Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-cell genomics meets human genetics

Abstract

Single-cell genomic technologies are revealing the cellular composition, identities and states in tissues at unprecedented resolution. They have now scaled to the point that it is possible to query samples at the population level, across thousands of individuals. Combining single-cell information with genotype data at this scale provides opportunities to link genetic variation to the cellular processes underpinning key aspects of human biology and disease. This strategy has potential implications for disease diagnosis, risk prediction and development of therapeutic solutions. But, effectively integrating large-scale single-cell genomic data, genetic variation and additional phenotypic data will require advances in data generation and analysis methods. As single-cell genetics begins to emerge as a field in its own right, we review its current state and the challenges and opportunities ahead.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of single-cell expression quantitative trait locus studies.
Fig. 2: Human genetics and single-cell genomics, a 20-year timeline.
Fig. 3: Types of single-cell expression quantitative trait locus.
Fig. 4: Downstream effect of context-dependent single-cell expression quantitative trait locus.

Similar content being viewed by others

References

  1. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Aguet, F. et al. Molecular quantitative trait loci. Nat. Rev. Methods Prim. 3, 4 (2023). This Primer provides a comprehensive overview of molecular QTLs, including eQTLs.

    Article  CAS  Google Scholar 

  3. Albert, F. W. & Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Umans, B. D., Battle, A. & Gilad, Y. Where are the disease-associated eQTLs? Trends Genet. 37, 109–124 (2021). This Review article highlights the importance of identifying the correct and dynamic cell contexts where gene regulation is active and the usefulness of single-cell data for this purpose.

    Article  CAS  PubMed  Google Scholar 

  5. Fairfax, B. P. et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat. Genet. 44, 502–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. De Jager, P. L. et al. ImmVar project: insights and design considerations for future studies of ‘healthy’ immune variation. Semin. Immunol. 27, 51–57 (2015).

    Article  PubMed  Google Scholar 

  8. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  PubMed Central  Google Scholar 

  9. Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strober, B. J. et al. Dynamic genetic regulation of gene expression during cellular differentiation. Science 364, 1287–1290 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Westra, H.-J. et al. Cell specific eQTL analysis without sorting cells. PLoS Genet. 11, e1005223 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chun, S. et al. Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat. Genet. 49, 600–605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Connally, N. J. et al. The missing link between genetic association and regulatory function. eLife 11, e74970 (2022).

    Google Scholar 

  14. GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  PubMed Central  Google Scholar 

  15. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Google Scholar 

  16. Tabula Sapiens Consortium et al. The Tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  17. Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mandric, I. et al. Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis. Nat. Commun. 11, 5504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wijst, Mvander et al. The single-cell eQTLGen Consortium. eLife 9, elife.52155 (2020). This manifesto by the single-cell eQTLGen Consortium highlights the timeliness of single-cell eQTL studies (with a focus on blood).

    Article  Google Scholar 

  20. No authors listed. Method of the year 2013. Nat. Methods 11, 1 (2014).

    Article  Google Scholar 

  21. Svensson, V., da Veiga Beltrame, E. & Pachter, L. A curated database reveals trends in single-cell transcriptomics. Database 2020, baaa073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Cao, J. et al. A Human Cell Atlas of fetal gene expression. Science 370, eaba7721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Griffiths, J. A., Scialdone, A. & Marioni, J. C. Using single-cell genomics to understand developmental processes and cell fate decisions. Mol. Syst. Biol. 14, e8046 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018). This paper describes a method to leverage genotyping data to demultiplex single-cell data, enabling efficient experimental design to assay large cohorts.

    Article  CAS  PubMed  Google Scholar 

  30. Huang, Y., McCarthy, D. J. & Stegle, O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. Genome Biol. 20, 273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nayak, R. & Hasija, Y. A hitchhiker’s guide to single-cell transcriptomics and data analysis pipelines. Genomics 113, 606–619 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Adil, A., Kumar, V., Jan, A. T. & Asger, M. Single-cell transcriptomics: current methods and challenges in data acquisition and analysis. Front. Neurosci. 15, 591122 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Yip, S. H., Sham, P. C. & Wang, J. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data. Brief. Bioinform. 20, 1583–1589 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. van der Maaten, L., van der Maaten, L. & Hinton, G. Visualizing non-metric similarities in multiple maps. Mach. Learn. 87, 33–55 (2012).

    Article  Google Scholar 

  37. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

    Article  Google Scholar 

  38. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article  Google Scholar 

  42. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  43. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baxter, S. M. et al. Centers for Mendelian Genomics: a decade of facilitating gene discovery. Genet. Med. 24, 784–797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wright, C. F. et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 385, 1305–1314 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, X., Li, Y. I. & Pritchard, J. K. Trans effects on gene expression can drive omnigenic inheritance. Cell 177, 1022–1034.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferraro, N. M. et al. Transcriptomic signatures across human tissues identify functional rare genetic variation. Science 369, eaaz5900 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bonder, M. J. et al. Identification of rare and common regulatory variants in pluripotent cells using population-scale transcriptomics. Nat. Genet. 53, 313–321 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, J., Kong, N., Han, B. & Sul, J. H. Rare variants regulate expression of nearby individual genes in multiple tissues. PLoS Genet. 17, e1009596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cano-Gamez, E. & Trynka, G. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet. 11, 424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Giambartolomei, C. et al. A Bayesian framework for multiple trait colocalization from summary association statistics. Bioinformatics 34, 2538–2545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wills, Q. F. et al. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat. Biotechnol. 31, 748–752 (2013). The first single-cell eQTL study conducted in a cohort of 15 people and 96 genes only (not yet genome-wide).

    Article  CAS  PubMed  Google Scholar 

  62. van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yazar, S. et al. Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease. Science 376, 6589 (2022). The largest single-cell eQTL study as of 2022, with pseudobulk profiles from nearly 1,000 individuals.

    Article  Google Scholar 

  64. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nathan, A. et al. Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature 606, 120–128 (2022). This study describes a method to model eQTLs in continuous cell states from single-cell data using Poisson mixed models of raw gene counts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oelen, R. et al. Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure. Nat. Commun. 13, 3267 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmiedel, B. J. et al. Single-cell eQTL analysis of activated T cell subsets reveals activation and cell type-dependent effects of disease-risk variants. Sci. Immunol. 7, 68 (2022).

    Article  Google Scholar 

  68. Soskic, B. et al. Immune disease risk variants regulate gene expression dynamics during CD4 T cell activation. Nat. Genet. 54, 817–826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. Commun. 11, 810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jerber, J. et al. Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation. Nat. Genet. 53, 304–312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sarkar, A. K. et al. Discovery and characterization of variance QTLs in human induced pluripotent stem cells. PLoS Genet. 15, e1008045 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Elorbany, R. et al. Single-cell sequencing reveals lineage-specific dynamic genetic regulation of gene expression during human cardiomyocyte differentiation. PLoS Genet. 18, e1009666 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Daniszewski, M. et al. Retinal ganglion cell-specific genetic regulation in primary open-angle glaucoma. Cell Genomics 2, 100142 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neavin, D. et al. Single cell eQTL analysis identifies cell type-specific genetic control of gene expression in fibroblasts and reprogrammed induced pluripotent stem cells. Genome Biol. 22, 76 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bryois, J. et al. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat. Neurosci. 25, 1104–1112 (2022). This study is one of the only single-cell eQTL studies in tissue to date.

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, H. J., Li, L., Li, Y., Li, W. & Li, J. J. PCA outperforms popular hidden variable inference methods for molecular QTL mapping. Genome Biol. 23, 210 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xue, A., Yazar, S., Neavin, D. & Powell, J. E. Pitfalls and opportunities for applying PEER factors in single-cell eQTL analyses. Genome Biol. 24, 33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cuomo, A. S. E. et al. Optimizing expression quantitative trait locus mapping workflows for single-cell studies. Genome Biol. 22, 188 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ayroles, J. F. et al. Behavioral idiosyncrasy reveals genetic control of phenotypic variability. Proc. Natl Acad. Sci. USA 112, 6706–6711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Westerman, K. E. et al. Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers. Nat. Commun. 13, 3993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morgan, M. D. et al. Quantitative genetic analysis deciphers the impact of cis and trans regulation on cell-to-cell variability in protein expression levels. PLoS Genet. 16, e1008686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Resztak, J. A. et al. Genetic control of the dynamic transcriptional response to immune stimuli and glucocorticoids at single cell resolution. Preprint at biorXiv https://doi.org/10.1101/2021.09.30.462672 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gutierrez-Arcelus, M. et al. Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions. Nat. Commun. 10, 687 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cano-Gamez, E. et al. Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4 T cells to cytokines. Nat. Commun. 11, 1801 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effector CD4 T cell subset in rheumatoid arthritis. Sci. Transl. Med. 10, eaaq0305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cuomo, A. S. E. et al. CellRegMap: a statistical framework for mapping context-specific regulatory variants using scRNA-seq. Mol. Syst. Biol. 18, e10663 (2022). This paper reports a method to model eQTLs in continuous cell states from single-cell data using linear mixed models of normalized gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kumasaka, N. et al. Mapping interindividual dynamics of innate immune response at single-cell resolution. Preprint at biorXiv https://doi.org/10.1101/2021.09.01.457774 (2021).

  89. Gewirtz, A. D. H., William Townes, F. & Engelhardt, B. E. Expression QTLs in single-cell sequencing data. Preprint at biorXiv https://doi.org/10.1101/2022.08.14.503915 (2022).

  90. Lu, A. et al. Fast and powerful statistical method for context-specific QTL mapping in multi-context genomic studies. Preprint at biorXiv https://doi.org/10.1101/2021.06.17.448889 (2021).

  91. Sarkar, A. & Stephens, M. Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis. Nat. Genet. 53, 770–777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Svensson, V. Droplet scRNA-seq is not zero-inflated. Nat. Biotechnol. 38, 147–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Fitzgerald, T., Jones, A. & Engelhardt, B. E. A Poisson reduced-rank regression model for association mapping in sequencing data. BMC Bioinforma. 23, 529 (2022).

    Article  CAS  Google Scholar 

  94. Townes, F. W., William Townes, F., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Feature selection and dimension reduction for single cell RNA-Seq based on a multinomial model. Genome Biol. 20, 295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baran, Y. et al. MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biol. 20, 206 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. DeTomaso, D. et al. Functional interpretation of single cell similarity maps. Nat. Commun. 10, 4376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Taylor-Weiner, A. et al. Scaling computational genomics to millions of individuals with GPUs. Genome Biol. 20, 228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479–1485 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Hail Team. Hail 0.2.54. https://github.com/hail-is/hail/releases/tag/0.2.54 (2020).

  101. Lappalainen, T. & MacArthur, D. G. From variant to function in human disease genetics. Science 373, 1464–1468 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Benaglio, P. et al. Mapping genetic effects on cell type-specific chromatin accessibility and annotating complex trait variants using single nucleus ATAC-seq. Preprint at biorXiv https://doi.org/10.1101/2020.12.03.387894 (2020).

  103. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Argelaguet, R., Cuomo, A. S. E., Stegle, O. & Marioni, J. C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 39, 1202–1215 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Trost, B. et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 185, 4409–4427.e18 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Mitra, I. et al. Patterns of de novo tandem repeat mutations and their role in autism. Nature 589, 246–250 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mukamel, R. E. et al. Protein-coding repeat polymorphisms strongly shape diverse human phenotypes. Science 373, 1499–1505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chiang, C. et al. The impact of structural variation on human gene expression. Nat. Genet. 49, 692–699 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Scott, A. J., Chiang, C. & Hall, I. M. Structural variants are a major source of gene expression differences in humans and often affect multiple nearby genes. Genome Res. 31, 2249–2257 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fotsing, S. F. et al. The impact of short tandem repeat variation on gene expression. Nat. Genet. 51, 1652–1659 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dang, X., Zhang, Z. & Luo, X.-J. Mendelian randomization study using dopaminergic neuron-specific eQTL nominates potential causal genes for Parkinson’s disease. Mov. Disord. 37, 2451–2456 (2022).

    Article  PubMed  Google Scholar 

  113. Petrovski, S. & Goldstein, D. B. Unequal representation of genetic variation across ancestry groups creates healthcare inequality in the application of precision medicine. Genome Biol. 17, 157 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 1080 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Lemke, A. A. et al. Addressing underrepresentation in genomics research through community engagement. Am. J. Hum. Genet. 109, 1563–1571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shang, L. et al. Genetic architecture of gene expression in European and African Americans: an eQTL mapping study in GENOA. Am. J. Hum. Genet. 106, 496–512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nédélec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–669.e21 (2016).

    Article  PubMed  Google Scholar 

  119. Randolph, H. E. et al. Genetic ancestry effects on the response to viral infection are pervasive but cell type specific. Science 374, 1127–1133 (2021). This single-cell response eQTL study identifies eQTL interactions with influenza infection in a multiethnic cohort.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stoddard-Bennett, T. & Pera, R. Stem cell therapy for Parkinson’s disease: safety and modeling. Neural Regen. Res. 15, 36 (2020).

    Article  PubMed  Google Scholar 

  121. Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the human cell atlas on medicine. Nat. Med. 28, 2486–2496 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Neavin, D. R. et al. Village in a dish: a model system for population-scale hiPSC studies. Nat. Commun. (in the press).

  124. Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Cable, D. M. et al. Cell type-specific inference of differential expression in spatial transcriptomics. Nat. Methods 19, 1076–1087 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Majumdar, A. et al. Leveraging eQTLs to identify individual-level tissue of interest for a complex trait. PLoS Comput. Biol. 17, e1008915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Arvanitis, M., Tayeb, K., Strober, B. J. & Battle, A. Redefining tissue specificity of genetic regulation of gene expression in the presence of allelic heterogeneity. Am. J. Hum. Genet. 109, 223–239 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kundu, K. et al. Genetic associations at regulatory phenotypes improve fine-mapping of causal variants for 12 immune-mediated diseases. Nat. Genet. 54, 251–262 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Dang, X., Liu, J., Zhang, Z. & Luo, X.-J. Mendelian randomization study using dopaminergic neuron-specific eQTL identifies novel risk genes for schizophrenia. Mol. Neurobiol. https://doi.org/10.1007/s12035-022-03160-3 (2022).

    Article  PubMed  Google Scholar 

  132. Jia, P., Hu, R., Yan, F., Dai, Y. & Zhao, Z. scGWAS: landscape of trait-cell type associations by integrating single-cell transcriptomics-wide and genome-wide association studies. Genome Biol. 23, 220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nat. Genet. 54, 1479–1492 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52, 1158–1168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, M. J. et al. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat. Genet. 54, 1572–1580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Thompson, M. et al. Multi-context genetic modeling of transcriptional regulation resolves novel disease loci. Nat. Commun. 13, 5704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Freimer, J. W. et al. Systematic discovery and perturbation of regulatory genes in human T cells reveals the architecture of immune networks. Nat. Genet. 54, 1133–1144 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Benafif, S. et al. The BARCODE1 Pilot: a feasibility study of using germline single nucleotide polymorphisms to target prostate cancer screening. BJU Int. 129, 325–336 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Richardson, T. G., O’Nunain, K., Relton, C. L. & Davey Smith, G. Harnessing whole genome polygenic risk scores to stratify individuals based on cardiometabolic risk factors and biomarkers at age 10 in the Lifecourse-Brief Report. Arterioscler. Thromb. Vasc. Biol. 42, 362–365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Glastonbury, C. A., Couto Alves, A., El-Sayed Moustafa, J. S. & Small, K. S. Cell-type heterogeneity in adipose tissue is associated with complex traits and reveals disease-relevant cell-specific eQTLs. Am. J. Hum. Genet. 104, 1013–1024 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kong, Y., Rastogi, D., Seoighe, C., Greally, J. M. & Suzuki, M. Insights from deconvolution of cell subtype proportions enhance the interpretation of functional genomic data. PLoS ONE 14, e0215987 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Reshef, Y. A. et al. Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics. Nat. Biotechnol. 40, 355–363 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Burkhardt, D. B. et al. Quantifying the effect of experimental perturbations at single-cell resolution. Nat. Biotechnol. 39, 619–629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nieto, P. et al. A single-cell tumor immune atlas for precision oncology. Genome Res. 31, 1913–1926 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27, 904–916 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Davenport, E. E. et al. Discovering in vivo cytokine–eQTL interactions from a lupus clinical trial. Genome Biol. 19, 168 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Cummings, B. B. et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 9, eaal5209 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kremer, L. S. et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat. Commun. 8, 15824 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Frésard, L. et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat. Med. 25, 911–919 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Montgomery, S. B., Bernstein, J. A. & Wheeler, M. T. Toward transcriptomics as a primary tool for rare disease investigation. Cold Spring Harb. Mol. Case Stud. 8, a006198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yépez, V. A. et al. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med. 14, 38 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kilpinen, H. et al. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 546, 370–375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Simmons, S. K. et al. Mostly natural sequencing-by-synthesis for scRNA-seq using Ultima sequencing. Nat. Biotechnol. 41, 204–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Clark, I. C. et al. Microfluidics-free single-cell genomics with templated emulsification. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01685-z (2023).

    Article  PubMed  Google Scholar 

  158. Philpott, M. et al. Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq. Nat. Biotechnol. 39, 1517–1520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jiang, Y., Zhang, N. R. & Li, M. SCALE: modeling allele-specific gene expression by single-cell RNA sequencing. Genome Biol. 18, 74 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Qi, G., Strober, B. J., Popp, J. M., Ji, H. & Battle, A. Single-cell allele-specific expression analysis reveals dynamic and cell-type-specific regulatory effects. Preprint at biorXiv https://doi.org/10.1101/2022.10.06.511215 (2022).

  161. Orrù, V. et al. Genetic variants regulating immune cell levels in health and disease. Cell 155, 242–256 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Roederer, M. et al. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis. Cell 161, 387–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 1516 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Kasela, S. et al. Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus. Genome Biol. 22, 242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Warren, C. R. et al. Induced pluripotent stem cell differentiation enables functional validation of GWAS variants in metabolic disease. Cell Stem Cell 20, 547–557.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Wolter, J. M. et al. Cellular genome-wide association study identifies common genetic variation influencing lithium-induced neural progenitor proliferation. Biol. Psychiatry 93, 8–17 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sakaue, S. et al. Tissue-specific enhancer-gene maps from multimodal single-cell data identify causal disease alleles. Preprint at biorXiv https://doi.org/10.1101/2022.10.27.22281574 (2022).

  169. Mitchell, J. M. et al. Mapping genetic effects on cellular phenotypes with ‘cell villages’. Preprint at biorXiv https://doi.org/10.1101/2020.06.29.174383 (2020).

  170. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

    Article  Google Scholar 

  171. Black, J. R. M. & Clark, S. J. Age-related macular degeneration: genome-wide association studies to translation. Genet. Med. 18, 283–289 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    Article  Google Scholar 

  173. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. 1000 Genomes Project Consortium et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  Google Scholar 

  175. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ramsköld, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    Article  PubMed  Google Scholar 

  183. Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Stranger, B. E. et al. Population genomics of human gene expression. Nat. Genet. 39, 1217–1224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Dixon, A. L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Montgomery, S. B. et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 773–777 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Pickrell, J. K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768–772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. GTEx Consortium. Human Genomics The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Anna S. E. Cuomo or Joseph E. Powell.

Ethics declarations

Competing interests

D.G.M. is a founder with equity in Goldfinch Bio, a paid adviser to GSK, Insitro, Third Rock Ventures and Foresite Labs and has received research support from AbbVie, Astellas, Biogen, BioMarin, Eisai, Merck, Pfizer and Sanofi-Genzyme; none of these activities is related to the work presented here. S.R. is a founder for Mestag, Inc. and a scientific adviser for Sonoma Biotherapeutics, Pfizer, Jannsen and Sanofi. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks David A. Hafler, Stephen B. Montgomery and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Allele

One of two or more alternative DNA sequences occurring at a particular genomic locus.

Ambient RNA

Free-floating RNA captured in a single-cell RNA sequencing droplet or other reaction compartment.

Cell-type annotation

Manual or algorithmic approach to assign labels (corresponding to cell type) to unbiasedly identified cell clusters.

Cell villages

Cell lines derived from multiple donors cultured and differentiated together in a single dish. These are distinct from ‘uni-cultures’, in which each cell line is cultured independently. This makes the strategy particularly valuable for population-scale studies.

Clustering

Algorithmic approach to group cells into clusters, which are groups of similar cells based on their transcriptomes.

Colocalization

Statistical methods that aim to estimate the probability that the same genetic variant is causal for two different traits, for example, an organismal trait (for example, a disease in a genome-wide association study) and a molecular trait (for example, the expression level of a given gene in an expression quantitative trait locus study).

Doublets

Two or more cells (also called multiplet) captured and processed in the same droplet.

Fine-mapping

The process of localizing association signals to causal variants using statistical, bioinformatic or functional methods.

Fluorescence-activated cell sorting (FACS)

Experimental technique to select cells based on physical and chemical characteristics of individual cells. Single cells from a sample are suspended in a fluid and then injected into an instrument that uses lasers to detect cell morphology and fluorescently labelled features and sort cells based on these qualities.

Gene regulatory network (analysis)

A gene regulatory network is a set of interacting regulatory elements and genes that jointly control expression patterns that dictate a specific cell function.

Genome-wide association studies (GWASs)

Statistical procedure to identify associations between individual genetic variants and variation in continuous traits (for example, height) or risk of disease (for example, type 2 diabetes).

Interaction

Interplay between different sources of variation (for example, genetic variation and environmental exposure — GxE) that results in a joint effect on the trait of interest beyond the individual additive effects.

Mendelian randomization

Statistical method using measured variation in an instrumental variable (for example, a genetic variant) to test the causal effect of an exposure (for example, the expression of a gene) on an outcome (for example, a common trait or disease).

Minor allele frequency

Population frequency for the least common (that is, minor) alleles within the population of interest.

Non-negative matrix factorization

Dimensionality reduction method to decompose a matrix of non-negative values into two matrices of vectors capturing the essential features of a data set. Unlike principal component analysis, non-negative matrix factorization components are not orthogonal.

Polygenic risk scores (PRSs)

Quantification of total risk of an individual for a given disease based on genetic contributors alone. PRSs are calculated by summing the dosage of an individual of thousands of variants weighted by the strength of their association with the trait (as estimated from a genome-wide association study for that trait).

Principal component analysis (PCA)

Dimensionality reduction method to identify main orthogonal axes of variation in a dataset, called ‘principal components’.

Pseudotime

Approximate ordering of cells along a latent dimension based on single-cell RNA sequencing data. The ordering represents sequential changes along a transition (for example, during cell differentiation).

Response eQTL

An association between a genetic variant and RNA level (that is, an expression quantitative trait locus) that only becomes apparent when the cells the RNA is measured in are stimulated in some way (for example, immune activation).

Single-cell phenotypes

Cell characteristics (for example, function, gene expression and position along a transition) that can be estimated using single-cell-resolved molecular profiling (for example, single-cell RNA sequencing).

Sparse

Containing a large number of 0s. In single-cell data, sparsity is due to the combination of inefficient sampling and true absence of expression.

Trajectory inference

Also known as trajectory mapping. A computational technique used in single-cell data to determine the form of a dynamic process experienced by cells (for example, lineage specification and differentiation) and then arrange cells based on their progression through the process, usually using a pseudotime approach.

Transcriptome-wide association studies (TWASs)

Statistical method that uses estimated associations between variants and gene expression (for example, from expression quantitative trait locus studies) to infer expression for all individuals in a genome-wide association study and to identify associations between genes and traits/diseases.

Unique molecular identifiers (UMI)

Complex indices added to sequencing libraries before any PCR amplification steps, enabling the accurate bioinformatic identification of PCR duplicates. They are common in many single-cell RNA sequencing protocols.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuomo, A.S.E., Nathan, A., Raychaudhuri, S. et al. Single-cell genomics meets human genetics. Nat Rev Genet 24, 535–549 (2023). https://doi.org/10.1038/s41576-023-00599-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00599-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research