Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifunctional histone variants in genome function

Abstract

Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histone variants throughout the cell cycle.
Fig. 2: Primary structure of histone variants and their influence on nucleosome structure.
Fig. 3: The role of histone variants in establishing different transcriptional chromatin states.
Fig. 4: The role of histone variants in double-strand DNA break repair.
Fig. 5: The organization of histone variant-containing chromatin in centromeres and pericentric heterochromatin.
Fig. 6: Normal and abnormal roles of histone variants and their chaperone complexes.

Similar content being viewed by others

References

  1. Grau-Bove, X. et al. A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution. Nat. Ecol. Evol. 6, 1007–1023 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Luger, K., Dechassa, M. L. & Tremethick, D. J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 13, 436–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Portillo-Ledesma, S., Li, Z. & Schlick, T. Genome modeling: from chromatin fibers to genes. Curr. Opin. Struct. Biol. 78, 102506 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Sundaram, R. & Vasudevan, D. Structural basis of nucleosome recognition and modulation. Bioessays 42, e1900234 (2020).

    Article  PubMed  Google Scholar 

  6. Kreienbaum, C., Paasche, L. W. & Hake, S. B. H2A.Z’s ‘social’ network: functional partners of an enigmatic histone variant. Trends Biochem. Sci. 47, 909–920 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y. et al. Genome-wide identification of histone H2A and histone variant H2A.Z-interacting proteins by bPPI-seq. Cell Res. 27, 1258–1274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bonisch, C. & Hake, S. B. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res. 40, 10719–10741 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stewart-Morgan, K. R., Petryk, N. & Groth, A. Chromatin replication and epigenetic cell memory. Nat. Cell Biol. 22, 361–371 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Boyarchuk, E., Filipescu, D., Vassias, I., Cantaloube, S. & Almouzni, G. The histone variant composition of centromeres is controlled by the pericentric heterochromatin state during the cell cycle. J. Cell Sci. 127, 3347–3359 (2014).

    CAS  PubMed  Google Scholar 

  11. Nekrasov, M. et al. Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics. Nat. Struct. Mol. Biol. 19, 1076–1083 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Delaney, K., Weiss, N. & Almouzni, G. The cell-cycle choreography of H3 variants shapes the genome. Mol. Cell 83, 3773–3786 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sato, H., Wu, B., Delahaye, F., Singer, R. H. & Greally, J. M. Retargeting of macroH2A following mitosis to cytogenetic-scale heterochromatic domains. J. Cell Biol. 218, 1810–1823 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elsaesser, S. J., Goldberg, A. D. & Allis, C. D. New functions for an old variant: no substitute for histone H3.3. Curr. Opin. Genet. Dev. 20, 110–117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iyer, V. R. The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription. Curr. Genet. 66, 939–944 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Osakabe, A. & Molaro, A. Histone renegades: unusual H2A histone variants in plants and animals. Semin. Cell Dev. Biol. 135, 35–42 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Rangasamy, D., Greaves, I. & Tremethick, D. J. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat. Struct. Mol. Biol. 11, 650–655 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Wong, L. H. et al. Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res. 19, 404–414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Henikoff, S. & Smith, M. M. Histone variants and epigenetics. Cold Spring Harb. Perspect. Biol. 7, a019364 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Talbert, P. B. & Henikoff, S. Histone variants at a glance. J. Cell Sci. 134, jcs244749 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, Y. et al. HIRA complex presets transcriptional potential through coordinating depositions of the histone variants H3.3 and H2A.Z on the poised genes in mESCs. Nucleic Acids Res. 50, 191–206 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Corujo, D. & Buschbeck, M. Post-translational modifications of H2A histone variants and their role in cancer. Cancers 10, 59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oberdoerffer, P. & Miller, K. M. Histone H2A variants: diversifying chromatin to ensure genome integrity. Semin. Cell Dev. Biol. 135, 59–72 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Phillips, E. O. N. & Gunjan, A. Histone variants: the unsung guardians of the genome. DNA Repair 112, 103301 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giaimo, B. D., Ferrante, F., Herchenrother, A., Hake, S. B. & Borggrefe, T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 12, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bonisch, C. et al. H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization. Nucleic Acids Res. 40, 5951–5964 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guberovic, I., Farkas, M., Corujo, D. & Buschbeck, M. Evolution, structure and function of divergent macroH2A1 splice isoforms. Semin. Cell Dev. Biol. 135, 43–49 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Guberovic, I. et al. Evolution of a histone variant involved in compartmental regulation of NAD metabolism. Nat. Struct. Mol. Biol. 28, 1009–1019 (2021). This study investigates many aspects of macroH2A1.1, specifically the structural evolution of its macrodomain, its involvement in regulating NAD+ metabolism and its compartmentalization between the nucleus and mitochondria, which are fundamental for energy homeostasis.

    Article  CAS  PubMed  Google Scholar 

  29. Anuar, N. D. et al. Gene editing of the multi-copy H2A.B gene and its importance for fertility. Genome Biol. 20, 23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Barral, S. et al. Histone variant H2A.L.2 guides transition protein-dependent protamine assembly in male germ cells. Mol. Cell 66, 89–101.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Molaro, A. et al. Biparental contributions of the H2A.B histone variant control embryonic development in mice. PLoS Biol. 18, e3001001 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Molaro, A., Young, J. M. & Malik, H. S. Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome Res. 28, 460–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soboleva, T. A. et al. A new link between transcriptional initiation and pre-mRNA splicing: the RNA binding histone variant H2A.B. PLoS Genet. 13, e1006633 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen, Z. et al. High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier. eLife 8, e48281 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lewis, T. S., Sokolova, V., Jung, H., Ng, H. & Tan, D. Structural basis of chromatin regulation by histone variant H2A.Z. Nucleic Acids Res. 49, 11379–11391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sokolova, V., Sarkar, S. & Tan, D. Histone variants and chromatin structure, update of advances. Comput. Struct. Biotechnol. J. 21, 299–311 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, K., Gaullier, G. & Luger, K. Nucleosome structure and dynamics are coming of age. Nat. Struct. Mol. Biol. 26, 3–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Horikoshi, N. et al. Structural polymorphism in the L1 loop regions of human H2A.Z.1 and H2A.Z.2. Acta Crystallogr. D. Biol. Crystallogr. 69, 2431–2439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, P. et al. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes. Dev. 27, 2109–2124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y. et al. Histone variants H2A.Z and H3.3 coordinately regulate PRC2-dependent H3K27me3 deposition and gene expression regulation in mES cells. BMC Biol. 16, 107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hansen, J. C., Maeshima, K. & Hendzel, M. J. The solid and liquid states of chromatin. Epigenetics Chromatin 14, 50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang, X., Soboleva, T. A. & Tremethick, D. J. Short histone H2A variants: small in stature but not in function. Cells 9, 867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Soboleva, T. A., Nekrasov, M., Ryan, D. P. & Tremethick, D. J. Histone variants at the transcription start-site. Trends Genet. 30, 199–209 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Bowerman, S., Hickok, R. J. & Wereszczynski, J. Unique dynamics in asymmetric macroH2A-H2A hybrid nucleosomes result in increased complex stability. J. Phys. Chem. B 123, 419–427 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rege, M. et al. Chromatin dynamics and the RNA exosome function in concert to regulate transcriptional homeostasis. Cell Rep. 13, 1610–1622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruiz, P. D. & Gamble, M. J. MacroH2A1 chromatin specification requires its docking domain and acetylation of H2B lysine 20. Nat. Commun. 9, 5143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Joseph, F. M. & Young, N. L. Histone variant-specific post-translational modifications. Semin. Cell Dev. Biol. 135, 73–84 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Tang, M. C. et al. Contribution of the two genes encoding histone variant h3.3 to viability and fertility in mice. PLoS Genet. 11, e1004964 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chang, F. T. et al. CHK1-driven histone H3.3 serine 31 phosphorylation is important for chromatin maintenance and cell survival in human ALT cancer cells. Nucleic Acids Res. 43, 2603–2614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Takizawa, Y. et al. Cryo-EM structures of centromeric tri-nucleosomes containing a central CENP-A nucleosome. Structure 28, 44–53.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Nagpal, H. et al. CENP-A and CENP-B collaborate to create an open centromeric chromatin state. Nat. Commun. 14, 8227 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ali-Ahmad, A., Bilokapic, S., Schafer, I. B., Halic, M. & Sekulic, N. CENP-C unwraps the human CENP-A nucleosome through the H2A C-terminal tail. EMBO Rep. 20, e48913 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kale, S. et al. The CENP-A nucleosome: where and when it happens during the inner kinetochore’s assembly. Trends Biochem. Sci. 48, 849–859 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Pesenti, M. E. et al. Structure of the human inner kinetochore CCAN complex and its significance for human centromere organization. Mol. Cell 82, 2113–2131 e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yatskevich, S. et al. Structure of the human inner kinetochore bound to a centromeric CENP-A nucleosome. Science 376, 844–852 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malik, S. & Roeder, R. G. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Nat. Rev. Genet. 24, 767–782 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Scacchetti, A. & Becker, P. B. Variation on a theme: evolutionary strategies for H2A.Z exchange by SWR1-type remodelers. Curr. Opin. Cell Biol. 70, 1–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Mylonas, C., Lee, C., Auld, A. L., Cisse, I. I. & Boyer, L. A. A dual role for H2A.Z.1 in modulating the dynamics of RNA polymerase II initiation and elongation. Nat. Struct. Mol. Biol. 28, 435–442 (2021). Using a degron tag approach to rapidly deplete endogenous H2A.Z, this study demonstrates that the +1 H2A.Z-containing nucleosome functions as a barrier to slow the rate of RNA Pol II elongation.

    Article  CAS  PubMed  Google Scholar 

  60. Cole, L. et al. Multiple roles of H2A.Z in regulating promoter chromatin architecture in human cells. Nat. Commun. 12, 2524 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Voong, L. N. et al. Insights into nucleosome organization in mouse embryonic stem cells through chemical mapping. Cell 167, 1555–1570.e15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Day, D. S. et al. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol. 17, 120 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Urban, E. A. & Johnston, R. J. Buffering and amplifying transcriptional noise during cell fate specification. Front. Genet. 9, 591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Debes, C. et al. Ageing-associated changes in transcriptional elongation influence longevity. Nature 616, 814–821 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Domaschenz, R., Kurscheid, S., Nekrasov, M., Han, S. & Tremethick, D. J. The histone variant H2A.Z is a master regulator of the epithelial–mesenchymal transition. Cell Rep. 21, 943–952 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Abril-Garrido, J. et al. Structural basis of transcription reduction by a promoter-proximal +1 nucleosome. Mol. Cell 83, 1798–1809.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Perell, G. T. et al. Specific acetylation patterns of H2A.Z form transient interactions with the BPTF bromodomain. Biochemistry 56, 4607–4615 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, T. H. et al. Correlating histone acetylation with nucleosome core particle dynamics and function. Proc. Natl Acad. Sci. USA 120, e2301063120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, H. et al. H3K4me3 regulates RNA polymerase II promoter-proximal pause–release. Nature 615, 339–348 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. de Dieuleveult, M. et al. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature 530, 113–116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pundhir, S. et al. The impact of SWI/SNF and NuRD inactivation on gene expression is tightly coupled with levels of RNA polymerase II occupancy at promoters. Genome Res. 33, 332–345 (2023). This study shows how functionally opposing ATP-remodelling chromatin complexes regulate transcription by the differential promoter incorporation of H2A.Z or H3.3.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Brahma, S. & Henikoff, S. The BAF chromatin remodeler synergizes with RNA polymerase II and transcription factors to evict nucleosomes. Nat. Genet. 56, 100–111 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Dobersch, S. et al. Positioning of nucleosomes containing gamma-H2AX precedes active DNA demethylation and transcription initiation. Nat. Commun. 12, 1072 (2021). This study demonstrates that phosphorylation of H2A.X and DNA repair is required for DNA demethylation and transcriptional activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, X. et al. Structures of +1 nucleosome-bound PIC–mediator complex. Science 378, 62–68 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, X. et al. Hierarchical accumulation of histone variant H2A.Z regulates transcriptional states and histone modifications in early mammalian embryos. Adv. Sci. 9, e2200057 (2022). This study uses ultra-low-input native chromatin immunoprecipitation assays in early mouse embryos to reveal how the H2A.Z and histone modification profiles of promoters regulate gene expression during early development.

    Article  Google Scholar 

  76. Surface, L. E. et al. H2A.Z.1 monoubiquitylation antagonizes BRD2 to maintain poised chromatin in ESCs. Cell Rep. 14, 1142–1155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schlesinger, S. et al. A hyperdynamic H3.3 nucleosome marks promoter regions in pluripotent embryonic stem cells. Nucleic Acids Res. 45, 12181–12194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tafessu, A. et al. H3.3 contributes to chromatin accessibility and transcription factor binding at promoter-proximal regulatory elements in embryonic stem cells. Genome Biol. 24, 25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dunjic, M. et al. Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells. Nat. Commun. 14, 3791 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lavigne, M. D. et al. Composite macroH2A/NRF-1 nucleosomes suppress noise and generate robustness in gene expression. Cell Rep. 11, 1090–1101 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Recoules, L. et al. The histone variant macroH2A1.1 regulates RNA polymerase II-paused genes within defined chromatin interaction landscapes. J. Cell Sci. 135, jcs259456 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu, G. et al. H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell 12, 180–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Johnson, T. A. et al. Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo. Nucleic Acids Res. 46, 203–214 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Cauchy, P., Koch, F. & Andrau, J. C. Two possible modes of pioneering associated with combinations of H2A.Z and p300/CBP at nucleosome-occupied enhancers. Transcription 8, 179–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sporrij, A. et al. PGE2 alters chromatin through H2A.Z-variant enhancer nucleosome modification to promote hematopoietic stem cell fate. Proc. Natl Acad. Sci. USA 120, e2220613120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Iwafuchi-Doi, M. & Zaret, K. S. Pioneer transcription factors in cell reprogramming. Genes Dev. 28, 2679–2692 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhou, C. et al. Comprehensive profiling reveals mechanisms of SOX2-mediated cell fate specification in human ESCs and NPCs. Cell Res. 26, 171–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Giaimo, B. D. et al. Histone variant H2A.Z deposition and acetylation directs the canonical Notch signaling response. Nucleic Acids Res. 46, 8197–8215 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lamaa, A. et al. Integrated analysis of H2A.Z isoforms function reveals a complex interplay in gene regulation. eLife 9, e53375 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Brunelle, M. et al. The histone variant H2A.Z is an important regulator of enhancer activity. Nucleic Acids Res. 43, 9742–9756 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Arnold, P. R., Wells, A. D. & Li, X. C. Diversity and emerging roles of enhancer RNA in regulation of gene expression and cell fate. Front. Cell Dev. Biol. 7, 377 (2019).

    Article  PubMed  Google Scholar 

  92. Valdes-Mora, F. et al. Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nat. Commun. 8, 1346 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Brahma, S. et al. INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers. Nat. Commun. 8, 15616 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Segala, G., Bennesch, M. A., Pandey, D. P., Hulo, N. & Picard, D. Monoubiquitination of histone H2B blocks eviction of histone variant H2A.Z from inducible enhancers. Mol. Cell 64, 334–346 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Draker, R. et al. A combination of H2A.Z and H4 acetylation recruits Brd2 to chromatin during transcriptional activation. PLoS Genet. 8, e1003047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rippe, K. Liquid–liquid phase separation in chromatin. Cold Spring Harb. Perspect. Biol. 14, a040683 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Janas, J. A. et al. Tip60-mediated H2A.Z acetylation promotes neuronal fate specification and bivalent gene activation. Mol. Cell 82, 4627–4646.e14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martire, S. et al. Phosphorylation of histone H3.3 at serine 31 promotes p300 activity and enhancer acetylation. Nat. Genet. 51, 941–946 (2019). This study demonstrates that the phosphorylation of H3.3 is required for rapid stimulation-induced transcription by enhancing SETD2 (H3K36me3) activity and ejecting the transcriptional elongation repressor ZMYND11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morozov, V. M. et al. HIRA-mediated loading of histone variant H3.3 controls androgen-induced transcription by regulation of AR/BRD4 complex assembly at enhancers. Nucleic Acids Res. 51, 10194–10217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Banaszynski, L. A. et al. Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell 155, 107–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Armache, A. et al. Histone H3.3 phosphorylation amplifies stimulation-induced transcription. Nature 583, 852–857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Barrero, M. J. et al. Macrohistone variants preserve cell identity by preventing the gain of H3K4me2 during reprogramming to pluripotency. Cell Rep. 3, 1005–1011 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Gaspar-Maia, A. et al. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat. Commun. 4, 1565 (2013).

    Article  PubMed  Google Scholar 

  104. Gamble, M. J., Frizzell, K. M., Yang, C., Krishnakumar, R. & Kraus, W. L. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev. 24, 21–32 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pasque, V. et al. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J. Cell Sci. 125, 6094–6104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, H. et al. MacroH2A1.1 and PARP-1 cooperate to regulate transcription by promoting CBP-mediated H2B acetylation. Nat. Struct. Mol. Biol. 21, 981–989 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Simonet, N. G. et al. SirT7 auto-ADP-ribosylation regulates glucose starvation response through mH2A1. Sci. Adv. 6, eaaz2590 (2020). This study reveals that the deacetylase SirT7 also possesses ADP-ribosyltransferease (ADPRT) activity and, upon auto-ADPRT activity, binds to macroH2A1.1 directing it to specific genomic locations to regulate the expression of genes involved in glucose homeostasis and ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Corujo, D. et al. MacroH2As regulate enhancer–promoter contacts affecting enhancer activity and sensitivity to inflammatory cytokines. Cell Rep. 39, 110988 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Muniz, L., Nicolas, E. & Trouche, D. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition. EMBO J. 40, e105740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jimeno-Gonzalez, S. et al. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing. Proc. Natl Acad. Sci. USA 112, 14840–14845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gal, C. et al. DREAM represses distinct targets by cooperating with different THAP domain proteins. Cell Rep. 37, 109835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Latorre, I. et al. The DREAM complex promotes gene body H2A.Z for target repression. Genes Dev. 29, 495–500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Long, J., Carter, B., Johnson, E. T. & Ogas, J. Contribution of the histone variant H2A.Z to expression of responsive genes in plants. Semin. Cell Dev. Biol. 135, 85–92 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Guo, R. et al. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol. Cell 56, 298–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Teng, Y. C. et al. ATRX promotes heterochromatin formation to protect cells from G-quadruplex DNA-mediated stress. Nat. Commun. 12, 3887 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Levy, M. A., Kernohan, K. D., Jiang, Y. & Berube, N. G. ATRX promotes gene expression by facilitating transcriptional elongation through guanine-rich coding regions. Hum. Mol. Genet. 24, 1824–1835 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Zhu, J. et al. LSM1-mediated major satellite RNA decay is required for nonequilibrium histone H3.3 incorporation into parental pronuclei. Nat. Commun. 14, 957 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dijkwel, Y. & Tremethick, D. J. The role of the histone variant H2A.Z in metazoan development. J. Dev. Biol. 10, 28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Douet, J. et al. MacroH2A histone variants maintain nuclear organization and heterochromatin architecture. J. Cell Sci. 130, 1570–1582 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Kim, J. et al. The macroH2A1.2 histone variant links ATRX loss to alternative telomere lengthening. Nat. Struct. Mol. Biol. 26, 213–219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Voon, H. P. & Wong, L. H. New players in heterochromatin silencing: histone variant H3.3 and the ATRX/DAXX chaperone. Nucleic Acids Res. 44, 1496–1501 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Udugama, M. et al. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res. 43, 10227–10237 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jang, C. W., Shibata, Y., Starmer, J., Yee, D. & Magnuson, T. Histone H3.3 maintains genome integrity during mammalian development. Genes Dev. 29, 1377–1392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schibler, A. C., Jevtic, P., Pegoraro, G., Levy, D. L. & Misteli, T. Identification of epigenetic modulators as determinants of nuclear size and shape. eLife 12, e80653 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bomber, M. L. et al. Human SMARCA5 is continuously required to maintain nucleosome spacing. Mol. Cell 83, 507–522 e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Udugama, M. et al. Histone H3.3 phosphorylation promotes heterochromatin formation by inhibiting H3K9/K36 histone demethylase. Nucleic Acids Res. 50, 4500–4514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Carraro, M. et al. DAXX adds a de novo H3.3K9me3 deposition pathway to the histone chaperone network. Mol. Cell 83, 1075–1092.e9 (2023). Through an extensive protein interactome analysis, this study shows that DAXX stimulates the catalytic activity of histone methyltransferases to promote H3K9 trimethylation of H3.3–H4 dimers before their deposition onto DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Navarro, C., Lyu, J., Katsori, A. M., Caridha, R. & Elsasser, S. J. An embryonic stem cell-specific heterochromatin state promotes core histone exchange in the absence of DNA accessibility. Nat. Commun. 11, 5095 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Saksouk, N., Simboeck, E. & Dejardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8, 3 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Silonov, S. A., Smirnov, E. Y., Kuznetsova, I. M., Turoverov, K. K. & Fonin, A. V. PML body biogenesis: a delicate balance of interactions. Int. J. Mol. Sci. 24, 16702 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Delbarre, E. et al. PML protein organizes heterochromatin domains where it regulates histone H3.3 deposition by ATRX/DAXX. Genome Res. 27, 913–921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Trier, I., Black, E. M., Joo, Y. K. & Kabeche, L. ATR protects centromere identity by promoting DAXX association with PML nuclear bodies. Cell Rep. 42, 112495 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Kleijwegt, C. et al. Interplay between PML NBs and HIRA for H3.3 dynamics following type I interferon stimulus. eLife 12, e80156 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Voon, H. P. J. et al. Pediatric glioma histone H3.3 K27M/G34R mutations drive abnormalities in PML nuclear bodies. Genome Biol. 24, 284 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Costa, A. & Diffley, J. F. X. The initiation of eukaryotic DNA replication. Annu. Rev. Biochem. 91, 107–131 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Marchal, C., Sima, J. & Gilbert, D. M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721–737 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Cayrou, C. et al. The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res. 25, 1873–1885 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Brossas, C., Duriez, B., Valton, A. L. & Prioleau, M. N. Promoters are key organizers of the duplication of vertebrate genomes. Bioessays 43, e2100141 (2021).

    Article  PubMed  Google Scholar 

  140. Poulet-Benedetti, J. et al. Dimeric G-quadruplex motifs-induced NFRs determine strong replication origins in vertebrates. Nat. Commun. 14, 4843 (2023). This study investigates the requirements for a strong origin of replication, which includes guanine-rich motifs potentially forming G quadruplexes, a nucleosome-free region and a precisely positioned H2A.Z-containing nucleosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gatto, A., Forest, A., Quivy, J. P. & Almouzni, G. HIRA-dependent boundaries between H3 variants shape early replication in mammals. Mol. Cell 82, 1909–1923.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Clement, C. et al. High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nat. Commun. 9, 3181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Huang, L. et al. Structural insight into H4K20 methylation on H2A.Z-nucleosome by SUV420H1. Mol. Cell 83, 2884–2895.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Long, H. et al. H2A.Z facilitates licensing and activation of early replication origins. Nature 577, 576–581 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Abini-Agbomson, S. et al. Catalytic and non-catalytic mechanisms of histone H4 lysine 20 methyltransferase SUV420H1. Mol. Cell 83, 2872–2883.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Zhao, B. et al. Znhit1 controls intestinal stem cell maintenance by regulating H2A.Z incorporation. Nat. Commun. 10, 1071 (2019). In contrast to most studies, which use cell lines, this study revealed a central role of H2A.Z in organ development and tissue homeostasis.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Xu, X. et al. The epigenetic regulator LSH maintains fork protection and genomic stability via macroH2A deposition and RAD51 filament formation. Nat. Commun. 12, 3520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, J. et al. Replication stress shapes a protective chromatin environment across fragile genomic regions. Mol. Cell 69, 36–47.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Sebastian, R. et al. Epigenetic regulation of DNA repair pathway choice by macroH2A1 splice variants ensures genome stability. Mol. Cell 79, 836–845.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Li, C. & Delaney, S. Histone H2A variants enhance the initiation of base excision repair in nucleosomes. ACS Chem. Biol. 14, 1041–1050 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Daley, J. M. & Sung, P. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol. Cell Biol. 34, 1380–1388 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Smeenk, G. et al. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J. Cell Sci. 126, 889–903 (2013).

    CAS  PubMed  Google Scholar 

  153. Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mattiroli, F. et al. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell 150, 1182–1195 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Yu, J., Qin, B. & Lou, Z. Ubiquitin and ubiquitin-like molecules in DNA double strand break repair. Cell Biosci. 10, 13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Qiu, L. et al. The HDAC6-RNF168 axis regulates H2A/H2A.X ubiquitination to enable double-strand break repair. Nucleic Acids Res. 51, 9166–9182 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kelliher, J. L., West, K. L., Gong, Q. & Leung, J. W. C. Histone H2A variants α1-extension helix directs RNF168-mediated ubiquitination. Nat. Commun. 11, 2462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sharma, D. et al. PARP1 exhibits enhanced association and catalytic efficiency with γH2A.X-nucleosome. Nat. Commun. 10, 5751 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Min, S. et al. The chromatin remodeler RSF1 coordinates epigenetic marks for transcriptional repression and DSB repair. Nucleic Acids Res. 49, 12268–12283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Arnould, C. et al. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590, 660–665 (2021). This study shows that pre-existing higher-order chromatin structure has a crucuial role in the repair of DSBs by ensuring the proper establishment of γH2A.X chromatin repair domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Collins, P. L. et al. DNA double-strand breaks induce H2AX phosphorylation domains in a contact-dependent manner. Nat. Commun. 11, 3158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Burgess, R. C., Burman, B., Kruhlak, M. J. & Misteli, T. Activation of DNA damage response signaling by condensed chromatin. Cell Rep. 9, 1703–1717 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Caron, P., Pobega, E. & Polo, S. E. DNA double-strand break repair: all roads lead to heterochROMAtin marks. Front. Genet. 12, 730696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Khurana, S. et al. A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance. Cell Rep. 8, 1049–1062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kumbhar, R. et al. Poly(ADP-ribose) binding and macroH2A mediate recruitment and functions of KDM5A at DNA lesions. J. Cell Biol. 220, e202006149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gong, F., Clouaire, T., Aguirrebengoa, M., Legube, G. & Miller, K. M. Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair. J. Cell Biol. 216, 1959–1974 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Alagoz, M. et al. SETDB1, HP1 and SUV39 promote repositioning of 53BP1 to extend resection during homologous recombination in G2 cells. Nucleic Acids Res. 43, 7931–7944 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dhar, S., Gursoy-Yuzugullu, O., Parasuram, R. & Price, B. D. The tale of a tail: histone H4 acetylation and the repair of DNA breaks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160284 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Nishibuchi, I. et al. Reorganization of damaged chromatin by the exchange of histone variant H2A.Z-2. Int. J. Radiat. Oncol. Biol. Phys. 89, 736–744 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Xu, Y. et al. Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol. Cell 48, 723–733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kozlowski, M. et al. MacroH2A histone variants limit chromatin plasticity through two distinct mechanisms. EMBO Rep. 19, e44445 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Gursoy-Yuzugullu, O., House, N. & Price, B. D. Patching broken DNA: nucleosome dynamics and the repair of DNA breaks. J. Mol. Biol. 428, 1846–1860 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Gursoy-Yuzugullu, O., Ayrapetov, M. K. & Price, B. D. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair. Proc. Natl Acad. Sci. USA 112, 7507–7512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Alatwi, H. E. & Downs, J. A. Removal of H2A.Z by INO80 promotes homologous recombination. EMBO Rep. 16, 986–994 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Juhasz, S., Elbakry, A., Mathes, A. & Lobrich, M. ATRX promotes DNA repair synthesis and sister chromatid exchange during homologous recombination. Mol. Cell 71, 11–24.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Tsouroula, K. et al. Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin. Mol. Cell 63, 293–305 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Yilmaz, D. et al. Activation of homologous recombination in G1 preserves centromeric integrity. Nature 600, 748–753 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Belotti, E. et al. H2A.Z is involved in premature aging and DSB repair initiation in muscle fibers. Nucleic Acids Res. 52, 3031–3049 (2024). This study, along with Belottie et al., 2020, shows that the role of H2A.Z in mitochondrial homeostasis may be unrelated to transcriptional regulation but dependent upon its requirement for DNA repair.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Jiang, Y. et al. Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat. Cell Biol. 17, 1158–1168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Luijsterburg, M. S. et al. PARP1 links CHD2-mediated chromatin expansion and H3.3 deposition to DNA repair by non-homologous end-joining. Mol. Cell 61, 547–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. McKinley, K. L. & Cheeseman, I. M. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 17, 16–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Shukla, S. & Kumar, A. Centromere chromatin dynamics at a glance. Epigenomes 6, 39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Verdaasdonk, J. S. & Bloom, K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat. Rev. Mol. Cell Biol. 12, 320–332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Logsdon, G. A. et al. Human artificial chromosomes that bypass centromeric DNA. Cell 178, 624–639.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Das, A. et al. Centromere-specifying nucleosomes persist in aging mouse oocytes in the absence of nascent assembly. Curr. Biol. 33, 3759–3765.e3 (2023).

    Article  CAS  PubMed  Google Scholar 

  186. Sharma, U., Stefanova, D. & Holmes, S. G. Histone variant H2A.Z functions in sister chromatid cohesion in Saccharomyces cerevisiae. Mol. Cell Biol. 33, 3473–3481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Verni, F. & Cenci, G. The Drosophila histone variant H2A.V works in concert with HP1 to promote kinetochore-driven microtubule formation. Cell Cycle 14, 577–588 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tapia-Alveal, C., Lin, S. J., Yeoh, A., Jabado, O. J. & O’Connell, M. J. H2A.Z-dependent regulation of cohesin dynamics on chromosome arms. Mol. Cell Biol. 34, 2092–2104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Sales-Gil, R. et al. Non-redundant functions of H2A.Z.1 and H2A.Z.2 in chromosome segregation and cell cycle progression. EMBO Rep. 22, e52061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wichmann, J. et al. Loss of TIP60 (KAT5) abolishes H2AZ lysine 7 acetylation and causes p53, INK4A, and ARF-independent cell cycle arrest. Cell Death Dis. 13, 627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Altemose, N. et al. DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide. Nat. Methods 19, 711–723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chan, F. L. & Wong, L. H. Transcription in the maintenance of centromere chromatin identity. Nucleic Acids Res. 40, 11178–11188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhu, J., Guo, Q., Choi, M., Liang, Z. & Yuen, K. W. Y. Centromeric and pericentric transcription and transcripts: their intricate relationships, regulation, and functions. Chromosoma 132, 211–230 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Naughton, C. et al. Human centromere repositioning activates transcription and opens chromatin fibre structure. Nat. Commun. 13, 5609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bobkov, G. O. M., Gilbert, N. & Heun, P. Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation. J. Cell Biol. 217, 1957–1972 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Blower, M. D. Centromeric transcription regulates Aurora-B localization and activation. Cell Rep. 15, 1624–1633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Quenet, D. & Dalal, Y. A long non-coding RNA is required for targeting centromeric protein A to the human centromere. eLife 3, e03254 (2014).

    Article  PubMed  Google Scholar 

  198. Kitagawa, R., Niikura, Y., Becker, A., Houghton, P. J. & Kitagawa, K. EWSR1 maintains centromere identity. Cell Rep. 42, 112568 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Leclerc, S. & Kitagawa, K. The role of human centromeric RNA in chromosome stability. Front. Mol. Biosci. 8, 642732 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ling, Y. H. & Yuen, K. W. Y. Point centromere activity requires an optimal level of centromeric noncoding RNA. Proc. Natl Acad. Sci. USA 116, 6270–6279 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Pinto, L. M. et al. DAXX promotes centromeric stability independently of ATRX by preventing the accumulation of R-loop-induced DNA double-stranded breaks. Nucleic Acids Res. 52, 1136–1155 (2024).

    Article  PubMed  Google Scholar 

  202. Naish, M. et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374, eabi7489 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Janssen, A., Colmenares, S. U. & Karpen, G. H. Heterochromatin: guardian of the genome. Annu. Rev. Cell Dev. Biol. 34, 265–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Ryan, D. P. & Tremethick, D. J. The interplay between H2A.Z and H3K9 methylation in regulating HP1alpha binding to linker histone-containing chromatin. Nucleic Acids Res. 46, 9353–9366 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gonzalez, J. et al. A complex interplay between H2A.Z and HP1 isoforms regulates pericentric heterochromatin. Front. Cell Dev. Biol. 11, 1293122 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Fan, J. Y., Rangasamy, D., Luger, K. & Tremethick, D. J. H2A.Z alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding. Mol. Cell 16, 655–661 (2004).

    Article  CAS  PubMed  Google Scholar 

  207. Canat, A. et al. DAXX safeguards heterochromatin formation in embryonic stem cells. J. Cell Sci. 136, jcs261092 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Fang, L. et al. Potential functions of histone H3.3 lysine 56 acetylation in mammals. Epigenetics 17, 498–517 (2022).

    Article  PubMed  Google Scholar 

  209. Shimada, M. et al. Essential role of autoactivation circuitry on Aurora B-mediated H2AX-pS121 in mitosis. Nat. Commun. 7, 12059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ghiraldini, F. G., Filipescu, D. & Bernstein, E. Solid tumours hijack the histone variant network. Nat. Rev. Cancer 21, 257–275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Smith, R. et al. The H3.3 chaperone Hira complex orchestrates oocyte developmental competence. Development 149, dev200044 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ishiuchi, T. et al. Reprogramming of the histone H3.3 landscape in the early mouse embryo. Nat. Struct. Mol. Biol. 28, 38–49 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Kong, Q. et al. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos. J. Biol. Chem. 293, 3829–3838 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sun, K. Y. et al. Cleavage-embryo genes and transposable elements are regulated by histone variant H2A.X. J. Reprod. Dev. 67, 307–312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Eleuteri, B., Aranda, S. & Ernfors, P. NoRC recruitment by H2A.X deposition at rRNA gene promoter limits embryonic stem cell proliferation. Cell Rep. 23, 1853–1866 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Orlando, L. et al. Phosphorylation state of the histone variant H2A.X controls human stem and progenitor cell fate decisions. Cell Rep. 34, 108818 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Ye, B. et al. Suppression of SRCAP chromatin remodelling complex and restriction of lymphoid lineage commitment by Pcid2. Nat. Commun. 8, 1518 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Kim, S. P. et al. Mutant U2AF1-induced alternative splicing of H2afy (macroH2A1) regulates B-lymphopoiesis in mice. Cell Rep. 36, 109626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hurtado-Bages, S. et al. The histone variant macroH2A1 regulates key genes for myogenic cell fusion in a splice-isoform dependent manner. Cells 9, 1109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Hodge, D. Q., Cui, J., Gamble, M. J. & Guo, W. Histone variant macroH2A1 plays an isoform-specific role in suppressing epithelial-mesenchymal transition. Sci. Rep. 8, 841 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Weyemi, U. et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat. Commun. 7, 10711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Jeffery, D. et al. CENP-A overexpression promotes distinct fates in human cells, depending on p53 status. Commun. Biol. 4, 417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Xia, W. & Jiao, J. Histone variant H3.3 orchestrates neural stem cell differentiation in the developing brain. Cell Death Differ. 24, 1548–1563 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Funk, O. H., Qalieh, Y., Doyle, D. Z., Lam, M. M. & Kwan, K. Y. Postmitotic accumulation of histone variant H3.3 in new cortical neurons establishes neuronal chromatin, transcriptome, and identity. Proc. Natl Acad. Sci. USA 119, e2116956119 (2022). This study shows that the de novo incorporation of histone H3.3 immediately after mitosis in newborn cortical excitatory neurons is crucial for the establishment and maintenance of the neural epigenetic landscape and transcriptome over the neuronal lifespan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Bryant, L. et al. Histone H3.3 beyond cancer: germline mutations in histone 3 family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients. Sci. Adv. 6, eabc9207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Okur, V. et al. De novo variants in H3-3A and H3-3B are associated with neurodevelopmental delay, dysmorphic features, and structural brain abnormalities. NPJ Genom. Med. 6, 104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Punzeler, S. et al. Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation. EMBO J. 36, 2263–2279 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Link, S. et al. PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex. Nat. Commun. 9, 4300 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Ma, H. et al. MacroH2A1.2 deficiency leads to neural stem cell differentiation defects and autism-like behaviors. EMBO Rep. 22, e52150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Shen, T. et al. Brain-specific deletion of histone variant H2A.z results in cortical neurogenesis defects and neurodevelopmental disorder. Nucleic Acids Res. 46, 2290–2307 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Lepack, A. E. et al. Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior. Proc. Natl Acad. Sci. USA 113, 12562–12567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Weyemi, U. et al. Histone H2AX promotes neuronal health by controlling mitochondrial homeostasis. Proc. Natl Acad. Sci. USA 116, 7471–7476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Lowden, C. et al. Homeostatic control of nuclear-encoded mitochondrial gene expression by the histone variant H2A.Z is essential for neuronal survival. Cell Rep. 36, 109704 (2021).

    Article  CAS  PubMed  Google Scholar 

  234. Reid, D. A. et al. Incorporation of a nucleoside analog maps genome repair sites in postmitotic human neurons. Science 372, 91–94 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Maze, I. et al. Critical role of histone turnover in neuronal transcription and plasticity. Neuron 87, 77–94 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. McNally, A. G., Poplawski, S. G., Mayweather, B. A., White, K. M. & Abel, T. Characterization of a novel chromatin sorting tool reveals importance of histone variant H3.3 in contextual fear memory and motor learning. Front. Mol. Neurosci. 9, 11 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Zovkic, I. B., Paulukaitis, B. S., Day, J. J., Etikala, D. M. & Sweatt, J. D. Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature 515, 582–586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Stefanelli, G. et al. The histone chaperone Anp32e regulates memory formation, transcription, and dendritic morphology by regulating steady-state H2A.Z binding in neurons. Cell Rep. 36, 109551 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Singh, G. et al. Histone macroH2A1 is a stronger regulator of hippocampal transcription and memory than macroH2A2 in mice. Commun. Biol. 5, 482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Navabpour, S., Rogers, J., McFadden, T. & Jarome, T. J. DNA double-strand breaks are a critical regulator of fear memory reconsolidation. Int. J. Mol. Sci. 21, 8995 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Reda, A. et al. Role of the histone variant H2A.Z.1 in memory, transcription, and alternative splicing is mediated by lysine modification. Neuropsychopharmacology 49, 1285–1295 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Yang, Y. et al. Chromatin remodeling inactivates activity genes and regulates neural coding. Science 353, 300–305 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Karam, G. & Molaro, A. Casting histone variants during mammalian reproduction. Chromosoma 132, 153–165 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hoghoughi, N., Barral, S., Vargas, A., Rousseaux, S. & Khochbin, S. Histone variants: essential actors in male genome programming. J. Biochem. 163, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Greenberg, R. S., Long, H. K., Swigut, T. & Wysocka, J. Single amino acid change underlies distinct roles of H2A.Z subtypes in human syndrome. Cell 178, 1421–1436 e24 (2019). This study demonstartes that the Floating–Harbour syndrome is the result of the loss of function of SRCAP, which impacts the enhancer targeting of only one H2A.Z isoform, H2A.Z.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Ni, K. et al. LSH mediates gene repression through macroH2A deposition. Nat. Commun. 11, 5647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  248. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  249. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Brien, G. L. et al. Simultaneous disruption of PRC2 and enhancer function underlies histone H3.3-K27M oncogenic activity in human hindbrain neural stem cells. Nat. Genet. 53, 1221–1232 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Jain, S. U. et al. H3 K27M and EZHIP impede H3K27-methylation spreading by inhibiting allosterically stimulated PRC2. Mol. Cell 80, 726–735.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Stafford, J. M. et al. Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci. Adv. 4, eaau5935 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Harutyunyan, A. S. et al. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat. Commun. 10, 1262 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Krug, B. et al. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. Cancer Cell 35, 782–797.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Harutyunyan, A. S. et al. H3K27M in gliomas causes a one-step decrease in H3K27 methylation and reduced spreading within the constraints of H3K36 methylation. Cell Rep. 33, 108390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Furth, N. et al. H3-K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape. Cell Rep. 39, 110836 (2022).

    Article  CAS  PubMed  Google Scholar 

  257. Voon, H. P. J. et al. Inhibition of a K9/K36 demethylase by an H3.3 point mutation found in paediatric glioblastoma. Nat. Commun. 9, 3142 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Shi, L., Shi, J., Shi, X., Li, W. & Wen, H. Histone H3.3 G34 mutations alter histone H3K36 and H3K27 methylation in Cis. J. Mol. Biol. 430, 1562–1565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Jain, S. U. et al. Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Proc. Natl Acad. Sci. USA 117, 27354–27364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Udugama, M. et al. Mutations inhibiting KDM4B drive ALT activation in ATRX-mutated glioblastomas. Nat. Commun. 12, 2584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Haase, S. et al. H3.3-G34 mutations impair DNA repair and promote cGAS/STING-mediated immune responses in pediatric high-grade glioma models. J. Clin. Invest. 132, e154229 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Behjati, S. et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 45, 1479–1482 (2013).

    Article  CAS  PubMed  Google Scholar 

  263. Koelsche, C. et al. Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases. Clin. Sarcoma Res. 7, 9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Fang, D. et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352, 1344–1348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Berta, D. G. et al. Deficient H2A.Z deposition is associated with genesis of uterine leiomyoma. Nature 596, 398–403 (2021). This study identifies germline and somatic mutations in SRCAP complex members in women with uterine leiomyomas, which cause defective deposition of H2A.Z to bivalent TSSs and trigger the upregulation of expression of developmental transcription factors.

    Article  CAS  PubMed  Google Scholar 

  266. Valimaki, N. et al. Inherited mutations affecting the SRCAP complex are central in moderate-penetrance predisposition to uterine leiomyomas. Am. J. Hum. Genet. 110, 460–474 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Han, S. et al. GAS41 mediates proliferation and GEM chemoresistance via H2A.Z.2 and Notch1 in pancreatic cancer. Cell Oncol. 45, 429–446 (2022).

    Article  CAS  Google Scholar 

  268. Hsu, C. C. et al. Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer. Genes Dev. 32, 58–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Nikolic, A. et al. macroH2A2 antagonizes epigenetic programs of stemness in glioblastoma. Nat. Commun. 14, 3062 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Hsu, C. J., Meers, O., Buschbeck, M. & Heidel, F. H. The role of macroH2A histone variants in cancer. Cancers 13, 3003 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Mohammed Ismail, W. et al. MacroH2A histone variants modulate enhancer activity to repress oncogenic programs and cellular reprogramming. Commun. Biol. 6, 215 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Shaban, H. A. & Gasser, S. M. Dynamic 3D genome reorganization during senescence: defining cell states through chromatin. Cell Death differ. https://doi.org/10.1038/s41418-023-01197-y (2023).

    Article  PubMed  Google Scholar 

  273. Chen, H. et al. MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol. Cell 59, 719–731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Filipescu, D. et al. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat. Cell Biol. 25, 1332–1345 (2023). This study demonstrates a tumour-suppressive role for macroH2As by preventing inappropriate enhancer–promoter looping and the activation of inflammatory genes, which is characteristic of a pro-tumour microenvironment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Sun, D. et al. MacroH2A impedes metastatic growth by enforcing a discrete dormancy program in disseminated cancer cells. Sci. Adv. 8, eabo0876 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Chew, G. L. et al. Short H2A histone variants are expressed in cancer. Nat. Commun. 12, 490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Jiang, X. et al. H2A.B is a cancer/testis factor involved in the activation of ribosome biogenesis in Hodgkin lymphoma. EMBO Rep. 22, e52462 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Wu, S. et al. Pyruvate facilitates FACT-mediated gammaH2AX loading to chromatin and promotes the radiation resistance of glioblastoma. Adv. Sci. 9, e2104055 (2022). This study shows that pyruvate regulates the loading of γH2A.X to enhance DNA repair, which promotes the resistance of glioma cells to radiation therapy.

    Article  Google Scholar 

  279. Liu, Y. et al. Histone H2AX promotes metastatic progression by preserving glycolysis via hexokinase-2. Sci. Rep. 12, 3758 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Liu, X., Wang, H. & Zhao, G. Centromere protein A goes far beyond the centromere in cancers. Mol. Cancer Res. 20, 3–10 (2022).

    Article  CAS  PubMed  Google Scholar 

  281. Serafim, R. B. et al. HJURP is recruited to double-strand break sites and facilitates DNA repair by promoting chromatin reorganization. Oncogene 43, 804–820 (2024).

    Article  CAS  PubMed  Google Scholar 

  282. Wang, Q. et al. CENPA promotes clear cell renal cell carcinoma progression and metastasis via Wnt/beta-catenin signaling pathway. J. Transl. Med. 19, 417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Athwal, R. K. et al. CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenetics Chromatin 8, 2 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Belotti, E. et al. H2A.Z is dispensable for both basal and activated transcription in post-mitotic mouse muscles. Nucleic Acids Res. 48, 4601–4613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Singh, R., Bassett, E., Chakravarti, A. & Parthun, M. R. Replication-dependent histone isoforms: a new source of complexity in chromatin structure and function. Nucleic Acids Res. 46, 8665–8678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Chakravarthy, S. et al. Structural characterization of the histone variant macroH2A. Mol. Cell Biol. 25, 7616–7624 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Muthurajan, U. M., McBryant, S. J., Lu, X., Hansen, J. C. & Luger, K. The linker region of macroH2A promotes self-association of nucleosomal arrays. J. Biol. Chem. 286, 23852–23864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat. Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  289. Zhou, M. et al. Structural basis of nucleosome dynamics modulation by histone variants H2A.B and H2A.Z.2.2. EMBO J. 40, e105907 (2021).

    Article  CAS  PubMed  Google Scholar 

  290. Zhou, J., Fan, J. Y., Rangasamy, D. & Tremethick, D. J. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat. Struct. Mol. Biol. 14, 1070–1076 (2007).

    Article  CAS  PubMed  Google Scholar 

  291. Tachiwana, H. et al. Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr. D. Biol. Crystallogr. 67, 578–583 (2011).

    Article  CAS  PubMed  Google Scholar 

  292. Horikoshi, N., Arimura, Y., Taguchi, H. & Kurumizaka, H. Crystal structures of heterotypic nucleosomes containing histones H2A.Z and H2A. Open Biol. 6, 160127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Panchenko, T. et al. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini. Proc. Natl Acad. Sci. USA 108, 16588–16593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Alabert, C. et al. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes. Dev. 29, 585–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Flury, V. et al. Recycling of modified H2A–H2B provides short-term memory of chromatin states. Cell 186, 1050–1065.e19 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Gonzalez, I., Molliex, A. & Navarro, P. Mitotic memories of gene activity. Curr. Opin. Cell Biol. 69, 41–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  298. Chakravarthy, S., Patel, A. & Bowman, G. D. The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome. Nucleic Acids Res. 40, 8285–8295 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Yang, D. & Ioshikhes, I. Drosophila H2A and H2A.Z nucleosome sequences reveal different nucleosome positioning sequence patterns. J. Comput. Biol. 24, 289–298 (2017).

    Article  CAS  PubMed  Google Scholar 

  300. Kurumizaka, H., Kujirai, T. & Takizawa, Y. Contributions of histone variants in nucleosome structure and function. J. Mol. Biol. 433, 166678 (2021).

    Article  CAS  PubMed  Google Scholar 

  301. Boopathi, R. et al. Phase-plate cryo-EM structure of the Widom 601 CENP-A nucleosome core particle reveals differential flexibility of the DNA ends. Nucleic Acids Res. 48, 5735–5748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Yu, J. et al. Structural insights into histone exchange by human SRCAP complex. Cell Discov. 10, 15 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Klein, B. J. et al. Yaf9 subunit of the NuA4 and SWR1 complexes targets histone H3K27ac through its YEATS domain. Nucleic Acids Res. 46, 421–430 (2018).

    Article  CAS  PubMed  Google Scholar 

  304. Hainer, S. J. & Fazzio, T. G. Regulation of nucleosome architecture and factor binding revealed by nuclease footprinting of the ESC genome. Cell Rep. 13, 61–69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Yu, H. et al. INO80 promotes H2A.Z occupancy to regulate cell fate transition in pluripotent stem cells. Nucleic Acids Res. 49, 6739–6755 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Mao, Z. et al. Anp32e, a higher eukaryotic histone chaperone directs preferential recognition for H2A.Z. Cell Res. 24, 389–399 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Murphy, K. E., Meng, F. W., Makowski, C. E. & Murphy, P. J. Genome-wide chromatin accessibility is restricted by ANP32E. Nat. Commun. 11, 5063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Obri, A. et al. ANP32E is a histone chaperone that removes H2A.Z from chromatin. Nature 505, 648–653 (2014).

    Article  CAS  PubMed  Google Scholar 

  309. Yildirim, O. et al. A system for genome-wide histone variant dynamics in ES cells reveals dynamic MacroH2A2 replacement at promoters. PLoS Genet. 10, e1004515 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Ni, K. & Muegge, K. LSH catalyzes ATP-driven exchange of histone variants macroH2A1 and macroH2A2. Nucleic Acids Res. 49, 8024–8036 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Mandemaker, I. K. et al. The histone chaperone ANP32B regulates chromatin incorporation of the atypical human histone variant macroH2A. Cell Rep. 42, 113300 (2023).

    Article  CAS  PubMed  Google Scholar 

  312. Sun, Z. et al. Transcription-associated histone pruning demarcates macroH2A chromatin domains. Nat. Struct. Mol. Biol. 25, 958–970 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Piquet, S. et al. The histone chaperone FACT coordinates H2A.X-dependent signaling and repair of DNA damage. Mol. Cell 72, 888–901.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Griesbach, E., Schlackow, M., Marzluff, W. F. & Proudfoot, N. J. Dual RNA 3′-end processing of H2A.X messenger RNA maintains DNA damage repair throughout the cell cycle. Nat. Commun. 12, 359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Choi, J., Kim, T. & Cho, E. J. HIRA vs. DAXX: the two axes shaping the histone H3.3 landscape. Exp. Mol. Med. 56, 251–263 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Zhang, H. et al. RPA interacts with HIRA and regulates H3.3 deposition at gene regulatory elements in mammalian cells. Mol. Cell 65, 272–284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Majumder, A., Syed, K. M., Joseph, S., Scambler, P. J. & Dutta, D. Histone chaperone HIRA in regulation of transcription factor RUNX1. J. Biol. Chem. 290, 13053–13063 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Olivieri, D. et al. The BTB-domain transcription factor ZBTB2 recruits chromatin remodelers and a histone chaperone during the exit from pluripotency. J. Biol. Chem. 297, 100947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Pchelintsev, N. A. et al. Placing the HIRA histone chaperone complex in the chromatin landscape. Cell Rep. 3, 1012–1019 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Truch, J. et al. The chromatin remodeller ATRX facilitates diverse nuclear processes, in a stochastic manner, in both heterochromatin and euchromatin. Nat. Commun. 13, 3485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Nechemia-Arbely, Y. et al. DNA replication acts as an error correction mechanism to maintain centromere identity by restricting CENP-A to centromeres. Nat. Cell Biol. 21, 743–754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. Cesare for his critical feedback. They thank the researchers who have made valuable contributions to the dynamic and evolving field of histone variants. This work was supported by the Australian Research Council, DP230102695 (L.H.W.), DP230101039 (D.J.T.); and the National Health and Medical Research Council, APP2012764 (L.H.W.), APP1182759 (D.J.T.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David J. Tremethick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Marcus Buschbeck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

ATP-dependent remodelling complexes

These complexes use the energy derived from ATP to remodel and disrupt the structure of chromatin and thereby regulate access to DNA to gene regulatory proteins and histone-modifying enzymes.

Bivalent nucleosome

A nucleosome that is characterized by the simultaneous presence of two distinct histone modifications that have opposing roles in gene regulation: H3K4me3 (active) and H3K27me3 (inactive).

Cohesin-mediated loop extrusion

The cohesin complex extrudes or ‘loops out’ a segment of chromatin as it moves along DNA. The generation of chromatin loops brings together regions of DNA that are far apart.

Inner kinetochore proteins

A group of proteins that form a structure on the centromere that is required for the attachment spindles. This is crucial for the proper segregation of chromosomes during cell division.

Intracisternal A-particle endogenous retroviral elements

Retrotransposons that are significant components of the mouse genome and contribute to both genome evolution and genomic instability and disease.

Nuclear lamins

Structural proteins found at the nuclear periphery and the nucleoplasm, which have a major influence on genome organization, nuclear morphology and gene regulation.

PARylation

A post-translational modification (poly(ADP-ribosyl)ation) of proteins whereby ADP-ribose polymers are attached to target proteins mediated by poly(ADP-ribose) polymerases (PARPs).

Phase separation

A physical process in which proteins with certain properties separate into distinct liquid-like or even solid-like phases believed to be important for the formation of functional domains within a cell.

Pioneer transcription factors

A special class of transcription factors that can bind to nucleosomal DNA and initiate the process of chromatin opening, thereby enabling the recruitment of other chromatin regulators required for gene activation.

R-loops

Three-stranded nucleic acid structures that form when an RNA molecule displaces one of the DNA strands in a DNA duplex, resulting in an RNA–DNA hybrid and a displaced single-stranded DNA region.

Topologically associating domain

(TAD). Self-interacting region of the genome in which DNA sequences within a TAD tend to physically interact with each other more frequently than with sequences outside the TAD, which brings together regulatory elements.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, L.H., Tremethick, D.J. Multifunctional histone variants in genome function. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00759-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00759-1

Search

Quick links