 
WNV- infected humans have more severe disease with 
CNS involvement, and paralysis or death are possible136. 
As WNV is a biohazard level 3 pathogen, special precau-
tions are required and, as such, not all primate facilities 
are capable of working with the virus. Rhesus macaques 
and marmosets can be experimentally infected with 
WNV, and both replicate the virus in vivo to high titres; 
however, marmosets show higher viral titres and more 
extensive tissue penetrance137. Although both species 
demonstrated adaptive and innate immune responses 
to WNV, neither had any clinical signs of WNV infec-
tion, which is similar to the majority of WNV- infected 
humans137. Notably, intrathalamic infection of rhe-
sus macaques led to viral spread throughout the CNS 

without any clinical symptoms of disease138. It is unclear 
whether WNV fever or neurological disease occurs in 
NHPs, and very large numbers of animals would likely 
be required to ascertain this. However, NHPs may rep-
resent an appropriate model to study vaccine- mediated 
protection against WNV infection, considering that 
they replicate the virus and mount antibody and cellular 
immune responses. Accordingly, several vaccine modali-
ties against WNV have already been used in NHPs; some 
of these seem to protect NHPs from subsequent WNV 
challenge and have entered trials in humans139–142.

DNA viruses
There are five families of DNA viruses that infect 
humans: Adenoviridae, Herpesviridae, Papoviridae, 
Parvoviridae and Poxviridae. Of these, the Herpesviridae 
and Poxviridae are associated with many important dis-
eases in humans, whereas the Papoviridae are associated 
with rare pathological conditions, and the Adenoviridae 
and Parvoviridae, which are rarely associated with 
human disease, are being developed for heterologous 
gene delivery.

Herpesvirus
Herpesviruses are a family of large, enveloped DNA 
viruses that have linear, double- stranded DNA genomes 
and that infect almost all animal species. Here, we 
describe studies of simian herpesviruses (which are 
closely related to human herpesviruses) that aim to elu-
cidate mechanisms of pathogenesis, to define the host 
immune response to control latent herpesvirus infections 
and to identify the viral and host factors that lead to 
virus reactivation.

Alpha- herpesvirus. Human varicella zoster virus (VZV; 
Table 2) is an alpha- herpesvirus that causes chicken-
pox and herpes zoster in humans. An attenuated strain 
of VZV has been licensed as a vaccine and is effective 
at preventing chickenpox, but is less effective at pre-
venting VZV reactivation (herpes zoster) in elderly and 
immunocompromised individuals. Unfortunately, VZV 
exhibits strict species specificity, which prevents animal 
infection studies to elucidate the mechanisms of herpes 
zoster disease. Thus, an animal model that closely par-
allels key features of VZV infection and pathogenesis 
is required.

Simian varicella virus (SVV) is a related virus that was 
isolated in the 1960s; SVV is morphologically and genet-
ically similar to VZV, and several groups have reported 
that inoculation of Old World monkeys (African green 
monkeys and cynomolgus macaques) can lead to varicella 
with or without the establishment of latency (reviewed in 
ReF.143). Importantly, intrabronchial inoculation of rhe-
sus macaques with SVV appears to recapitulate all the 
essential features of VZV infection in humans, including 
latency. Furthermore, this model has enabled research-
ers to determine how the antibody- mediated depletion 
of specific immune cells affected primary SVV infection. 
One group found that depletion of CD4+ T cells during 
a primary SVV infection led to widely disseminated var-
icella accompanied by higher and prolonged viral loads 
compared with animals depleted of CD8+ T cells and of 

Biohazard level 3 pathogen
Pathogen that requires 
biosafety level 3 precautions, 
including the use of biological 
safety cabinets, solid- front 
protective clothing and a 
laboratory entrance separated 
from areas that have 
unrestricted traffic flow.

Latent herpesvirus 
infections
a state of infection in which the 
viral genome persists in an 
infected cell without any viral 
replication and with occasional 
limited viral gene transcription.
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B cells144. This finding implies that CD4+ T cell responses 
may be important for the control of varicella or herpes 
zoster disease in humans.

Several attempts have been made to reproduci-
bly induce SVV reactivation in macaques that have an 
established latent infection. The most recent study uti-
lized full- body irradiation in addition to treatment with 
prednisone and tacrolimus (both are immunosuppres-
sive drugs) and was successful in reactivation in four 
of four rhesus macaques. Surprisingly, a control animal 
also developed a rash, implying that the stress associated 
with the transport of animals to the site of irradiation 
was sufficient to induce reactivation145. Taken together, 
the NHP model of VZV infection has provided impor-
tant information related to immunological pressure and 
mechanisms of viral reactivation from latency, including 
how immunodeficiency can lead to viral reactivation. 
Moreover, this model will be useful in advancing vaccines 
aimed at reducing the incidence of herpes zoster.

Beta- herpesvirus infections: rhesus cytomegalovirus. 
Human cytomegalovirus (HCMV; strictly tropic to 
humans) is an important pathogen with widespread sero-
positivity in humans. NHPs are hosts to homologues of 
HCMV (Table 2), and several CMV isolates have been 
obtained and sequenced from numerous NHPs, includ-
ing chimpanzees, baboons, cynomolgus macaques and 
other Old World monkeys. The morphology and genome 
sequences of NHP CMV isolates are quite similar across 
species and reveal a close evolutionary relationship with 
their hosts. The most widely studied NHP CMV is rhesus 
CMV (RhCMV), of which two isolates are utilized for 
pathogenesis and vaccine studies (reviewed in ReF.146).

Our current fundamental understanding of rhesus 
macaque cellular immunity originated from studies char-
acterizing ex vivo CD4+ and CD8+ T cell subsets from 
RhCMV- infected animals147. These early studies defined 
the key immunological markers on CD4+ and CD8+ naive 
and memory (central and effector subsets) T cells and 
performed comprehensive functional analyses of these 
populations. This immunological information led to 
a continued and expanded use of the rhesus macaque 
model for investigations into viral pathogenesis and 
vaccine development.

Some of the most intriguing studies of RhCMV in rhe-
sus macaques involve using RhCMV as a vaccine vector 
to prevent SIV infection and disease. Here, investigators 
found that RhCMV vectors, particularly rhCMV68.1, 
which encoded SIV antigens, were capable of infecting 
CMV- naive and CMV- seropositive rhesus macaques and 
eliciting persistent SIV- specific CD4+ and CD8+ T effector 
memory (TEM) cell responses148. SIV- specific CD8+ T cells 
were demonstrated to be MHC class I- restricted and 
were also restricted by MHC class II or non- polymorphic 
MHC- E, implying that the SIV RhCMV vaccine elic-
ited responses from unconventional CD8+ T cells28,149. 
Importantly, TEM cell responses were present at extra- 
lymphoid sites in vaccinated animals and were effective at 
preventing progressive SIV infection after challenge with 
SIVMAC239. Moreover, an analysis of vaccinated animals 
revealed that protection from progressive SIV infection 
was correlated with the magnitude of the peak SIV- specific 

CD8+ T cell response. Interestingly, these protected ani-
mals exhibited effective SIV control even after antibody- 
mediated depletion of CD4+ and CD8+ T cells, implying 
that the vaccine was capable of clearing SIV infection150. 
That RhCMV- based vaccines against SIV have led to such 
impressive control against pathogenic SIV infection has 
led to ongoing studies using similar human CMV- vectored 
approaches being developed for human trials.

Gamma-1-herpesviruses: lymphocryptoviruses. 
Epstein–Barr virus (EBV; Table  2) is a gamma-1- 
herpesvirus or lymphocryptovirus (LCV) that infects 
most humans by the time they reach adulthood. EBV 
is strictly human- tropic, which makes studies of viral 
pathogenesis extremely difficult in animals.

Multiple NHP species from Old World and New 
World monkeys harbour related LCVs, with each LCV 
capable of immortalizing B cells from their natural 
host, which is a key feature of human EBV infection 
(reviewed in ReF.151). The most widely studied NHP 
LCV is rhesus LCV (rhLCV), which was originally 
isolated from a lymphoblastoid cell line that was estab-
lished from a malignant lymphoma that developed in 
a rhesus macaque. Importantly, several publications 
have reported that rhLCV is associated with diseases 
that parallel EBV, including B cell lymphomas and 
hairy leukoplakia in SIV- infected macaques. In addition, 
primary rhLCV infection in rhesus macaques parallels 
primary EBV infection in humans151. The utility of the 
rhLCV rhesus macaque model is further underscored 
by the creation of a novel rhlCV baCmid, which can pro-
duce infectious virus that is capable of immortalizing 
B cells from rhesus macaques152. The rhLCV BACmid 
system enables the interrogation of EBV- expressed genes 
involved in viral pathogenesis and for development of 
novel vaccine approaches.

Immunologically, rhLCV infection of rhesus macaques 
closely parallels EBV infection in humans. A detailed 
study of naturally rhLCV- infected animals revealed that 
the humoral response develops against multiple viral anti-
gens. Animals exhibited hierarchical responses, with the 
more robust humoral response to late viral proteins and 
less frequent responses to early and immediate- early pro-
teins. Although a direct comparison could not be made 
between rhesus macaque humoral responses and human 
sera responses, the macaque responses still correlated well 
with EBV- infected human samples153.

T cell- specific immunity to rhLCV has also been 
examined. An exhaustive study compared naturally 
rhLCV- infected rhesus macaques and EBV- infected 
humans and challenged both species with a recombinant 
vaccinia virus encoding individual EBV antigens; the 
results revealed that similar T cell responses develop to 
late antigens in both humans and macaques as persistent 
infection progresses over time. The close correlations in 
humoral and T cell- specific responses that are shared 
between rhesus macaques and humans will allow future 
vaccine evaluation trials using the rhLCV rhesus macaque 
model (for example, the phase II clinical trial in humans 
vaccinated with soluble EBV gp350 (Ref.154,155)). Related 
studies in rhesus macaque inoculated with a recombinant 
rhLCV (encoding EBV gp350 in place of rhLCV gp350) 

Hairy leukoplakia
occasional symptom of 
epstein–barr virus infection in 
immunocompromised patients 
involving a white patch on the 
side of the tongue with a 
corrugated appearance.

rhLCV BACmid
bacterial artificial chromosome 
encoding rhesus 
lymphocryptovirus, which can 
be used to immortalize rhesus 
macaque b cells.
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revealed that EBV gp350 could functionally substitute for 
rhLCV gp350, as the recombinant rhLCV could infect 
animals as effectively as wild- type rhLCV156. This finding 
demonstrates that the rhLCV rhesus macaque model is 
an excellent system to develop and evaluate novel vaccine 
approaches to prevent EBV- associated diseases, including 
infectious mononucleosis156–158.

Gamma-2 herpesviruses: rhadinoviruses. Kaposi’s 
sarcoma- associated herpesvirus (KSHV; Table 2) is a 
gamma-2 herpesvirus or rhadinovirus159 and the aetio-
logical agent of several rare cancers, including Kaposi’s 
sarcoma, primary effusion lymphoma160 and multi-
centric Castleman disease161. Unfortunately, KSHV 
displays strict tropism for humans, with the exception 
of one report of KSHV infection and Kaposi’s sarcoma- 
like lesions in common marmosets162, a model that is 
being further developed. The lack of a direct animal 
model of KSHV has led to the development of an NHP 
model that uses the closely related rhesus macaque 
rhadinovirus (RRV; a gamma-2-herpesvirus)163. Two 
independent strains of RRV have been isolated163,164 that 
exhibit different pathogenic potential. Strain H26-95 is 
less pathogenic than strain 17577, as strain H26-95 has 
not been associated with disease, even in SIV- infected 
animals165. By contrast, strain 17577 is associated with 
B cell lymphoma and a mesenchymal proliferative 
lesion, referred to as retroperitoneal fibromatosis, that 
resembles Kaposi’s sarcoma in SIV- infected rhesus 
macaques166. The difference in pathogenic potential 

has led investigators in different research directions as 
to how to best utilize the RRV model for human virus 
infection studies (reviewed in ReF.167).

Immunologically, RRV infection can induce robust 
innate and virus- specific humoral and cell- mediated 
responses in rhesus macaques. This finding was demon-
strated when naive rhesus macaques were experimen-
tally infected with a recombinant RRV lacking the eight 
viral interferon regulatory factors (vIRFs; RRVvIRF- ko) or 
wild- type RRV. Animals infected with RRVvIRF- ko had 
earlier and sustained production of pro- inflammatory 
cytokines and earlier induction of RRV- specific T cell 
responses than the wild- type RRV- infected animals. 
Humoral responses were essentially identical. The 
altered host response to RRVvIRF- ko infection was asso-
ciated with decreased viral loads and diminished B cell 
hyperplasia, implying that the vIRFs function to slow 
the innate and adaptive immune responses in animals168. 
Because KSHV also expresses vIRFs, these data point to 
the importance of innate immunity against the human 
virus and to potential therapeutic interventions that 
might inhibit vIRFs.

Conclusions and perspective
Here, we provide an overview of many of the impor-
tant human viruses that can be effectively modelled in 
NHPs although it is outside the scope of this Review to 
cover all human viral pathogens (see box 3 for a brief 
mention of several other notable examples of human 
viral pathogens). NHPs represent essential animal 

Box 3 | Emerging viruses that can be modelled in nonhuman primates

Filoviruses
Filoviruses are filamentous, single- stranded, negative- sense RnA viruses. Some members of this family (in particular, 
ebola virus and marburg virus) can cause severe viral haemorrhagic fevers with very high mortality. viral- induced 
inflammation is thought to result in much of the pathology observed in infected individuals, with vascular permeability 
and organ failure occurring in upwards of 70% of infected individuals. Asian macaques can be infected with ebola and 
marburg viruses, and the pathology closely resembles that found in humans, although the mortality might be slightly 
higher in nonhuman primates (nHPs) than in humans, with near 100% mortality in nHPs169. nHPs have been used to test 
the therapeutic capacity of antiviral compounds against filoviruses and the ability of different vaccine modalities to 
protect against subsequent viral challenge170–173. many of these modalities are being tested in humans to treat and 
prevent future filovirus epidemics.

Pox viruses
Although smallpox virus (Table 1) has been eradicated, there are concerns that it could be weaponized. In addition, 
monkeypox (mPXv) virus infections of humans lead to symptoms that are similar to smallpox, with fever, weight loss and 
lesions, and up to 10% mortality. Thus, there is interest in developing animal models of pox virus infection. mPXv 
infection of rhesus macaques also results in disease pathology that closely resembles smallpox infection of humans; the 
severity of symptoms and the overall lethality vary by the dose and route of virus challenge, and nHPs have been used to 
test vaccine modalities and antivirals174–176.

Chikungunya virus
Chikungunya virus (CHIKv) can infect both rhesus macaques and cynomolgus macaques. moreover, similar to humans, 
aged macaques have higher and more prolonged viraemia than younger animals177,178. In addition, Asian macaques 
become febrile during acute infection, and some animals also experience rash and joint swelling (especially if higher 
doses of virus are used for infections), which are also similar to human infection symptoms. After infection, CHIKv can be 
detected in the liver, lymphoid tissue, synovial and skeletomuscular tissues, lungs and kidneys. These sites can also 
manifest some degree of structural abnormalities and lymphocyte infiltration. CHIKv infection of Asian macaques can 
also lead to neurological abnormalities, with symptoms of meningoencephalitis and leukocytes in cerebrospinal fluid. 
Adaptive	immune	responses	are	evident	in	NHPs,	with	proliferation	of	T cells	and	induction	of	T cell	responses	directed	
against multiple CHIKv protein epitopes. During infection, nHPs also induce B cell responses to CHIKv against numerous 
viral proteins, the antibodies produced include multiple isotypes, and by 30 days postinfection, antibodies are able to 
neutralize	CHIKV	in vitro.	Thus,	Asian	macaques	represent	a	viable	animal	model	to	study	vaccines	and	therapeutics	to	
prevent CHIKv infection and/or reduce symptoms associated with infection179,180.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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models to study many viral infections that affect human 
health, in a controlled setting, where strict adherence to 
protocols and/or drug regimens is enforced to ensure 
reproducibility. These studies include virological and 
immunological analyses and interventional vaccine and 
therapeutic strategies aimed at treatment and preven-
tion. Longitudinal analyses, coupled with the ability to 
sample any anatomical site in animal models, provide 
distinct capabilities that are not possible in humans. 
NHP studies are highly regulated at the local and 
national levels, which ensures animal welfare and well- 
being. In summary, NHPs are a valuable and reliable 
animal model.

Data from NHP studies have provided invalua-
ble insights into human viral infection, improving 
our understanding of mechanisms of disease patho-
genesis, innate and adaptive immune responses and 

vaccine and therapeutic modalities. Studies from 
NHPs have guided numerous vaccine and therapeu-
tic trials in humans, including ZIKV vaccine trials. 
Future work might involve determination of how 
modulation of the commensal microbiota influences 
viral pathogenesis, novel strategies for viral preven-
tion and eradication, the direct effect of how immune 
responses and/or host genetics affect susceptibility to 
viral infections and their outcome, novel approaches 
to diagnose and treat viral diseases (including virus- 
mediated cancers), testing novel combination (virus- 
targeted and host- targeted) approaches to treatment 
and the development of multipathogen models to 
better reflect regions in the world that have a high 
burden of pathogens.
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