Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational methods for analysing multiscale 3D genome organization

Abstract

Recent progress in whole-genome mapping and imaging technologies has enabled the characterization of the spatial organization and folding of the genome in the nucleus. In parallel, advanced computational methods have been developed to leverage these mapping data to reveal multiscale three-dimensional (3D) genome features and to provide a more complete view of genome structure and its connections to genome functions such as transcription. Here, we discuss how recently developed computational tools, including machine-learning-based methods and integrative structure-modelling frameworks, have led to a systematic, multiscale delineation of the connections among different scales of 3D genome organization, genomic and epigenomic features, functional nuclear components and genome function. However, approaches that more comprehensively integrate a wide variety of genomic and imaging datasets are still needed to uncover the functional role of 3D genome structure in defining cellular phenotypes in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of multiscale three-dimensional genome features and assays.
Fig. 2: Computational methods for identifying three-dimensional genome features from Hi-C data.
Fig. 3: Machine-learning-based approaches for predicting three-dimensional genome features.
Fig. 4: Incorporation of mechanisms of genome folding in modelling approaches.
Fig. 5: Data-driven genome-modelling methods.
Fig. 6: A typical workflow for processing and analysing single-cell Hi-C data.

Similar content being viewed by others

References

  1. Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell 183, 28–45 (2020). This review captures the recent state of the field and defines some of the basic principles that shape genome organization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tolhuis, B., Palstra, R.-J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502–1515.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kind, J. et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134–147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arrastia, M. V. et al. Single-cell measurement of higher-order 3D genome organization with scSPRITE. Nat. Biotechnol. 40, 64–73 (2021).

    Article  PubMed  Google Scholar 

  16. Finn, E. H. & Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 365, eaaw9498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsieh, T.-H. S. et al. Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162, 108–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsieh, T.-H. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013). This study describes the first single-cell Hi-C method and reveals single-cell heterogeneity.

    Article  CAS  PubMed  Google Scholar 

  22. Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659.e26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boninsegna, L. et al. Integrative genome modeling platform reveals essentiality of rare contact events in 3D genome organizations. Nat. Methods 19, 938–946 (2022). This work develops a multimodal data integration approach for generating populations of single-cell 3D genome structures that are predictive for various features of genome organization and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ay, F. & Noble, W. S. Analysis methods for studying the 3D architecture of the genome. Genome Biol. 16, 183 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schmitt, A. D., Hu, M. & Ren, B. Genome-wide mapping and analysis of chromosome architecture. Nat. Rev. Mol. Cell Biol. 17, 743–755 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 43, 1059–1065 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Hu, M. et al. HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics 28, 3131–3133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2012).

    Article  Google Scholar 

  29. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). This work reveals 3D genome subcompartments as well as chromatin-folding patterns from Hi-C maps at 1-kilobase resolution, providing insights into the convergent orientation CTCF binding sites at loop anchors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Di Pierro, M., Cheng, R. R., Lieberman Aiden, E., Wolynes, P. G. & Onuchic, J. N. De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture. Proc. Natl Acad. Sci. USA 114, 12126–12131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xiong, K. & Ma, J. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions. Nat. Commun. 10, 5069 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ashoor, H. et al. Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data. Nat. Commun. 11, 1173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Y. et al. Systematic inference and comparison of multi-scale chromatin sub-compartments connects spatial organization to cell phenotypes. Nat. Commun. 12, 2439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, Y. et al. SPIN reveals genome-wide landscape of nuclear compartmentalization. Genome Biol. 22, 36 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. Nature 535, 575–579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhan, Y. et al. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res. 27, 479–490 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Filippova, D., Patro, R., Duggal, G. & Kingsford, C. Identification of alternative topological domains in chromatin. Algorithms Mol. Biol. 9, 14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Weinreb, C. & Raphael, B. J. Identification of hierarchical chromatin domains. Bioinformatics 32, 1601–1609 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Norton, H. K. et al. Detecting hierarchical genome folding with network modularity. Nat. Methods 15, 119–122 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zufferey, M., Tavernari, D., Oricchio, E. & Ciriello, G. Comparison of computational methods for the identification of topologically associating domains. Genome Biol. 19, 217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Forcato, M. et al. Comparison of computational methods for Hi-C data analysis. Nat. Methods 14, 679–685 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ay, F., Bailey, T. L. & Noble, W. S. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 24, 999–1011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carty, M. et al. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data. Nat. Commun. 8, 15454 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sahin, M. et al. HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP. Nat. Commun. 12, 3366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rowley, M. J. et al. Analysis of Hi-C data using SIP effectively identifies loops in organisms from C. elegans to mammals. Genome Res. 30, 447–458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roayaei Ardakany, A., Gezer, H. T., Lonardi, S. & Ay, F. Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol. 21, 256 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Galan, S., Serra, F. & Marti-Renom, M. A. Identification of chromatin loops from Hi-C interaction matrices by CTCF–CTCF topology classification. NAR. Genom. Bioinform. 4, lqac021 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Salameh, T. J. et al. A supervised learning framework for chromatin loop detection in genome-wide contact maps. Nat. Commun. 11, 3428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoon, S., Chandra, A. & Vahedi, G. Stripenn detects architectural stripes from chromatin conformation data using computer vision. Nat. Commun. 13, 1602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gupta, K. et al. StripeDiff: model-based algorithm for differential analysis of chromatin stripe. Sci. Adv. 8, eabk2246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 175, 292–294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, Y. & Blanchette, M. Reference panel guided topological structure annotation of Hi-C data. Nat. Commun. 13, 7426 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Avdeyev, P. & Zhou, J. Computational approaches for understanding sequence variation effects on the 3D genome architecture. Annu. Rev. Biomed. Data Sci. 5, 183–204 (2022).

    Article  PubMed  Google Scholar 

  59. Yang, M. & Ma, J. Machine learning methods for exploring sequence determinants of 3D genome organization. J. Mol. Biol. 434, 167666 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, S., Chasman, D., Knaack, S. & Roy, S. In silico prediction of high-resolution Hi-C interaction matrices. Nat. Commun. 10, 5449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Elman, J. L. Finding structure in time. Cogn. Sci. 14, 179–211 (1990).

    Article  Google Scholar 

  63. Zhou, J. et al. Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020).

    Article  Google Scholar 

  64. Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2021).

    Article  PubMed  Google Scholar 

  65. Zhang, R., Wang, Y., Yang, Y., Zhang, Y. & Ma, J. Predicting CTCF-mediated chromatin loops using CTCF-MP. Bioinformatics 34, i133–i141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kai, Y. et al. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features. Nat. Commun. 9, 4221 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Whalen, S., Truty, R. M. & Pollard, K. S. Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet. 48, 488–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, Y., Zhang, R., Singh, S. & Ma, J. Exploiting sequence-based features for predicting enhancer–promoter interactions. Bioinformatics 33, i252–i260 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh, S., Yang, Y., Póczos, B. & Ma, J. Predicting enhancer–promoter interaction from genomic sequence with deep neural networks. Quant. Biol. 7, 122–137 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cao, Q. et al. Reconstruction of enhancer–target networks in 935 samples of human primary cells, tissues and cell lines. Nat. Genet. 49, 1428–1436 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Zeng, W., Wu, M. & Jiang, R. Prediction of enhancer–promoter interactions via natural language processing. BMC Genom. 19, 84 (2018).

    Article  Google Scholar 

  72. Cao, F. et al. Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences. Genome Biol. 22, 226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, W., Wong, W. H. & Jiang, R. DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning. Nucleic Acids Res. 47, e60 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fudenberg, G., Kelley, D. R. & Pollard, K. S. Predicting 3D genome folding from DNA sequence with Akita. Nat. Methods 17, 1111–1117 (2020). This method demonstrates that using DNA sequence alone could predict chromatin contact frequency maps with high accuracy.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhou, J. Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale. Nat. Genet. 54, 725–734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwessinger, R. et al. DeepC: predicting 3D genome folding using megabase-scale transfer learning. Nat. Methods 17, 1118–1124 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan, J. et al. Cell-type-specific prediction of 3D chromatin organization enables high-throughput in silico genetic screening. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01612-8 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yang, R. et al. Epiphany: predicting Hi-C contact maps from 1D epigenomic signals. Genome Biol. 24, 134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, M. et al. MIA-Sig: multiplex chromatin interaction analysis by signal processing and statistical algorithms. Genome Biol. 20, 251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang, R. & Ma, J. MATCHA: probing multi-way chromatin interaction with hypergraph representation learning. Cell Syst. 10, 397–407.e5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dotson, G. A. et al. Deciphering multi-way interactions in the human genome. Nat. Commun. 13, 5498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin, D., Bonora, G., Yardımcı, G. G. & Noble, W. S. Computational methods for analyzing and modeling genome structure and organization. Wiley Interdiscip. Rev. Syst. Biol. Med. 11, e1435 (2019).

    Article  PubMed  Google Scholar 

  84. Brackey, C. A., Marenduzzo, D. & Gilbert, N. Mechanistic modeling of chromatin folding to understand function. Nat. Methods 17, 767–775 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Wong, H. et al. A predictive computational model of the dynamic 3D interphase yeast nucleus. Curr. Biol. 22, 1881–1890 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Tjong, H., Gong, K., Chen, L. & Alber, F. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res. 22, 1295–1305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bianco, S. et al. Polymer physics predicts the effects of structural variants on chromatin architecture. Nat. Genet. 50, 662–667 (2018). This study highlights the efficacy of polymer modelling-based methods in predicting chromatin structure changes with large-scale sequence alterations, such as structural variants.

    Article  CAS  PubMed  Google Scholar 

  88. Kragesteen, B. K. et al. Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis. Nat. Genet. 50, 1463–1473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707.e14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. International Nucleome Consortium. 3DGenBench: a web-server to benchmark computational models for 3D Genomics. Nucleic Acids Res. 50, W4–W12 (2022).

    Article  Google Scholar 

  93. Alipour, E. & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rossini, R., Kumar, V., Mathelier, A., Rognes, T. & Paulsen, J. MoDLE: high-performance stochastic modeling of DNA loop extrusion interactions. Genome Biol. 23, 247 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gitchev, T., Zala, G., Meister, P. & Jost, D. 3DPolyS-LE: an accessible simulation framework to model the interplay between chromatin and loop extrusion. Bioinformatics 38, 5454–5456 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Banigan, E. J. & Mirny, L. A. Loop extrusion: theory meets single-molecule experiments. Curr. Opin. Cell Biol. 64, 124–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Mirny, L. A., Imakaev, M. & Abdennur, N. Two major mechanisms of chromosome organization. Curr. Opin. Cell Biol. 58, 142–152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Goloborodko, A., Imakaev, M. V., Marko, J. F. & Mirny, L. Compaction and segregation of sister chromatids via active loop extrusion. eLife 5, e14864 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Goloborodko, A., Marko, J. F. & Mirny, L. A. Chromosome compaction by active loop extrusion. Biophys. J. 110, 2162–2168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schalbetter, S. A., Fudenberg, G., Baxter, J., Pollard, K. S. & Neale, M. J. Principles of meiotic chromosome assembly revealed in S. cerevisiae. Nat. Commun. 10, 4795 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zhang, Y. et al. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature 573, 600–604 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fudenberg, G., Abdennur, N., Imakaev, M., Goloborodko, A. & Mirny, L. A. Emerging evidence of chromosome folding by loop extrusion. Cold Spring Harb. Symp. Quant. Biol. 82, 45–55 (2017).

    Article  PubMed  Google Scholar 

  107. Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. USA 115, E6697–E6706 (2018). The mechanisms proposed in this study successfully recapitulates perturbations in chromatin organization observed in knock-down experiments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hildebrand, E. M. & Dekker, J. Mechanisms and functions of chromosome compartmentalization. Trends Biochem. Sci. 45, 385–396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Falk, M. et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570, 395–399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Feric, M. & Misteli, T. Phase separation in genome organization across evolution. Trends Cell Biol. 31, 671–685 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jost, D., Carrivain, P., Cavalli, G. & Vaillant, C. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res. 42, 9553–9561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, B. & Wolynes, P. G. Topology, structures, and energy landscapes of human chromosomes. Proc. Natl Acad. Sci. USA 112, 6062–6067 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Di Pierro, M., Zhang, B., Aiden, E. L., Wolynes, P. G. & Onuchic, J. N. Transferable model for chromosome architecture. Proc. Natl Acad. Sci. USA 113, 12168–12173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Brackley, C. A., Taylor, S., Papantonis, A., Cook, P. R. & Marenduzzo, D. Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proc. Natl Acad. Sci. USA 110, E3605–E3611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Buckle, A., Brackley, C. A., Boyle, S., Marenduzzo, D. & Gilbert, N. Polymer simulations of heteromorphic chromatin predict the 3D folding of complex genomic loci. Mol. Cell 72, 786–797.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shi, G., Liu, L., Hyeon, C. & Thirumalai, D. Interphase human chromosome exhibits out of equilibrium glassy dynamics. Nat. Commun. 9, 3161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Haddad, N., Jost, D. & Vaillant, C. Perspectives: using polymer modeling to understand the formation and function of nuclear compartments. Chromosome Res. 25, 35–50 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Barbieri, M. et al. Complexity of chromatin folding is captured by the strings and binders switch model. Proc. Natl Acad. Sci. USA 109, 16173–16178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barbieri, M. et al. Active and poised promoter states drive folding of the extended HoxB locus in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 24, 515–524 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Bianco, S. et al. Computational approaches from polymer physics to investigate chromatin folding. Curr. Opin. Cell Biol. 64, 10–17 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Conte, M. et al. Polymer physics indicates chromatin folding variability across single-cells results from state degeneracy in phase separation. Nat. Commun. 11, 3289 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fujishiro, S. & Sasai, M. Generation of dynamic three-dimensional genome structure through phase separation of chromatin. Proc. Natl Acad. Sci. USA 119, e2109838119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Contessoto, V. G. et al. Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues. Nat. Commun. 14, 326 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Brackley, C. A. et al. Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models. Genome Biol. 17, 59 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Qi, Y. & Zhang, B. Predicting three-dimensional genome organization with chromatin states. PLoS Comput. Biol. 15, e1007024 (2019). This paper predicts chromatin structure de novo by simulating phase separation using a maximum entropy approach on ensemble Hi-C and epigenomic data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Conte, M. et al. Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding. Nat. Commun. 13, 4070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Qi, Y. et al. Data-driven polymer model for mechanistic exploration of diploid genome organization. Biophys. J. 119, 1905–1916 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Brahmachari, S., Contessoto, V., Di Pierro, M. & Onuchic, J. N. Shaping the genome via lengthwise compaction, phase separation, and lamina adhesion. Nucleic Acids Res. 50, 4258–4271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kamat, K. et al. Compartmentalization with nuclear landmarks yields random, yet precise, genome organization. Biophys. J. 122, 1376–1389 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30, 90–98 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Yildirim, A., Boninsegna, L., Zhan, Y. & Alber, F. Uncovering the principles of genome folding by 3D chromatin modeling. Cold Spring Harb. Perspect. Biol. 14, a039693 (2022). This comprehensive review discusses many mechanistic and data-driven computational approaches for genome structure modelling.

    Article  CAS  PubMed  Google Scholar 

  133. Boninsegna, L., Yildirim, A., Zhan, Y. & Alber, F. Integrative approaches in genome structure analysis. Structure 30, 24–36 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Baù, D. et al. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol. 18, 107–114 (2011).

    Article  PubMed  Google Scholar 

  135. Serra, F. et al. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput. Biol. 13, e1005665 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Umbarger, M. A. et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 44, 252–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Nir, G. et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 14, e1007872 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Paulsen, J. et al. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol. 18, 21 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Shi, G. & Thirumalai, D. From Hi-C contact map to three-dimensional organization of interphase human chromosomes. Phys. Rev. X 11, 011051 (2021).

    CAS  Google Scholar 

  140. Gehlen, L. R. et al. Chromosome positioning and the clustering of functionally related loci in yeast is driven by chromosomal interactions. Nucleus 3, 370–383 (2012).

    Article  PubMed  Google Scholar 

  141. Trieu, T. & Cheng, J. Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data. Nucleic Acids Res. 42, e52 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Di Stefano, M., Paulsen, J., Lien, T. G., Hovig, E. & Micheletti, C. Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization. Sci. Rep. 6, 35985 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Yildirim, A. & Feig, M. High-resolution 3D models of Caulobacter crescentus chromosome reveal genome structural variability and organization. Nucleic Acids Res. 46, 3937–3952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rosenthal, M. et al. Bayesian estimation of three-dimensional chromosomal structure from single-cell Hi-C data. J. Comput. Biol. 26, 1191–1202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tan, L., Xing, D., Chang, C.-H., Li, H. & Sunney Xie, X. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, R., Zhou, T. & Ma, J. Multiscale and integrative single-cell Hi-C analysis with Higashi. Nat. Biotechnol. 40, 254–261 (2022). This work introduces a computational framework based on hypergraph representation learning to effectively achieve embedding and data imputation for scHi-C data, enabling integrative analysis of 3D genome features in individual cells.

    Article  CAS  PubMed  Google Scholar 

  147. Zhou, T., Zhang, R. & Ma, J. The 3D genome structure of single cells. Annu. Rev. Biomed. Data Sci. 4, 21–41 (2021).

    Article  PubMed  Google Scholar 

  148. Giorgetti, L. et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157, 950–963 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Perez-Rathke, A. et al. CHROMATIX: computing the functional landscape of many-body chromatin interactions in transcriptionally active loci from deconvolved single cells. Genome Biol. 21, 13 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tjong, H. et al. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. Proc. Natl Acad. Sci. USA 113, E1663–E1672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li, Q. et al. The three-dimensional genome organization of Drosophila melanogaster through data integration. Genome Biol. 18, 145 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Yildirim, A. et al. Evaluating the role of the nuclear microenvironment in gene function by population-based modeling. Nat. Struct. Mol. Biol. 30, 1193–1206 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhan, Y., Yildirim, A., Boninsegna, L. & Alber, F. Conformational analysis of chromosome structures reveals vital role of chromosome morphology in gene function. Preprint at bioRxiv https://doi.org/10.1101/2023.02.18.528138 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Jia, B. B., Jussila, A., Kern, C., Zhu, Q. & Ren, B. A spatial genome aligner for resolving chromatin architectures from multiplexed DNA FISH. Nat. Biotechnol. 41, 1004–1017 (2023). This work presents a computational framework that effectively reconstructs chromatin structures from multiplexed DNA FISH data with high accuracy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Van Der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  157. McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.03426 (2018).

    Article  Google Scholar 

  158. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim, H.-J. et al. Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data. PLoS Comput. Biol. 16, e1008173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu, J., Lin, D., Yardimci, G. G. & Noble, W. S. Unsupervised embedding of single-cell Hi-C data. Bioinformatics 34, i96–i104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang, R., Zhou, T. & Ma, J. Ultrafast and interpretable single-cell 3D genome analysis with fast-Higashi. Cell Syst. 13, 798–807.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zheng, Y., Shen, S. & Keleş, S. Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D. Genome Biol. 23, 222 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Galitsyna, A. A. & Gelfand, M. S. Single-cell Hi-C data analysis: safety in numbers. Brief. Bioinform. 22, bbab316 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zhou, J. et al. Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation. Proc. Natl Acad. Sci. USA 116, 14011–14018 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yu, M. et al. SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data. Nat. Methods 18, 1056–1059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tan, L. et al. Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal brain development. Cell 184, 741–758.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Zhang, S. et al. DeepLoop robustly maps chromatin interactions from sparse allele-resolved or single-cell Hi-C data at kilobase resolution. Nat. Genet. 54, 1013–1025 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xiong, K., Zhang, R. & Ma, J. scGHOST: identifying single-cell 3D genome subcompartments. Preprint at bioRxiv https://doi.org/10.1101/2023.05.24.542032 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Arnould, C. et al. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590, 660–665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lupiáñez, D. G., Spielmann, M. & Mundlos, S. Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet. 32, 225–237 (2016).

    Article  PubMed  Google Scholar 

  171. Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Karbalayghareh, A., Sahin, M. & Leslie, C. S. Chromatin interaction-aware gene regulatory modeling with graph attention networks. Genome Res. 32, 930–944 (2022). This paper presents a graph-based deep learning approach that predicts gene expression by combining chromatin interaction, one-dimensional epigenomic data and DNA sequence features.

    PubMed  PubMed Central  Google Scholar 

  174. Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. In 2017 Proc. IEEE International Conference on Computer Vision (ICCV) 618–626 (IEEE, 2017).

  175. Ying, R., Bourgeois, D., You, J., Zitnik, M. & Leskovec, J. GNNExplainer: generating explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 32, 9240–9251 (2019).

    PubMed  PubMed Central  Google Scholar 

  176. Wang, H. et al. CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175, 1405–1417.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Marchal, C., Sima, J. & Gilbert, D. M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721–737 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Yang, Y., Wang, Y., Zhang, Y. & Ma, J. Concert: genome-wide prediction of sequence elements that modulate DNA replication timing. Preprint at bioRxiv https://doi.org/10.1101/2022.04.21.488684 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sima, J. et al. Identifying cis elements for spatiotemporal control of mammalian DNA replication. Cell 176, 816–830.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Sun, Y. et al. A graph neural network-based interpretable framework reveals a novel DNA fragility-associated chromatin structural unit. Genome Biol. 24, 90 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pancaldi, V. et al. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity. Genome Biol. 17, 152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Wang, J. et al. Characterization of network hierarchy reflects cell state specificity in genome organization. Genome Res. 33, 247–260 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Libbrecht, M. W. et al. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression. Genome Res. 25, 544–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Abbas, A. et al. Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes. Nat. Commun. 10, 2049 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) Vol. 70, 3145–3153 (PMLR, 2017).

  189. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems Vol. 30 (NIPS, 2017).

  190. Yang, M. & Ma, J. UNADON: transformer-based model to predict genome-wide chromosome spatial position. Bioinformatics 39, i553–i562 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Yang, M. & Kim, B. Benchmarking attribution methods with relative feature importance. Preprint at arXiv https://doi.org/10.48550/arXiv.1907.09701 (2019).

  192. Sasaki, H. M., Kishi, J. Y., Wu, C.-T., Beliveau, B. J. & Yin, P. Quantitative multiplexed imaging of chromatin ultrastructure with Decode-PAINT. Preprint at bioRxiv https://doi.org/10.1101/2022.08.01.502089 (2022).

    Article  Google Scholar 

  193. Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590, 344–350 (2021). This study reports an extensive multi-omics analysis relating chromatin structure to epigenetic marks and gene expression at the single-cell level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Takei, Y. et al. High-resolution spatial multi-omics reveals cell-type specific nuclear compartments. Preprint at bioRxiv https://doi.org/10.1101/2023.05.07.539762 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Tan, L. et al. Cerebellar granule cells develop non-neuronal 3D genome architecture over the lifespan. Preprint at bioRxiv https://doi.org/10.1101/2023.02.25.530020 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Viana, M. P. et al. Integrated intracellular organization and its variations in human iPS cells. Nature 613, 345–354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. McArthur, E. et al. Reconstructing the 3D genome organization of Neanderthals reveals that chromatin folding shaped phenotypic and sequence divergence. Preprint at bioRxiv https://doi.org/10.1101/2022.02.07.479462 (2022).

    Article  Google Scholar 

  198. Sun, J. H. et al. Disease-associated short tandem repeats co-localize with chromatin domain boundaries. Cell 175, 224–238.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dubois, F., Sidiropoulos, N., Weischenfeldt, J. & Beroukhim, R. Structural variations in cancer and the 3D genome. Nat. Rev. Cancer 22, 533–546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wang, X. et al. Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes. Nat. Methods 18, 661–668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Redolfi, J. et al. DamC reveals principles of chromatin folding in vivo without crosslinking and ligation. Nat. Struct. Mol. Biol. 26, 471–480 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002). This landmark paper describes a method of detecting chromatin interactions.

    Article  CAS  PubMed  Google Scholar 

  203. Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21, 207–226 (2019).

    Article  PubMed  Google Scholar 

  204. Fullwood, M. J. et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. van de Werken, H. J. G. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969–972 (2012).

    Article  PubMed  Google Scholar 

  207. Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Ramani, V. et al. Mapping 3D genome architecture through in situ DNase Hi-C. Nat. Protoc. 11, 2104–2121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Goel, V. Y., Huseyin, M. K. & Hansen, A. S. Region capture micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat. Genet. 55, 1048–1056 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Allahyar, A. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50, 1151–1160 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Zhong, J.-Y. et al. High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding. Nat. Commun. 14, 1250 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Deshpande, A. S. et al. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat. Biotechnol. 40, 1488–1499 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zheng, M. et al. Multiplex chromatin interactions with single-molecule precision. Nature 566, 558–562 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Greil, F., Moorman, C. & van Steensel, B. DamID: mapping of in vivo protein–genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol. 410, 342–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Vogel, M. J., Peric-Hupkes, D. & van Steensel, B. Detection of in vivo protein–DNA interactions using DamID in mammalian cells. Nat. Protoc. 2, 1467–1478 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Girelli, G. et al. GPSeq reveals the radial organization of chromatin in the cell nucleus. Nat. Biotechnol. 38, 1184–1193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lee, D.-S. et al. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat. Methods 16, 999–1006 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    Article  CAS  PubMed  Google Scholar 

  226. Nguyen, H. Q. et al. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods 17, 822–832 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Payne, A. C. et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 371, eaay3446 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health Common Fund 4D Nucleome Program grant UM1HG011593 (to J.M., F.A. and T.M.), National Institutes of Health grants R01HG007352 (to J.M.) and R01HG012303 (to J.M.). J.M. was additionally supported by a Guggenheim Fellowship from the John Simon Guggenheim Memorial Foundation and T.M. was supported by the Intramural Program of the NIH, the NCI Center for Cancer Research (1 ZIA BC010309–23).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this manuscript.

Corresponding authors

Correspondence to Tom Misteli, Frank Alber or Jian Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks F. Ay, D. Jost and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Attention-based method

A machine learning technique used in neural network models to prioritize the most relevant parts of the input when making decisions.

Bystander interactions

An indirect effect of chromatin interactions that occurs through nearby long-range chromatin interactions.

Chromatin domains

Distinct units formed by the chromatin fibre inside the cell nucleus.

Cohesin-mediated loop extrusion

The process by which cohesin complexes extrude DNA into loops until they reach boundaries insulated by architectural chromatin proteins such as CTCF.

Contact frequency

The probability that a pair of genomic loci in the one-dimensional linear genome are spatially closer than a threshold value.

Contact frequency map

A symmetrical square matrix filled with the estimated contact probabilities between any pair of loci.

Convolutional kernel

A compact matrix or vector applied to an input DNA sequence to represent the importance of a specific pattern or feature at each position within the sequence.

Convolutional neural network

A type of artificial neural network that uses convolution layers to learn data representations by applying filters or kernels to the input signal to generate transformed output signals.

Dilated convolutional neural network

A variant of convolutional neural networks in which a ‘dilated’ or expanded convolution kernel is applied to broaden the receptive field of the network without increasing the number of parameters.

Gradient boosting

A machine learning method that iteratively trains a series of models, each of which is designed to correct errors arising from the previous model.

Graph-based posterior regularization

A method to improve the prediction accuracy by incorporating a penalty term that discourages solutions that violate the dependencies between variables, as represented within a graph structure.

Graph neural network

A type of neural network that is designed to handle data represented as graphs.

Homotypic interactions

Binding or association of objects with similar properties, in this context chromatin segments sharing the same type of activity.

Hyperedge

A connection between any number of vertices of a hypergraph.

Hypergraph

A generalization of a graph in which an edge can connect any number of vertices.

Latent Dirichlet allocation

A type of generative statistical model that allows sets of observations to be explained by unobserved groups or topics.

Molecular dynamics

A computational method used to simulate the evolution of a molecular system over time, by numerically integrating Newton’s equations of motion.

Monte Carlo

A computational method used to generate configurations of a physical system by drawing samples from a probability distribution.

Phase separation

Spatial separation of different phases of matter from one homogeneous mixture.

Principal component analysis

A statistical method used to reduce the dimensionality of data by transforming it into a set of linearly uncorrelated variables, known as principal components.

Random forest

A classic machine learning method for classification and regression tasks that works by combining the output of multiple decision trees.

Random walk with restart

A stochastic process on a graph that randomly selects a starting node and then probabilistically determines the next move.

Recurrent neural network

An artificial neural network designed to recognize patterns in sequences of data, with each output dependent on previous computations.

Tensor decomposition

A mathematical technique used to break down a complex tensor (multi-dimensional data) into a series of simpler, more interpretable components.

Variational inference

A probabilistic method in machine learning and statistics that uses optimization techniques to approximate complex, intractable posterior distributions.

Vector representation

A means of representing data, usually in the form of a real-valued vector, such that data points that are closer to each other in the vector space are expected to have similar attributes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Boninsegna, L., Yang, M. et al. Computational methods for analysing multiscale 3D genome organization. Nat Rev Genet 25, 123–141 (2024). https://doi.org/10.1038/s41576-023-00638-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00638-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research