Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

TIMELINE

To respond or not to respond — a personal perspective of intestinal tolerance

A Correction to this article was published on 22 June 2018

This article has been updated

Abstract

For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key events in intestinal tolerance.
Fig. 2: Induction and maintenance of oral tolerance.
Fig. 3: Models of antigen delivery for the induction of oral tolerance.

Similar content being viewed by others

Change history

  • 22 June 2018

    In the originally published article, several references referring to the Timeline figure were missing or incorrect. This mistake has now been corrected and the publisher apologizes for this error.

References

  1. Wells, H. G. & Osborne, T. B. The biological reactions of the vegetable proteins. I. Anaphylaxis. J. Infect. Dis. 8, 66–124 (1911).

    Article  CAS  Google Scholar 

  2. Chase, M. W. Inhibition of experimental drug allergy by prior feeding of the sensitivity agent. Proc. Soc. Exp. Biol. Med. 61, 257–259 (1946).

    Article  PubMed  CAS  Google Scholar 

  3. Battisto, J. R. & Chase, M. W. Immunological paralysis in guinea pigs fed chemical allergens. Fed. Proc. 17, 456 (1955).

    Google Scholar 

  4. Husby, S., Mestecky, J., Moldoveanu, Z., Holland, S. & Elson, C. O. Oral tolerance in humans: T cell but not B cell tolerance after antigen feeding. J. Immunol. 152, 4663–4670 (1994).

    PubMed  CAS  Google Scholar 

  5. Mowat, A. M. The regulation of immune responses to dietary protein antigens. Immunol. Today 8, 93–95 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. Mattingly, J. A. & Waksman, B. H. Immunologic suppression after oral administration of antigen. I. Specific suppressor cells formed in rat Peyer’s patches after oral administration of sheep erythrocytes and their systemic migration. J. Immunol. 121, 1878–1883 (1978).

    PubMed  CAS  Google Scholar 

  7. Weiner, H. L. et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu. Rev. Immunol. 12, 809–838 (1994).

    Article  CAS  Google Scholar 

  8. Chen, Y. et al. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376, 177–180 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. Siewert, C. et al. Experience-driven development: effector/memory-like alphaE+Foxp3+ regulatory T cells originate from both naive T cells and naturally occurring naive-like regulatory T cells. J. Immunol. 180, 146–155 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. Fukaura, H. et al. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-b1-secreting Th3 cells by oral administration of myelin in multiple sclerosis. J. Clin. Invest. 98, 70–77 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hauet-Broere, F. et al. Functional CD25 and CD25+ mucosal regulatory T cells are induced in gut draining lymphoid tissue within 48 hours after oral antigen application. Eur. J. Immunol. 33, 2801–2810 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. Sun, J.-B., Raghavan, S., Sjöling, A., Lundin, S. & Holmgren, J. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+CD25+CD4+ and Foxp3-CD25-CD4+ regulatory T cells. J. Immunol. 177, 7634–7644 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Broere, F. et al. Oral or nasal antigen induces regulatory T cells that suppress arthritis and proliferation of arthritogenic T cells in joint draining lymph nodes. J. Immunol. 181, 899–906 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Dubois, B. et al. Innate CD4+CD25+ regulatory T cells are required for oral tolerance and control CD8+ T cells mediating skin inflammation. Blood 102, 3295–3301 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Lahl, K. et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204, 57–63 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    Article  PubMed  CAS  Google Scholar 

  17. Kim, K. S. et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351, 858–863 (2016).

    Article  PubMed  CAS  Google Scholar 

  18. Tlaskalova, H. et al. The immune response of germ-free piglets after peroral monocontamination with living Escherichia coli strain 086. I. The fate of antigen, dynamics and site of antibody formation, nature of antibodies and formation of heterohaemagglutinins. Folia Biol. 16, 177–187 (1970).

    CAS  Google Scholar 

  19. Carter, P. B. & Pollard, M. Host responses to “normal” microbial flora in germ-free mice. J. Reticuloendothel. Soc. 9, 580–587 (1971).

    PubMed  CAS  Google Scholar 

  20. Crabbe, P. A., Bazin, H., Eyssen, H. & Heremans, J. F. The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut. The germ-free intestinal tract. Int. Arch. Allergy Appl. Immunol. 34, 362–375 (1968).

    Article  PubMed  CAS  Google Scholar 

  21. Stokes, C. R., Soothill, J. F. & Turner, M. W. Immune exclusion is a function of IgA. Nature 255, 745–746 (1975).

    Article  PubMed  CAS  Google Scholar 

  22. van der Waaij, L. A., Limburg, P. C., Mesander, G. & van der Waaij, D. In vivo IgA coating of anaerobic bacteria in human faeces. Gut 38, 348–354 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 5, 1461–1471 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. Morrissey, P., Charrier, K., Braddy, S., Liggitt, D. & Watson, J. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J. Exp. Med. 178, 237–244 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Li, M. O., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579–591 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–279 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. Konrad, A., Cong, Y., Duck, W., Borlaza, R. & Elson, C. O. Tight mucosal compartmentation of the murine immune response to antigens of the enteric microbiota. Gastroenterology 130, 2050–2059 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. MacPherson, A. J. & Uhr, J. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. Cong, Y., Feng, T., Fujihashi, K., Schoeb, T. R. & Elson, C. O. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl Acad. Sci. USA 106, 19256–19261 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kawamoto, S. et al. Foxp3 T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323, 1488–1492 (2009).

    Article  PubMed  CAS  Google Scholar 

  33. Klaasen, H. L. et al. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect. Immun. 61, 303–306 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Ivanov, II et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  PubMed  CAS  Google Scholar 

  36. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  PubMed  CAS  Google Scholar 

  38. Atarashi, K., Tanoue, T. & Honda, K. Induction of lamina propria Th17 cells by intestinal commensal bacteria. Vaccine 28, 8036–8038 (2010).

    Article  PubMed  CAS  Google Scholar 

  39. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  PubMed  CAS  Google Scholar 

  40. Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Owen, R. L. & Jones, A. L. Epithelial cell specialization within human Peyer’s patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66, 189–203 (1974).

    PubMed  CAS  Google Scholar 

  42. Mattingly, J. A. & Waksman, B. H. Immunologic suppression after oral administration of antigen. II. Antigen specific helper and suppressor factors produced by spleen cells of rats fed sheep erythrocytes. J. Immunol. 125, 1044–1047 (1980).

    PubMed  CAS  Google Scholar 

  43. Nagatani, K., Komagata, Y., Asako, K., Takayama, M. & Yamamoto, K. Antigen-specific regulatory T cells are detected in Peyer’s patches after the interaction between T cells and dendritic cells loaded with orally administered antigen. Immunobiology 216, 416–422 (2011).

    Article  PubMed  CAS  Google Scholar 

  44. Strobel, S. & Mowat, A. M. Oral tolerance and allergic responses to food proteins. Curr. Opin. Allergy Clin. Immunol. 6, 207–213 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. Worbs, T. et al. Oral tolerance originates in the intestinal immune system. J. Exp. Med. 203, 519–527 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jang, M. H. et al. CCR7 Is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J. Immunol. 176, 803–810 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. Strobel, S., Mowat, A. M., Drummond, H. E., Pickering, M. G. & Ferguson, A. Immunological responses to fed protein antigens in mice. 2. Oral tolerance for CMI is due to activation of cyclophosphamide sensitive cells by gut processed antigen. Immunology 49, 451–456 (1983).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Husby, S., Jensenius, J. C. & Svehag, S.-E. Passage of undergraded dietary antigen into the blood of healthy adults. Further characterization of the kinetics of uptake and the size distribution of the antigen. Scand. J. Immunol. 24, 447–452 (1986).

    Article  PubMed  CAS  Google Scholar 

  49. Mowat, A. M. in The Immunology of the Liver (ed. Crispe, I. N.) 101–115 (John Wiley and Sons Inc., 1999).

  50. Limmer, A. et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur. J. Immunol. 35, 2970–2981 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. Goubier, A. et al. Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29, 464–475 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Scott, C. L. et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun. 7, 10321 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mayrhofer, G., Pugh, C. W. & Barclay, A. N. The distribution, ontogeny and origin in the rat of Ia-positive cells with dendritic morphology and of Ia antigen in epithelia, with special reference to the intestine. Eur. J. Immunol. 13, 112–122 (1983).

    Article  PubMed  CAS  Google Scholar 

  54. Viney, J. L., Mowat, A. M., O’Malley, J. M., Williamson, E. & Fanger, N. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J. Immunol. 160, 5815–5825 (1998).

    PubMed  CAS  Google Scholar 

  55. Iwasaki, A. & Kelsall, B. L. Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chirdo, F. G., Millington, O. R., Beacock-Sharp, H. & Mowat, A. M. Immunomodulatory dendritic cells in intestinal lamina propria. Eur. J. Immunol. 35, 1831–1840 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. Esterhazy, D. et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance. Nat. Immunol. 17, 545–555 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. MacPherson, G. G. & Pugh, C. W. Heterogeneity amongst lymph-borne “dendritic” cells. Immunobiology 168, 338–348 (1984).

    Article  PubMed  CAS  Google Scholar 

  60. Jaensson, E. et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205, 2139–2149 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  PubMed  CAS  Google Scholar 

  62. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    Article  PubMed  CAS  Google Scholar 

  65. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Joeris, T., Muller-Luda, K., Agace, W. W. & Mowat, A. M. Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol. 10, 845–864 (2017).

    Article  PubMed  CAS  Google Scholar 

  68. Scott, C. L. et al. CCR2+CD103+ intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol. 8, 327–339 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Veenbergen, S. et al. Colonic tolerance develops in the iliac lymph nodes and can be established independent of CD103(+) dendritic cells. Mucosal Immunol. 9, 894–906 (2016).

    Article  PubMed  CAS  Google Scholar 

  70. Boucard-Jourdin, M. et al. β8 integrin expression and activation of TGF-β by intestinal dendritic cells are determined by both tissue microenvironment and cell lineage. J. Immunol. 197, 1968–1978 (2016).

    Article  PubMed  CAS  Google Scholar 

  71. Luda, K. M. et al. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44, 860–874 (2016).

    Article  PubMed  CAS  Google Scholar 

  72. Matteoli, G. et al. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59, 595–604 (2010).

    Article  PubMed  CAS  Google Scholar 

  73. Zimmer, K. P., Buning, J., Weber, P., Kaiserlian, D. & Strobel, S. Modulation of antigen trafficking to MHC class II-positive late endosomes of enterocytes. Gastroenterology 118, 128–137 (2000).

    Article  PubMed  CAS  Google Scholar 

  74. Karlsson, M. et al. “Tolerosomes” are produced by intestinal epithelial cells. Eur. J. Immunol. 31, 2892–2900 (2001).

    Article  PubMed  CAS  Google Scholar 

  75. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    Article  PubMed  CAS  Google Scholar 

  76. Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38, 581–595 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    Article  PubMed  CAS  Google Scholar 

  80. Jang, M. H. et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl Acad. Sci. USA 101, 6110–6115 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40, 248–261 (2014).

    Article  PubMed  CAS  Google Scholar 

  82. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    Article  PubMed  CAS  Google Scholar 

  83. Butler, M. et al. Modulation of dendritic cell phenotype and function in an in vitro model of the intestinal epithelium. Eur. J. Immunol. 36, 864–874 (2006).

    Article  PubMed  CAS  Google Scholar 

  84. Saurer, L., McCullough, K. C. & Summerfield, A. In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid. J. Immunol. 179, 3504–3514 (2007).

    Article  PubMed  CAS  Google Scholar 

  85. McDonald, K. G. et al. Epithelial expression of the cytosolic retinoid chaperone cellular retinol binding protein II is essential for in vivo imprinting of local gut dendritic cells by lumenal retinoids. Am. J. Pathol. 180, 984–997 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hammerschmidt, S. I. et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Exp. Med. 205, 2483–2490 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Vicente-Suarez, I. et al. Unique lamina propria stromal cells imprint the functional phenotype of mucosal dendritic cells. Mucosal Immunol. 8, 141–151 (2015).

    Article  PubMed  CAS  Google Scholar 

  88. Jaensson-Gyllenback, E. et al. Bile retinoids imprint intestinal CD103(+) dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol. 4, 438–447 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Iliev, I. D., Mileti, E., Matteoli, G., Chieppa, M. & Rescigno, M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2, 340–350 (2009).

    Article  PubMed  CAS  Google Scholar 

  90. Zeng, R. et al. Retinoic acid regulates the development of a gut-homing precursor for intestinal dendritic cells. Mucosal Immunol. 6, 847–856 (2013).

    Article  PubMed  CAS  Google Scholar 

  91. Zeng, R., Bscheider, M., Lahl, K., Lee, M. & Butcher, E. C. Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid. Mucosal Immunol. 9, 183–193 (2016).

    Article  PubMed  CAS  Google Scholar 

  92. Sichien, D., Lambrecht, B. N., Guilliams, M. & Scott, C. L. Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunol. 10, 831–844 (2017).

    Article  PubMed  CAS  Google Scholar 

  93. Bain, C. C. et al. TGFβR signalling controls CD103+CD11b+ dendritic cell development in the intestine. Nat. Commun. 8, 620 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Cassani, B. et al. Gut-tropic T cells that express integrin alpha4beta7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 141, 2109–2118 (2011).

    Article  PubMed  CAS  Google Scholar 

  96. Mackay, C. R., Marston, W. L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171, 801–817 (1990).

    Article  PubMed  CAS  Google Scholar 

  97. Bain, C. C. et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6C(hi) monocyte precursors. Mucosal Immunol. 6, 498–510 (2013).

    Article  PubMed  CAS  Google Scholar 

  98. Denning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8, 1086–1094 (2007).

    Article  PubMed  CAS  Google Scholar 

  99. Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 10, 1178–1184 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Zigmond, E. et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40, 720–733 (2014).

    Article  PubMed  CAS  Google Scholar 

  101. Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    Article  PubMed  CAS  Google Scholar 

  102. Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science 348, 1031–1035 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kim, S. V. et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340, 1456–1459 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Shouval, D. S. et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40, 706–719 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411, 599–603 (2001).

    Article  PubMed  CAS  Google Scholar 

  106. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606 (2001).

    Article  PubMed  CAS  Google Scholar 

  107. McGovern, D. P., Kugathasan, S. & Cho, J. H. Genetics of inflammatory bowel diseases. Gastroenterology 149, 1163–1176.e2 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Nilsen, E. M. et al. Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut 37, 766–776 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Nilsen, E. M. et al. Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology 115, 551–563 (1998).

    Article  PubMed  CAS  Google Scholar 

  110. Sollid, L. M. & Jabri, B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat. Rev. Immunol. 13, 294–302 (2013).

    Article  PubMed  CAS  Google Scholar 

  111. Fina, D. et al. Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut 57, 887–892 (2008).

    Article  PubMed  CAS  Google Scholar 

  112. Monteleone, G., Pender, S. L., Wathen, N. C. & MacDonald, T. T. Interferon-a drives T cell-mediated immunopathology in the intestine. Eur. J. Immunol. 31, 2247–2255 (2001).

    Article  PubMed  CAS  Google Scholar 

  113. Molberg, Ø. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived peptides in celiac disease. Nat. Med. 4, 713–717 (1998).

    Article  PubMed  CAS  Google Scholar 

  114. Arentz-Hanson, H. et al. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J. Exp. Med. 191, 603–612 (2000).

    Article  Google Scholar 

  115. Jabri, B. et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 118, 867–879 (2000).

    Article  PubMed  CAS  Google Scholar 

  116. Maiuri, L. et al. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 119, 996–1006 (2000).

    Article  PubMed  CAS  Google Scholar 

  117. DePaolo, R. W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471, 220–224 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Korneychuk, N. et al. Interleukin 15 and CD4(+) T cells cooperate to promote small intestinal enteropathy in response to dietary antigen. Gastroenterology 146, 1017–1027 (2014).

    Article  PubMed  CAS  Google Scholar 

  119. Maiuri, L. et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 362, 30–37 (2003).

    Article  PubMed  CAS  Google Scholar 

  120. Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

    Article  PubMed  Google Scholar 

  121. Araya, R. E. et al. Mechanisms of innate immune activation by gluten peptide p31-43 in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G40–G49 (2016).

    Article  PubMed  Google Scholar 

  122. Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Karlsson, M. R., Rugtveit, J. & Brandtzaeg, P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow’s milk allergy. J. Exp. Med. 199, 1679–1688 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lack, G., Plaut, M. & Sayre, P. H. Peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 372, 2165–2166 (2015).

    PubMed  Google Scholar 

  125. Sudo, N. et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J. Immunol. 159, 1739–1745 (1997).

    PubMed  CAS  Google Scholar 

  126. Reynolds, L. A. & Finlay, B. B. Early life factors that affect allergy development. Nat. Rev. Immunol. 17, 518–528 (2017).

    Article  PubMed  CAS  Google Scholar 

  127. Weiner, H. L. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol. Today 18, 335–343 (1997).

    Article  PubMed  CAS  Google Scholar 

  128. Cerovic, V. et al. Lymph-borne CD8alpha+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol. 8, 38–48 (2015).

    Article  PubMed  CAS  Google Scholar 

  129. Smith, K. M., Davidson, J. M. & Garside, P. T-cell activation occurs simultaneously in local and peripheral lymphoid tissue following oral administration of a range of doses of immunogenic or tolerogenic antigen although tolerized T cells display a defect in cell division. Immunology 106, 144–158 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Yoshida, M. et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20, 769–783 (2004).

    Article  PubMed  CAS  Google Scholar 

  131. Farache, J., Zigmond, E., Shakhar, G. & Jung, S. Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunol. Cell Biol. 91, 232–239 (2013).

    Article  PubMed  CAS  Google Scholar 

  132. Peyer, J. C. Exercitatio anatoimica-medica de usu et affectionibus, cui subjungitur anatome ventriculi gallinacei. (Onophrius et Waldkirch, 1677).

  133. Weber, E. H. Über den Mechanismus der Einsaugung des Speiseaftes beim Menschen und bei einigen Tieren. Arch Anat Physiol Wissensch Med, 400–402 (1847).

  134. Wilks, S. Morbid appearances in the intestine of Miss Bankes. London Med Gazette 2, 264 (1859).

    Google Scholar 

  135. Besredka, A. De la vaccination contre les états typhoides par la voie buccale. Annales Institut Pasteur 33, 882–903 (1919).

    Google Scholar 

  136. Vaillant, L. Note sur l’emploi du vaccine bilié de Besredka par la voie buccale dans quleques foyers épidémiques de fièvre typhoide. Annales Institut Pasteur 36, 149–156 (1922).

    Google Scholar 

  137. Dalziel, T. K. Chronic interstitital enteritis. Bmj (1913).

  138. Crohn, B. B., Ginzburg, L. & Oppenheimer, G. D. Regional Ileitis: A Pathologic and Clinical Entity. JAMA 99, (1932).

  139. Dicke, W. K. Coeliac disease. Investigation of the harmful effects of certain types of cereal on patients with coeliac disease, Utrecht, The Netherlands, (1950).

  140. Heremans, J. F., Heremans, M. T. & Schultze, H. E. Isolation and description of a few properties of the beta 2A-globulin of human serum. Clin Chim Acta 4, 96–102 (1959).

    Article  PubMed  CAS  Google Scholar 

  141. Hanson, L. A. & Mansson, I. Immune electrophoretic studies of bovine milk and milk products. Acta Paediatr 50, 484–490 (1961).

    Article  PubMed  CAS  Google Scholar 

  142. Tomasi, T. B., Jr., Tan, E. M., Solomon, A. & Prendergast, R. A. Characteristics of an Immune System Common to Certain External Secretions. J Exp Med 121, 101–124 (1965).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Gowans, J. L. & Knight, E. J. The Route of Re-Circulation of Lymphocytes in the Rat. Proc R Soc Lond B Biol Sci 159, 257–282 (1964).

    Article  Google Scholar 

  144. Falchuk, Z. M. & Strober, W. HL-A antigens and adult coeliac disease. Lancet 2, 1310 (1972).

    Article  PubMed  CAS  Google Scholar 

  145. Brandtzaeg, P. Presence of J chain in human immunocytes containing various immunoglobulin classes. Nature 252, 418–420 (1974).

    Article  PubMed  CAS  Google Scholar 

  146. Berlin, C. et al. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    Article  PubMed  CAS  Google Scholar 

  147. Kunkel, E.J. et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med 192, 761–768 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 https://doi.org/10.1016/j.immuni.2008.11.001 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan McI. Mowat.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mowat, A.M. To respond or not to respond — a personal perspective of intestinal tolerance. Nat Rev Immunol 18, 405–415 (2018). https://doi.org/10.1038/s41577-018-0002-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0002-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing