Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Real-time single-molecule imaging of transcriptional regulatory networks in living cells

Abstract

Gene regulatory networks drive the specific transcriptional programmes responsible for the diversification of cell types during the development of multicellular organisms. Although our knowledge of the genes involved in these dynamic networks has expanded rapidly, our understanding of how transcription is spatiotemporally regulated at the molecular level over a wide range of timescales in the small volume of the nucleus remains limited. Over the past few decades, advances in the field of single-molecule fluorescence imaging have enabled real-time behaviours of individual transcriptional components to be measured in living cells and organisms. These efforts are now shedding light on the dynamic mechanisms of transcription, revealing not only the temporal rules but also the spatial coordination of underlying molecular interactions during various biological events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of imaging technologies for studying transcriptional dynamics.
Fig. 2: Live cell RNA imaging technologies.
Fig. 3: Single-particle tracking.
Fig. 4: Basic principles of real-time histone PTM imaging.
Fig. 5: Visualizing XCI using single-molecule imaging.

Similar content being viewed by others

References

  1. Semrau, S. & van Oudenaarden, A. Studying lineage decision-making in vitro: emerging concepts and novel tools. Annu. Rev. Cell Dev. Biol. 31, 317–345 (2015).

    CAS  PubMed  Google Scholar 

  2. Hager, G. L., McNally, J. G. & Misteli, T. Transcription dynamics. Mol. Cell 35, 741–753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Voss, T. C. & Hager, G. L. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15, 69–81 (2014).

    CAS  PubMed  Google Scholar 

  4. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  6. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    CAS  PubMed  Google Scholar 

  7. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  9. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    CAS  ADS  PubMed  Google Scholar 

  10. VanHorn, S. & Morris, S. A. Next-generation lineage tracing and fate mapping to interrogate development. Dev. Cell 56, 7–21 (2021).

    CAS  PubMed  Google Scholar 

  11. Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 24, 584–594 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhaduri, A. et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200–204 (2021).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  13. Di Bella, D. J. et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595, 554–559 (2021).

    ADS  PubMed  PubMed Central  Google Scholar 

  14. Wagh, K., Stavreva, D. A., Upadhyaya, A. & Hager, G. L. Transcription factor dynamics: one molecule at a time. Annu. Rev. Cell Dev. Biol. 39, 277–305 (2023).

    CAS  PubMed  Google Scholar 

  15. Dahal, L., Walther, N., Tjian, R., Darzacq, X. & Graham, T. G. W. Single-molecule tracking (SMT): a window into live-cell transcription biochemistry. Biochem. Soc. Trans. 51, 557–569 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia, H. G., Berrocal, A., Kim, Y. J., Martini, G. & Zhao, J. Lighting up the central dogma for predictive developmental biology. Curr. Top. Dev. Biol. 137, 1–35 (2020).

    CAS  PubMed  Google Scholar 

  17. Sato, H., Das, S., Singer, R. H. & Vera, M. Imaging of DNA and RNA in living eukaryotic cells to reveal spatiotemporal dynamics of gene expression. Annu. Rev. Biochem. 89, 159–187 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pichon, X., Robert, M. C., Bertrand, E., Singer, R. H. & Tutucci, E. New generations of MS2 variants and MCP fusions to detect single mRNAs in living eukaryotic cells. Methods Mol. Biol. 2166, 121–144 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Le, P., Ahmed, N. & Yeo, G. W. Illuminating RNA biology through imaging. Nat. Cell Biol. 24, 815–824 (2022).

    CAS  PubMed  Google Scholar 

  20. Johansson, H. E. et al. A thermodynamic analysis of the sequence-specific binding of RNA by bacteriophage MS2 coat protein. Proc. Natl Acad. Sci. USA 95, 9244–9249 (1998).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  21. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  22. Chubb, J. R., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lionnet, T. et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8, 165–170 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Garcia, H. G., Tikhonov, M., Lin, A. & Gregor, T. Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol. 23, 2140–2145 (2013).

    CAS  PubMed  Google Scholar 

  25. Campbell, P. D., Chao, J. A., Singer, R. H. & Marlow, F. L. Dynamic visualization of transcription and RNA subcellular localization in zebrafish. Development 142, 1368–1374 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, C., Shin, H. & Kimble, J. Dynamics of notch-dependent transcriptional bursting in its native context. Dev. Cell 50, 426–435.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A. & Singer, R. H. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332, 475–478 (2011). This study analyses the detailed kinetics of the transcription cycle, including initiation, elongation and termination. It provides direct evidence that search behaviours of TFs mechanistically account for transcriptional bursting kinetics.

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  28. Hocine, S., Raymond, P., Zenklusen, D., Chao, J. A. & Singer, R. H. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat. Methods 10, 119–121 (2013).

    CAS  PubMed  Google Scholar 

  29. Bothma, J. P. et al. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. Proc. Natl Acad. Sci. USA 111, 10598–10603 (2014).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  30. Lucas, T. et al. Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr. Biol. 23, 2135–2139 (2013).

    CAS  PubMed  Google Scholar 

  31. Zoller, B., Little, S. C. & Gregor, T. Diverse spatial expression patterns emerge from unified kinetics of transcriptional bursting. Cell 175, 835–847.e25 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fiers, W. et al. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260, 500–507 (1976).

    CAS  ADS  PubMed  Google Scholar 

  34. Valegard, K., Liljas, L., Fridborg, K. & Unge, T. The three-dimensional structure of the bacterial virus MS2. Nature 345, 36–41 (1990).

    CAS  ADS  PubMed  Google Scholar 

  35. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    CAS  PubMed  Google Scholar 

  36. Chao, J. A., Patskovsky, Y., Almo, S. C. & Singer, R. H. Structural basis for the coevolution of a viral RNA-protein complex. Nat. Struct. Mol. Biol. 15, 103–105 (2008).

    CAS  PubMed  Google Scholar 

  37. Chen, J. et al. High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc. Natl Acad. Sci. USA 106, 13535–13540 (2009).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  38. Lange, S. et al. Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic 9, 1256–1267 (2008).

    CAS  PubMed  Google Scholar 

  39. Daigle, N. & Ellenberg, J. LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat. Methods 4, 633–636 (2007).

    CAS  PubMed  Google Scholar 

  40. Takizawa, P. A. & Vale, R. D. The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc. Natl Acad. Sci. USA 97, 5273–5278 (2000).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  41. Brodsky, A. S. & Silver, P. A. Identifying proteins that affect mRNA localization in living cells. Methods 26, 151–155 (2002).

    CAS  PubMed  Google Scholar 

  42. Nguyen, D. H., DeFina, S. C., Fink, W. H. & Dieckmann, T. Binding to an RNA aptamer changes the charge distribution and conformation of malachite green. J. Am. Chem. Soc. 124, 15081–15084 (2002).

    CAS  PubMed  Google Scholar 

  43. Babendure, J. R., Adams, S. R. & Tsien, R. Y. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125, 14716–14717 (2003).

    CAS  PubMed  Google Scholar 

  44. Bouhedda, F., Autour, A. & Ryckelynck, M. Light-up RNA aptamers and their cognate fluorogens: from their development to their applications. Int. J. Mol. Sci. 19, 44 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Zhang, J. et al. Tandem spinach array for mRNA imaging in living bacterial cells. Sci. Rep. 5, 17295 (2015).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  46. Cawte, A. D., Unrau, P. J. & Rueda, D. S. Live cell imaging of single RNA molecules with fluorogenic Mango II arrays. Nat. Commun. 11, 1283 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  47. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  48. Strack, R. L., Disney, M. D. & Jaffrey, S. R. A superfolding spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods 10, 1219–1224 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136, 16299–16308 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Song, W. et al. Imaging RNA polymerase III transcription using a photostable RNA–fluorophore complex. Nat. Chem. Biol. 13, 1187–1194 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Autour, A. et al. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells. Nat. Commun. 9, 656 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  52. Garcia, J. F. & Parker, R. MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system. RNA 21, 1393–1395 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Haimovich, G. et al. Use of the MS2 aptamer and coat protein for RNA localization in yeast: a response to MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system. RNA 22, 660–666 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Garcia, J. F. & Parker, R. Ubiquitous accumulation of 3′ mRNA decay fragments in Saccharomyces cerevisiae mRNAs with chromosomally integrated MS2 arrays. RNA 22, 657–659 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Heinrich, S., Sidler, C. L., Azzalin, C. M. & Weis, K. Stem-loop RNA labeling can affect nuclear and cytoplasmic mRNA processing. RNA 23, 134–141 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, W., Maekiniemi, A., Sato, H., Osman, C. & Singer, R. H. An improved imaging system that corrects MS2-induced RNA destabilization. Nat. Methods 19, 1558–1562 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, B. et al. Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev. 29, 876–886 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tutucci, E. et al. An improved MS2 system for accurate reporting of the mRNA life cycle. Nat. Methods 15, 81–89 (2018).

    CAS  PubMed  Google Scholar 

  59. Tyagi, S. & Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    CAS  PubMed  Google Scholar 

  60. Bratu, D. P., Cha, B. J., Mhlanga, M. M., Kramer, F. R. & Tyagi, S. Visualizing the distribution and transport of mRNAs in living cells. Proc. Natl Acad. Sci. USA 100, 13308–13313 (2003).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  61. Vargas, D. Y., Raj, A., Marras, S. A., Kramer, F. R. & Tyagi, S. Mechanism of mRNA transport in the nucleus. Proc. Natl Acad. Sci. USA 102, 17008–17013 (2005).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  62. Turner-Bridger, B. et al. Single-molecule analysis of endogenous beta-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proc. Natl Acad. Sci. USA 115, E9697–E9706 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chan, S. H. et al. Brd4 and P300 confer transcriptional competency during zygotic genome activation. Dev. Cell 49, 867–881.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nelles, D. A. et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165, 488–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, S., Su, J. H., Zhang, F. & Zhuang, X. An RNA-aptamer-based two-color CRISPR labeling system. Sci. Rep. 6, 26857 (2016).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  66. Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280–284 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  67. Yang, L. Z. et al. Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol. Cell 76, 981–997.e7 (2019).

    CAS  PubMed  Google Scholar 

  68. Wang, H. et al. CRISPR-mediated live imaging of genome editing and transcription. Science 365, 1301–1305 (2019).

    CAS  ADS  PubMed  Google Scholar 

  69. Colognori, D., Trinidad, M. & Doudna, J. A. Precise transcript targeting by CRISPR–Csm complexes. Nat. Biotechnol. 41, 1256–1264 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, H. & Larson, D. R. What have single-molecule studies taught us about gene expression? Genes Dev. 30, 1796–1810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, Z., Lavis, L. D. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015).

    CAS  PubMed  Google Scholar 

  72. English, B. P. et al. Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc. Natl Acad. Sci. USA 108, E365–E373 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hansen, A. S. et al. Robust model-based analysis of single-particle tracking experiments with Spot-On. eLife 7, e33125 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    CAS  PubMed  Google Scholar 

  75. Lukinavicius, G. & Johnsson, K. Switchable fluorophores for protein labeling in living cells. Curr. Opin. Chem. Biol. 15, 768–774 (2011).

    CAS  PubMed  Google Scholar 

  76. Wang, L., Frei, M. S., Salim, A. & Johnsson, K. Small-molecule fluorescent probes for live-cell super-resolution microscopy. J. Am. Chem. Soc. 141, 2770–2781 (2019).

    CAS  PubMed  Google Scholar 

  77. Grimm, J. B. & Lavis, L. D. Caveat fluorophore: an insiders’ guide to small-molecule fluorescent labels. Nat. Methods 19, 149–158 (2022).

    CAS  PubMed  Google Scholar 

  78. Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Shen, H. et al. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117, 7331–7376 (2017).

    CAS  PubMed  Google Scholar 

  80. Speil, J. et al. Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus. Biophys. J. 101, 2592–2600 (2011). This study demonstrates that the motion of the STAT1 TF in the nucleus consists of several modes, characterized by slow, intermediate and fast diffusion. The slowest diffusing fraction is shown to represent chromatin-bound TFs as the residence time of that fraction robustly increases upon activation.

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  81. Mazza, D., Abernathy, A., Golob, N., Morisaki, T. & McNally, J. G. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40, e119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gebhardt, J. C. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10, 421–426 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Abrahamsson, S. et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 10, 60–63 (2013).

    CAS  PubMed  Google Scholar 

  84. Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274–1285 (2014). This study characterizes the temporal organization of the enhancer-binding pluripotency regulators (SOX2 and OCT4) in living ESCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Izeddin, I. et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3, e02230 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Xie, X. S., Yu, J. & Yang, W. Y. Living cells as test tubes. Science 312, 228–230 (2006).

    CAS  ADS  PubMed  Google Scholar 

  87. Elf, J., Li, G. W. & Xie, X. S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  88. Schwille, P. Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem. Biophys. 34, 383–408 (2001).

    CAS  PubMed  Google Scholar 

  89. Digman, M. A. & Gratton, E. Lessons in fluctuation correlation spectroscopy. Annu. Rev. Phys. Chem. 62, 645–668 (2011).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  90. Elson, E. L. Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101, 2855–2870 (2011).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  91. Wu, B., Buxbaum, A. R., Katz, Z. B., Yoon, Y. J. & Singer, R. H. Quantifying protein-mRNA interactions in single live cells. Cell 162, 211–220 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, S. A., Heinze, K. G., Bacia, K., Waxham, M. N. & Schwille, P. Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys. J. 88, 4319–4336 (2005).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  93. Bacia, K. & Schwille, P. Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat. Protoc. 2, 2842–2856 (2007).

    CAS  PubMed  Google Scholar 

  94. Gandin, V. et al. Cap-dependent translation initiation monitored in living cells. Nat. Commun. 13, 6558 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  95. Michelman-Ribeiro, A. et al. Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy. Biophys. J. 97, 337–346 (2009).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  96. Reisser, M. et al. Inferring quantity and qualities of superimposed reaction rates from single molecule survival time distributions. Sci. Rep. 10, 1758 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  97. Ball, D. A. et al. Single molecule tracking of Ace1p in Saccharomyces cerevisiae defines a characteristic residence time for non-specific interactions of transcription factors with chromatin. Nucleic Acids Res. 44, e160 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. Loffreda, A. et al. Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nat. Commun. 8, 313 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  99. Reisser, M. et al. Single-molecule imaging correlates decreasing nuclear volume with increasing TF–chromatin associations during zebrafish development. Nat. Commun. 9, 5218 (2018).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  100. Hipp, L. et al. Single-molecule imaging of the transcription factor SRF reveals prolonged chromatin-binding kinetics upon cell stimulation. Proc. Natl Acad. Sci. USA 116, 880–889 (2019).

    CAS  ADS  PubMed  Google Scholar 

  101. Nguyen, V. Q. et al. Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. Mol. Cell 81, 3560–3575.e6 (2021). This study characterizes the molecular interplay involved in the formation of PIC in yeast by using SPT to detect general TFs, Mediator and Pol II.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, Z. et al. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis. Genes Dev. 30, 2106–2118 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018). This study characterizes the organization and dynamics of the Mediator coactivator and Pol II in living ESCs using light sheet imaging.

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  104. Millan-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications — cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).

    CAS  PubMed  Google Scholar 

  105. Hayashi-Takanaka, Y. et al. Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res. 39, 6475–6488 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sato, Y. et al. Genetically encoded system to track histone modification in vivo. Sci. Rep. 3, 2436 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003).

    CAS  PubMed  Google Scholar 

  108. Kerppola, T. K. Visualization of molecular interactions by fluorescence complementation. Nat. Rev. Mol. Cell Biol. 7, 449–456 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Mazzocca, M., Fillot, T., Loffreda, A., Gnani, D. & Mazza, D. The needle and the haystack: single molecule tracking to probe the transcription factor search in eukaryotes. Biochem. Soc. Trans. 49, 1121–1132 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Normanno, D. et al. Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher. Nat. Commun. 6, 7357 (2015).

    ADS  PubMed  Google Scholar 

  111. Darzacq, X. & Tjian, R. Weak multivalent biomolecular interactions: a strength versus numbers tug of war with implications for phase partitioning. RNA 28, 48–51 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Coulon, A., Chow, C. C., Singer, R. H. & Larson, D. R. Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nat. Rev. Genet. 14, 572–584 (2013).

    CAS  PubMed  Google Scholar 

  113. Rhee, H. S. & Pugh, B. F. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483, 295–301 (2012).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  114. Sainsbury, S., Bernecky, C. & Cramer, P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 129–143 (2015).

    CAS  PubMed  Google Scholar 

  115. Dultz, E. et al. Quantitative imaging of chromatin decompaction in living cells. Mol. Biol. Cell 29, 1763–1777 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim, J. M. et al. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 10, e69387 (2021).

    PubMed  PubMed Central  Google Scholar 

  117. Kenworthy, C. A. et al. Bromodomains regulate dynamic targeting of the PBAF chromatin-remodeling complex to chromatin hubs. Biophys. J. 121, 1738–1752 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  118. Biswas, J., Li, W., Singer, R. H. & Coleman, R. A. Imaging organization of RNA processing within the nucleus. Cold Spring Harb. Perspect. Biol. 13, a039453 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tantale, K. et al. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 7, 12248 (2016).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  120. Liu, J. et al. Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage. PLoS Comput. Biol. 17, e1008999 (2021).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  121. Cho, W. K. et al. RNA Polymerase II cluster dynamics predict mRNA output in living cells. eLife 5, e13617 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Donovan, B. T. et al. Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. EMBO J. 38, e100809 (2019).

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  123. Li, J. et al. Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells. Cell 178, 491–506.e28 (2019). In this study, target-locked 3D stimulated emission depletion is used to enable simultaneous single-molecule detection of Pol II assembly and nascent mRNA production at the endogenous OCT4 and Nanog loci in living mESCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Popp, A. P., Hettich, J. & Gebhardt, J. C. M. Altering transcription factor binding reveals comprehensive transcriptional kinetics of a basic gene. Nucleic Acids Res. 49, 6249–6266 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  128. Cisse, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667 (2013).

    CAS  ADS  PubMed  Google Scholar 

  129. Liu, Z. et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3, e04236 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Dufourt, J. et al. Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs. Nat. Commun. 9, 5194 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  131. Chen, H. et al. Dynamic interplay between enhancer–promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kawasaki, K. & Fukaya, T. Functional coordination between transcription factor clustering and gene activity. Mol. Cell 83, 1605–1622.e9 (2023).

    CAS  PubMed  Google Scholar 

  134. Lim, B., Heist, T., Levine, M. & Fukaya, T. Visualization of transvection in living Drosophila embryos. Mol. Cell 70, 287–296.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Levo, M. et al. Transcriptional coupling of distant regulatory genes in living embryos. Nature 605, 754–760 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  136. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  137. Benabdallah, N. S. et al. Decreased enhancer-promoter proximity accompanying enhancer activation. Mol. Cell 76, 473–484.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zuin, J. et al. Nonlinear control of transcription through enhancer-promoter interactions. Nature 604, 571–577 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  139. Espinola, S. M. et al. Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development. Nat. Genet. 53, 477–486 (2021).

    CAS  PubMed  Google Scholar 

  140. Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 8, e41769 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  142. Hafner, A. & Boettiger, A. The spatial organization of transcriptional control. Nat. Rev. Genet. 24, 53–68 (2023).

    CAS  PubMed  Google Scholar 

  143. Brandao, H. B., Gabriele, M. & Hansen, A. S. Tracking and interpreting long-range chromatin interactions with super-resolution live-cell imaging. Curr. Opin. Cell Biol. 70, 18–26 (2021).

    CAS  PubMed  Google Scholar 

  144. Palacio, M. & Taatjes, D. J. Merging established mechanisms with new insights: condensates, hubs, and the regulation of RNA polymerase II transcription. J. Mol. Biol. 434, 167216 (2022).

    CAS  PubMed  Google Scholar 

  145. Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

    CAS  PubMed  Google Scholar 

  146. Nagashima, R. et al. Single nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II. J. Cell Biol. 218, 1511–1530 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Mir, M. et al. Dense Bicoid hubs accentuate binding along the morphogen gradient. Genes Dev. 31, 1784–1794 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tsai, A. et al. Nuclear microenvironments modulate transcription from low-affinity enhancers. eLife 6, e28975 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Uchino, S. et al. Live imaging of transcription sites using an elongating RNA polymerase II-specific probe. J. Cell Biol. 221, e202104134 (2022).

    CAS  PubMed  Google Scholar 

  150. Forero-Quintero, L. S. et al. Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene. Nat. Commun. 12, 3158 (2021).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  151. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    CAS  PubMed  Google Scholar 

  152. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6, e25776 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. Nora, E. P. et al. Molecular basis of CTCF binding polarity in genome folding. Nat. Commun. 11, 5612 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  154. Hansen, A. S., Amitai, A., Cattoglio, C., Tjian, R. & Darzacq, X. Guided nuclear exploration increases CTCF target search efficiency. Nat. Chem. Biol. 16, 257–266 (2020). This study characterizes the cluster formation and binding kinetics of CTCF.

    CAS  PubMed  Google Scholar 

  155. Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022). In this study, the chromatin looping within the FBN2 TAD in mESCs is directly visualized using super-resolution live-cell imaging, and the dynamics of the loops are quantified.

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  156. Mach, P. et al. Cohesin and CTCF control the dynamics of chromosome folding. Nat. Genet. 54, 1907–1918 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Luan, J. et al. Distinct properties and functions of CTCF revealed by a rapidly inducible degron system. Cell Rep. 34, 108783 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Xie, L. et al. 3D ATAC–PALM: super-resolution imaging of the accessible genome. Nat. Methods 17, 430–436 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Xie, L. et al. BRD2 compartmentalizes the accessible genome. Nat. Genet. 54, 481–491 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kent, S. et al. Phase-separated transcriptional condensates accelerate target-search process revealed by live-cell single-molecule imaging. Cell Rep. 33, 108248 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Henikoff, S. & Shilatifard, A. Histone modification: cause or cog. Trends Genet. 27, 389–396 (2011).

    CAS  PubMed  Google Scholar 

  162. Lee, J. S., Smith, E. & Shilatifard, A. The language of histone crosstalk. Cell 142, 682–685 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Stasevich, T. J. et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516, 272–275 (2014). This study characterizes the temporal order of histone acetylation deposition and transcriptional activation at single specific loci.

    CAS  ADS  PubMed  Google Scholar 

  164. Sato, Y. et al. Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis. Development 146, dev179127 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, T., Zhang, Z., Dong, Q., Xiong, J. & Zhu, B. Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells. Genome Biol. 21, 45 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157, 1445–1459 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Youmans, D. T., Schmidt, J. C. & Cech, T. R. Live-cell imaging reveals the dynamics of PRC2 and recruitment to chromatin by SUZ12-associated subunits. Genes Dev. 32, 794–805 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Tatavosian, R. et al. Live-cell single-molecule dynamics of PcG proteins imposed by the DIPG H3.3K27M mutation. Nat. Commun. 9, 2080 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  169. Hojfeldt, J. W. et al. Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat. Struct. Mol. Biol. 25, 225–232 (2018).

    PubMed  PubMed Central  Google Scholar 

  170. Reveron-Gomez, N. et al. Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol. Cell 72, 239–249.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Laugesen, A., Hojfeldt, J. W. & Helin, K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74, 8–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Huseyin, M. K. & Klose, R. J. Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Nat. Commun. 12, 887 (2021).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  173. Zhen, C. Y. et al. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. eLife 5, e17667 (2016).

    PubMed  PubMed Central  Google Scholar 

  174. Biswas, S. et al. HP1 oligomerization compensates for low-affinity H3K9me recognition and provides a tunable mechanism for heterochromatin-specific localization. Sci. Adv. 8, eabk0793 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).

    CAS  PubMed  Google Scholar 

  176. Masui, O. et al. Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell 145, 447–458 (2011). This study identifies the temporal interaction between paired homologous X chromosomes, suggesting the mechanism of choice of the X chromosome to be silenced.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Yoshimura, H. Live cell imaging of endogenous RNAs using pumilio homology domain mutants: principles and applications. Biochemistry 57, 200–208 (2018).

    CAS  PubMed  Google Scholar 

  178. Ng, K. et al. A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells. Mol. Biol. Cell 22, 2634–2645 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Ha, N. et al. Live-cell imaging and functional dissection of xist RNA reveal mechanisms of X chromosome inactivation and reactivation. iScience 8, 1–14 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  180. Tjalsma, S. J. D. et al. H4K20me1 and H3K27me3 are concurrently loaded onto the inactive X chromosome but dispensable for inducing gene silencing. EMBO Rep. 22, e51989 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Rodermund, L. et al. Time-resolved structured illumination microscopy reveals key principles of Xist RNA spreading. Science 372, eabe7500 (2021). This study uses RNA-SPLIT to enable time-resolved analysis of Xist RNA molecules at a super-resolution, allowing for pulse–chase detection of single-molecule Xist RNA during XCI.

    CAS  PubMed  Google Scholar 

  182. Dolgosheina, E. V. et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9, 2412–2420 (2014).

    CAS  PubMed  Google Scholar 

  183. Hayashi-Takanaka, Y., Yamagata, K., Nozaki, N. & Kimura, H. Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. J. Cell Biol. 187, 781–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Rajan, M. et al. Generation of an alpaca-derived nanobody recognizing γ-H2AX. FEBS Open Bio 5, 779–788 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Sato, Y. et al. A genetically encoded probe for live-cell imaging of H4K20 monomethylation. J. Mol. Biol. 428, 3885–3902 (2016).

    CAS  PubMed  Google Scholar 

  186. Suzuki, M. et al. In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration. Genes Cell 21, 358–369 (2016).

    CAS  Google Scholar 

  187. Kurita, K. et al. Live imaging of H3K9 acetylation in plant cells. Sci. Rep. 7, 45894 (2017).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  188. Villasenor, R. et al. ChromID identifies the protein interactome at chromatin marks. Nat. Biotechnol. 38, 728–736 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Delachat, A. M. et al. Engineered multivalent sensors to detect coexisting histone modifications in living stem cells. Cell Chem. Biol. 25, 51–56.e6 (2018).

    CAS  PubMed  Google Scholar 

  190. Dos Santos Passos, C., Choi, Y. S., Snow, C. D., Yao, T. & Cohen, R. E. Design of genetically encoded sensors to detect nucleosome ubiquitination in live cells. J. Cell Biol. 220, e201911130 (2021).

    PubMed  PubMed Central  Google Scholar 

  191. Chung, C. I. et al. Intrabody-based FRET probe to visualize endogenous histone acetylation. Sci. Rep. 9, 10188 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  192. Sasaki, K., Ito, T., Nishino, N., Khochbin, S. & Yoshida, M. Real-time imaging of histone H4 hyperacetylation in living cells. Proc. Natl Acad. Sci. USA 106, 16257–16262 (2009).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  193. Ito, T. et al. Real-time imaging of histone H4K12-specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors. Chem. Biol. 18, 495–507 (2011).

    CAS  PubMed  Google Scholar 

  194. Nakaoka, S., Sasaki, K., Ito, A., Nakao, Y. & Yoshida, M. A genetically encoded FRET probe to detect intranucleosomal histone H3K9 or H3K14 acetylation using BRD4, a BET family member. ACS Chem. Biol. 11, 729–733 (2016).

    CAS  PubMed  Google Scholar 

  195. Peng, Q. et al. Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors. Proc. Natl Acad. Sci. USA 115, E11681–E11690 (2018).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  196. Sasaki, K. et al. Visualization of the dynamic interaction between nucleosomal histone H3K9 tri-methylation and HP1α chromodomain in living cells. Cell Chem. Biol. 29, 1153–1161.e5 (2022).

    CAS  PubMed  Google Scholar 

  197. Lungu, C., Pinter, S., Broche, J., Rathert, P. & Jeltsch, A. Modular fluorescence complementation sensors for live cell detection of epigenetic signals at endogenous genomic sites. Nat. Commun. 8, 649 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  198. Ohmuro-Matsuyama, Y., Kitaguchi, T., Kimura, H. & Ueda, H. Simple fluorogenic cellular assay for histone deacetylase inhibitors based on split-yellow fluorescent protein and intrabodies. ACS Omega 6, 10039–10046 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Vincenz, C. & Kerppola, T. K. Different polycomb group CBX family proteins associate with distinct regions of chromatin using nonhomologous protein sequences. Proc. Natl Acad. Sci. USA 105, 16572–16577 (2008).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. A. Coleman and Z. J. Liu for critical reading and discussion of the manuscript. They also thank members of the Singer laboratory for their comments and discussions. This work has been completed with funding from the US NIH grants R01-NS083085 and 1R35 GM136296 (to R.H.S.), and from the World Premier International Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology, Japan (to H.S).

Author information

Authors and Affiliations

Authors

Contributions

H.S., D.-W.H. and A.M. researched data for the article, H.S. and D.-W.H. contributed substantially to discussion of the content, H.S., D.-W.H. and A.M. wrote the manuscript, all authors edited and reviewed the manuscript before submission and H.S. and A.M. drafted the figures and tables.

Corresponding author

Correspondence to Hanae Sato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Zhe Liu, Xiaojun Ren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, DW., Maekiniemi, A., Singer, R.H. et al. Real-time single-molecule imaging of transcriptional regulatory networks in living cells. Nat Rev Genet 25, 272–285 (2024). https://doi.org/10.1038/s41576-023-00684-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00684-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing