Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Transitioning single-cell genomics into the clinic

Abstract

The use of genomics is firmly established in clinical practice, resulting in innovations across a wide range of disciplines such as genetic screening, rare disease diagnosis and molecularly guided therapy choice. This new field of genomic medicine has led to improvements in patient outcomes. However, most clinical applications of genomics rely on information generated from bulk approaches, which do not directly capture the genomic variation that underlies cellular heterogeneity. With the advent of single-cell technologies, research is rapidly uncovering how genomic data at cellular resolution can be used to understand disease pathology and mechanisms. Both DNA-based and RNA-based single-cell technologies have the potential to improve existing clinical applications and open new application spaces for genomics in clinical practice, with oncology, immunology and haematology poised for initial adoption. However, challenges in translating cellular genomics from research to a clinical setting must first be overcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The key steps to consider for clinical implementation of single-cell sequencing technology.
Fig. 2: Advances in research from single-cell sequencing.
Fig. 3: Benefits of integrating single-cell sequencing into clinical practice.

Similar content being viewed by others

References

  1. Duan, M. et al. Diverse modes of clonal evolution in HBV-related hepatocellular carcinoma revealed by single-cell genome sequencing. Cell Res. 28, 359–373 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morita, K. et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat. Commun. 11, 5327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e1236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh, M. et al. Lymphoma driver mutations in the pathogenic evolution of an iconic human autoantibody. Cell 180, 878–894.e819 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Vandereyken, K. et al. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Gen. https://doi.org/10.1038/s41576-023-00580-2 (2023).

    Article  Google Scholar 

  7. Jones, W. et al. Deleterious effects of formalin-fixation and delays to fixation on RNA and miRNA-Seq profiles. Sci. Rep. 9, 6980 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Slyper, M. et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792–802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, W., Penland, L., Gokce, O., Croote, D. & Quake, S. R. High fidelity hypothermic preservation of primary tissues in organ transplant preservative for single cell transcriptome analysis. BMC Genomics 19, 140–140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. O’Flanagan, C. H. et al. Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol. 20, 210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Madissoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 21, 1 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doan, M. et al. Diagnostic potential of imaging flow cytometry. Trends Biotechnol. 36, 649–652 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Pösel, C. et al. Density gradient centrifugation compromises bone marrow mononuclear cell yield. PLoS ONE 7, e50293 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guillaumet-Adkins, A. et al. Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol. 18, 45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldstein, L. D. et al. Massively parallel nanowell-based single-cell gene expression profiling. BMC Genomics 18, 519 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fan, C. et al. Combitorial labeling of single cells or gene expression cytometry. Science 347, 6222 (2015).

    Article  Google Scholar 

  19. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 78–714 (2020).

    Article  Google Scholar 

  20. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nadeu, F. et al. Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nat. Med. 28, 1662–1671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, L. et al. Clonal evolution and changes in two AML patients detected with a novel single-cell DNA sequencing platform. Sci. Rep. 9, 11119 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nam, A. S. et al. Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nat. Genet. 54, 1514–1526 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Redmond, D., Poran, A. & Elemento, O. Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq. Genome Med. 8, 80 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goldstein, L. D. et al. Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun. Biol. 2, 304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chiffelle, J. et al. T-cell repertoire analysis and metrics of diversity and clonality. Curr. Opin. Biotechnol. 65, 284–295 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Cakir, B. et al. Comparison of visualization tools for single-cell RNAseq data. NAR Genom. Bioinform. 2, lqaa052 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qi, R., Ma, A., Ma, Q. & Zou, Q. Clustering and classification methods for single-cell RNA-sequencing data. Brief. Bioinform. 21, 1196–1208 (2019).

    Article  PubMed Central  Google Scholar 

  30. Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the Human Cell Atlas on medicine. Nat. Med. 28, 2486–2496 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Cortes, J. E. et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 20, 984–997 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Daver, N., Schlenk, R. F., Russell, N. H. & Levis, M. J. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33, 299–312 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shouval, R. et al. Single cell analysis exposes intratumor heterogeneity and suggests that FLT3-ITD is a late event in leukemogenesis. Exp. Hematol. 42, 457–463 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Sufliarska, S. et al. Establishing the method of chimerism monitoring after allogeneic stem cell transplantation using multiplex polymerase chain reaction amplification of short tandem repeat markers and amelogenin. Neoplasma 54, 424–430 (2007).

    CAS  PubMed  Google Scholar 

  35. Stahl, T., Böhme, M. U., Kröger, N. & Fehse, B. Digital PCR to assess hematopoietic chimerism after allogeneic stem cell transplantation. Exp. Hematol. 43, 462–468.e461 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Vives, J., Casademont-Roca, A., Martorell, L. & Nogués, N. Beyond chimerism analysis: methods for tracking a new generation of cell-based medicines. Bone Marrow Transplant. 55, 1229–1239 (2020).

    Article  PubMed  Google Scholar 

  37. de Almeida, G. P. et al. Human skin-resident host T cells can persist long term after allogeneic stem cell transplantation and maintain recirculation potential. Sci. Immunol. 7, eabe2634 (2022).

    Article  PubMed  Google Scholar 

  38. Robinson, T. M. et al. Single cell genotypic and phenotypic analysis of measurable residual disease in acute myeloid leukemia. bioRxiv https://doi.org/10.1101/2022.09.20.508786 (2022).

    Article  Google Scholar 

  39. King, D. et al. Detection of structural mosaicism from targeted and whole-genome sequencing data. Genome Res. 27, 1704–1714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reina-Castillón, J. et al. Detectable clonal mosaicism in blood as a biomarker of cancer risk in Fanconi anemia. Blood Adv. 1, 319–329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao, X. et al. Single-cell RNA-seq reveals a distinct transcriptome signature of aneuploid hematopoietic cells. Blood 130, 2762–2773 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ediriwickrema, A. et al. Single-cell mutational profiling enhances the clinical evaluation of AML MRD. Blood Adv. 4, 943–952 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jang, J. S. et al. Molecular signatures of multiple myeloma progression through single cell RNA-Seq. Blood Cancer J. 9, 2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Petti, A. A. et al. A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat. Commun. 10, 3660 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stosch, J. M. et al. Gene mutations and clonal architecture in myelodysplastic syndromes and changes upon progression to acute myeloid leukaemia and under treatment. Br. J. Haematol. 182, 830–842 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Giustacchini, A. et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat. Med. 23, 692–702 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Warfvinge, R. et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood 129, 2384–2394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, X. & Grimes, H. L. Why single-cell sequencing has promise in MDS. Front. Oncol. 11, 769753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Warren, J. T. & Link, D. C. Clonal hematopoiesis and risk for hematologic malignancy. Blood 136, 1599–1605 (2020).

    PubMed  PubMed Central  Google Scholar 

  50. Acha, P. et al. Analysis of intratumoral heterogeneity in myelodysplastic syndromes with isolated del(5q) using a single cell approach. Cancers 13, 841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Galen, P. et al. Single-cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281.e1224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pellegrino, M. et al. High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics. Genome Res. 28, 1345–1352 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Furness, C. L. et al. The subclonal complexity of STIL-TAL1+ T-cell acute lymphoblastic leukaemia. Leukemia 32, 1984–1993 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y. et al. Elucidating minimal residual disease of paediatric B-cell acute lymphoblastic leukaemia by single-cell analysis. Nat. Cell Biol. 24, 242–252 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Heuser, M. et al. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood 138, 2753–2767 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zheng, H. et al. Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 68, 127–140 (2018).

    Article  PubMed  Google Scholar 

  58. Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang, J., Xu, R., Yuan, H., Zhang, Y. & Cheng, S. Single-cell RNA sequencing reveals novel gene expression signatures of trastuzumab treatment in HER2+ breast cancer: a pilot study. Medicine 98, e15872 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ross, A. A. et al. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 82, 2605–2610 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Sharma, S. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol. Adv. 36, 1063–1078 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rhim, A. D. et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146, 647–651 (2014).

    Article  PubMed  Google Scholar 

  63. Dago, A. E. et al. Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLoS ONE 9, e101777 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Paoletti, C. et al. Abstract P1-01-01: Circulating tumor cell number and CTC-endocrine therapy index predict clinical outcomes in ER positive metastatic breast cancer patients: results of the COMETI phase 2 trial. Cancer Res. 77 (Suppl. 4), P1-01-1, https://doi.org/10.1158/1538-7445.Sabcs16-p1-01-01 (2017).

    Article  Google Scholar 

  65. Aceto, N. et al. AR expression in breast cancer CTCs associates with bone metastases. Mol. Cancer Res. 16, 720–727 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Criscitiello, C., Sotiriou, C. & Ignatiadis, M. Circulating tumor cells and emerging blood biomarkers in breast cancer. Curr. Opin. Oncol. 22, 552–558 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Gorin, M. A. et al. Circulating tumour cells as biomarkers of prostate, bladder, and kidney cancer. Nat. Rev. Urol. 14, 90–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. D’Avola, D. et al. High-density single cell mRNA sequencing to characterize circulating tumor cells in hepatocellular carcinoma. Sci. Rep. 8, 11570 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Barbazán, J. et al. Molecular characterization of circulating tumor cells in human metastatic colorectal cancer. PLoS ONE 7, e40476 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Magbanua, M. J. M. et al. Expanded genomic profiling of circulating tumor cells in metastatic breast cancer patients to assess biomarker status and biology over time (CALGB 40502 and CALGB 40503, Alliance). Clin. Cancer Res. 24, 1486–1499 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marcuello, M. et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Asp. Med. 69, 107–122 (2019).

    Article  CAS  Google Scholar 

  72. Ting, D. T. et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 8, 1905–1918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kvastad, L. et al. Single cell analysis of cancer cells using an improved RT-MLPA method has potential for cancer diagnosis and monitoring. Sci. Rep. 5, 16519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lambros, M. B. et al. Single-cell analyses of prostate cancer liquid biopsies acquired by apheresis. Clin. Cancer Res. 24, 5635–5644 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Yang, L. et al. Hexokinase 2 discerns a novel circulating tumor cell population associated with poor prognosis in lung cancer patients. Proc. Natl Acad. Sci. USA 118, e2012228118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Doebele, R. C. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 21, 271–282 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Bang, Y.-J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Businello, G., Galuppini, F. & Fassan, M. The impact of recent next generation sequencing and the need for a new classification in gastric cancer. Best. Pract. Res. Clin. Gastroenterol. 50–51, 101730 (2021).

    Article  PubMed  Google Scholar 

  82. Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173, 879–893.e813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gao, Y. et al. V211D mutation in MEK1 causes resistance to MEK inhibitors in colon cancer. Cancer Discov. 9, 1182–1191 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao, Y. et al. Diverse alterations associated with resistance to KRAS(G12C) inhibition. Nature 599, 679–683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 20, 1239–1251 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Fairfax, B. P. et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 26, 193–199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, 662–677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Paulson, K. G. et al. Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat. Commun. 9, 3868 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morotti, M. et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br. J. Cancer 124, 1759–1776 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lu, Y.-C. et al. An efficient single-cell RNA-Seq approach to identify neoantigen-specific T cell receptors. Mol. Ther. 26, 379–389 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Sharma, A. et al. Non-genetic intra-tumor heterogeneity is a major predictor of phenotypic heterogeneity and ongoing evolutionary dynamics in lung tumors. Cell Rep. 29, 2164–2174.e2165 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bucktrout, S. L. et al. Advancing T cell–based cancer therapy with single-cell technologies. Nat. Med. 28, 1761–1764 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Nossal, G. One cell, one antibody: prelude and aftermath. Nat. Immunol. 8, 1015–1017 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Conde, D. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article  CAS  Google Scholar 

  100. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. razi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  Google Scholar 

  104. Penkava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ramesh, A. et al. A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proc. Natl Acad. Sci. USA 117, 22932–22943 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mitsialis, V. et al. Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn’s disease. Gastroenterology 159, 591–608.e510 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yoshitomi, H. & Ueno, H. Shared and distinct roles of T peripheral helper and T follicular helper cells in human diseases. Cell. Mol. Immunol. 18, 523–527 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Kim, D. et al. Targeted therapy guided by single-cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report. Nat. Med. 26, 236–243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eugster, A. et al. High diversity in the TCR repertoire of GAD65 autoantigen-specific human CD4+ T cells. J. Immunol. 194, 2531–2538 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Cerosaletti, K. et al. Single-cell RNA sequencing reveals expanded clones of islet antigen-reactive CD4+ T cells in peripheral blood of subjects with type 1 diabetes. J. Immunol. 199, 323–335 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Savola, P. et al. Somatic mutations in clonally expanded cytotoxic T lymphocytes in patients with newly diagnosed rheumatoid arthritis. Nat. Commun. 8, 15869 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Moorcraft, S. Y. et al. Patients’ willingness to participate in clinical trials and their views on aspects of cancer research: results of a prospective patient survey. Trials 17, 17 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q. & Powell, J. E. scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data. Genome Biol. 20, 264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Deans, Z. C. et al. Recommendations for reporting results of diagnostic genomic testing. Eur. J. Hum. Genet. 30, 1011–1016 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.E.P., J.L. and K.F. researched data for the article. J.E.P., J.L., V.C. and C.M. discussed the content of the article. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Joseph E. Powell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks James Zehnder, who co-reviewed with Fei Fei; and Satu Mustjoki for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BioRad ddSeq: https://www.bio-rad.com/en-au/product/ddseq-single-cell-isolator?ID=OKNWBSE8Z

Mission Bio Tapestri platform: https://missionbio.com/resources/technical-notes/platform_white_paper/

National Human Genome Resource Institute: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Chin, V., Fairfax, K. et al. Transitioning single-cell genomics into the clinic. Nat Rev Genet 24, 573–584 (2023). https://doi.org/10.1038/s41576-023-00613-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00613-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer