Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects

Abstract

The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The splicing mechanism and the spliceosome.
Fig. 2: Early splice site recognition and exon definition.
Fig. 3: A timeline of key events in cracking the ‘splicing code’.
Fig. 4: Therapeutic targeting of splice site recognition and exon definition.
Fig. 5: Co-transcriptional splicing.

Similar content being viewed by others

References

  1. Irimia, M. & Roy, S. W. Origin of spliceosomal introns and alternative splicing. Cold Spring Harb. Perspect. Biol. 6, a016071 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Plaschka, C., Newman, A. J. & Nagai, K. Structural basis of nuclear pre-mRNA splicing: lessons from yeast. Cold Spring Harb. Perspect. Biol. 11, a032391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wan, R., Bai, R., Yan, C., Lei, J. & Shi, Y. Structures of the catalytically activated yeast spliceosome reveal the mechanism of branching. Cell 177, 339–351 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kastner, B., Will, C. L., Stark, H. & Lührmann, R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb. Perspect. Biol. 11, a032417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tholen, J. & Galej, W. P. Structural studies of the spliceosome: bridging the gaps. Curr. Opin. Struct. Biol. 77, 102461 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Wahl, M. C., Will, C. L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Turunen, J. J., Niemelä, E. H., Verma, B. & Frilander, M. J. The significant other: splicing by the minor spliceosome. Wiley Interdiscip. Rev. RNA 4, 61–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zavolan, M. & Kanitz, A. RNA splicing and its connection with other regulatory layers in somatic cell reprogramming. Curr. Opin. Cell Biol. 52, 8–13 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Scotti, M. M. & Swanson, M. S. RNA mis-splicing in disease. Nat. Rev. Genet. 17, 19–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Manning, K. S. & Cooper, T. A. The roles of RNA processing in translating genotype to phenotype. Nat. Rev. Mol. Cell Biol. 18, 102–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Wright, C. J., Smith, C. W. J. & Jiggins, C. D. Alternative splicing as a source of phenotypic diversity. Nat. Rev. Genet. 23, 697–710 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Gebauer, F., Schwarzl, T., Valcárcel, J. & Hentze, M. W. RNA-binding proteins in human genetic disease. Nat. Rev. Genet. 22, 185–198 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017). This study provides evidence for the clinical benefit of splicing modulation in the treatment of a human genetic disorder.

    Article  CAS  PubMed  Google Scholar 

  18. Bonnal, S. C., López-Oreja, I. & Valcárcel, J. Roles and mechanisms of alternative splicing in cancer — implications for care. Nat. Rev. Clin. Oncol. 17, 457–474 (2020).

    Article  PubMed  Google Scholar 

  19. Shen, H. et al. Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell 184, 2843–2859 (2021). This study reveals an unexpected link between splicing activity and cell totipotency, with potential applications in regenerative medicine.

    Article  CAS  PubMed  Google Scholar 

  20. To, K. K. W. & Cho, W. C. S. An overview of rational design of mRNA-based therapeutics and vaccines. Expert. Opin. Drug. Discov. 16, 1307–1317 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Black, D. L. Finding splice sites within a wilderness of RNA. RNA 1, 763–771 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu, S. X. et al. Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell 184, 4032–4047 (2021). This study illustrates the potential of splicing inhibitors to enhance the generation of neoantigens expressed in cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kondo, Y., Oubridge, C., van Roon, A. M. M. & Nagai, K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5’ splice site recognition. eLife 4, 1–19 (2015).

    Article  Google Scholar 

  24. Slaugenhaupt, S. A. et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 68, 598–605 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dietrich, P. & Dragatsis, I. Familial dysautonomia: mechanisms and models. Genet. Mol. Biol. 39, 497–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shuai, S. et al. The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature 574, 712–716 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki, H. et al. Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature 574, 707–711 (2019). Shuai et al. and Suzuki et al. show that mutations in snRNAs can promote cancer progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roca, X. & Krainer, A. R. Recognition of atypical 5′ splice sites by shifted base-pairing to U1 snRNA. Nat. Struct. Mol. Biol. 16, 176–182 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roca, X. et al. Widespread recognition of 5′ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes. Dev. 26, 1098–1109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roca, X., Krainer, A. R. & Eperon, I. C. Pick one, but be quick: 5′ splice sites and the problems of too many choices. Genes. Dev. 27, 129–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wong, M. S., Kinney, J. B. & Krainer, A. R. Quantitative activity profile and context dependence of all human 5′ splice sites. Mol. Cell 71, 1012–1026.e3 (2018). This study presents a systematic assessment of the activity and context dependence of sequence variation at 5’ splice sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aznarez, I. et al. A systematic analysis of intronic sequences downstream of 5′ splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation. Genome Res. 18, 1247–1258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, Y. et al. Dynamic regulation of alternative splicing by silencers that modulate 5′ splice site competition. Cell 135, 1224–1236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Plaschka, C., Lin, P. C., Charenton, C. & Nagai, K. Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature 559, 419–422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jourdain, A. A. et al. Loss of LUC7L2 and U1 snRNP subunits shifts energy metabolism from glycolysis to OXPHOS. Mol. Cell 81, 1905–1919 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh, N. N., Singh, R. N. & Androphy, E. J. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 35, 371–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hua, Y. et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478, 123–126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jha, N. N., Kim, J. K. & Monani, U. R. Motor neuron biology and disease: a current perspective on infantile-onset spinal muscular atrophy. Future Neurol. 13, 161–172 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Albrechtsen, S. S., Born, A. P. & Boesen, M. S. Nusinersen treatment of spinal muscular atrophy — a systematic review. Dan. Med. J. 67, 1–12 (2020).

    Google Scholar 

  40. Ratni, H. et al. Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61, 6501–6517 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Darras, B. T. et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N. Engl. J. Med. 385, 427–435 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Campagne, S. et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat. Chem. Biol. 15, 1191–1198 (2019). This study provides the molecular rationale for the specific effects of a small molecule modulator of 5’ splice recognition.

    Article  CAS  PubMed  Google Scholar 

  43. Singh, R. N., Seo, J. & Singh, N. N. RNA in spinal muscular atrophy: therapeutic implications of targeting. Expert. Opin. Ther. Targets 24, 731–743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alanis, E. F. et al. An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects. Hum. Mol. Genet. 21, 2389–2398 (2012).

    Article  Google Scholar 

  45. Rogalska, M. E. et al. Therapeutic activity of modified U1 core spliceosomal particles. Nat. Commun. 7, 11168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Donegà, S. et al. Rescue of common exon-skipping mutations in cystic fibrosis with modified U1 snRNAs. Hum. Mutat. 41, 2143–2154 (2020).

    Article  PubMed  Google Scholar 

  47. Donadon, I. et al. Rescue of spinal muscular atrophy mouse models with AAV9-exon-specific U1 snRNA. Nucleic Acids Res. 47, 7618–7632 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Balestra, D. et al. Splicing mutations impairing CDKL5 expression and activity can be efficiently rescued by U1snRNA-based therapy. Int. J. Mol. Sci. 20, 4130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664–668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oh, J. M. et al. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat. Commun. 11, 1–8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sinha, R. et al. Antisense oligonucleotides correct the familial dysautonomia splicing defect in IKBKAP transgenic mice. Nucleic Acids Res. 46, 4833–4844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bruun, G. H. et al. Blocking of an intronic splicing silencer completely rescues IKBKAP exon 20 splicing in familial dysautonomia patient cells. Nucleic Acids Res. 46, 7938–7952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Donadon, I. et al. Exon-specific U1 snRNAs improve ELP1 exon 20 definition and rescue ELP1 protein expression in a familial dysautonomia mouse model. Hum. Mol. Genet. 27, 2466–2476 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Axelrod, F. B. et al. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr. Res. 70, 480–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hims, M. M. et al. Therapeutic potential and mechanism of kinetin as a treatment for the human splicing disease familial dysautonomia. J. Mol. Med. 85, 149–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Yoshida, M. et al. Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc. Natl Acad. Sci. USA 112, 2764–2769 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ajiro, M. et al. Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nat. Commun. 12, 1–12 (2021).

    Google Scholar 

  59. Zhang, J. et al. Correction of Bcl-x splicing improves responses to imatinib in chronic myeloid leukaemia cells and mouse models. Br. J. Haematol. 189, 1141–1150 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Osorio, F. G. et al. Hutchinson–Gilford progeria: splicing-directed therapy in a new mouse model of human accelerated aging. Sci. Transl. Med. 3, 1–12 (2011).

    Article  Google Scholar 

  61. Pineda, J. M. B. & Bradley, R. K. Most human introns are recognized via multiple and tissue-specific branchpoints. Genes. Dev. 32, 577–591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Shirai, C. L. et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 27, 631–643 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park, S. M. et al. U2AF35(S34F) promotes transformation by directing aberrant ATG7 pre-mRNA 3′ end formation. Mol. Cell 62, 479–490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Biancon, G. et al. Precision analysis of mutant U2AF1 activity reveals deployment of stress granules in myeloid malignancies. Mol. Cell 82, 1107–1122.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Maji, D. et al. Representative cancer-associated U2AF2 mutations alter RNA interactions and splicing. J. Biol. Chem. 295, 17148–17157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cretu, C. et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 64, 307–319 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Cretu, C. et al. Structural basis of splicing modulation by antitumor macrolide compounds. Mol. Cell 70, 265–273 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Teng, T. et al. Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A–SF3b complex. Nat. Commun. 8, 1–16 (2017).

    Article  Google Scholar 

  70. Zhang, Z. et al. Molecular architecture of the human 17S U2 snRNP. Nature 583, 310–313 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Seiler, M. et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat. Med. 24, 497–504 (2018). This study reports the development of an SF3B1 inhibitor that has greater effects in cancer cells that have mutations in SF3B1 components.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mangaonkar, A. A. et al. Prognostic interaction between bone marrow morphology and SF3B1 and ASXL1 mutations in myelodysplastic syndromes with ring sideroblasts. Blood Cancer J. 8, 1–4 (2018).

    Article  Google Scholar 

  73. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2011).

    Article  PubMed  Google Scholar 

  74. Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Furney, S. J. et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov. 3, 1122–1129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rose, A. M. et al. Detection of mutations in SF3B1, EIF1AX and GNAQ in primary orbital melanoma by candidate gene analysis. BMC Cancer 18, 1–9 (2018).

    Article  Google Scholar 

  77. Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Shiozawa, Y. et al. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat. Commun. 9, 3649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhang, J. et al. Disease-causing mutations in SF3B1 alter splicing by disrupting interaction with SUGP1. Mol. Cell 76, 82–95 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Inoue, D. et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 574, 432–436 (2019). This study shows that mutations in SF3B1 converge on repression of the tumour suppressor BRD9 by activation of a poison exon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dolatshad, H. et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia 30, 2322–2331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, S. C. W. et al. Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell 34, 225–241 (2018). This study explains the synthetic lethality of splicing mutations in myelodydplastic syndrome as a consequence of aberrant splicing and downregulation of regulators of haematopoietic stem cell survival and quiescence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, L. et al. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell 30, 750–763 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Desterro, J., Bak-Gordon, P. & Carmo-Fonseca, M. Targeting mRNA processing as an anticancer strategy. Nat. Rev. Drug. Discov. 19, 112–129 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Corrionero, A., Miñana, B. & Valcárcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes. Dev. 25, 445–459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xargay-Torrent, S. et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget 6, 22734–22749 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Larrayoz, M. et al. The SF3B1 inhibitor spliceostatin A (SSA) elicits apoptosis in chronic lymphocytic leukaemia cells through downregulation of Mcl-1. Leukemia 30, 351–360 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Gao, Y. & Koide, K. Chemical perturbation of Mcl-1 pre-mRNA splicing to induce apoptosis in cancer cells. ACS Chem. Biol. 8, 895–900 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vigevani, L., Gohr, A., Webb, T., Irimia, M. & Valcárcel, J. Molecular basis of differential 3′ splice site sensitivity to anti-tumor drugs targeting U2 snRNP. Nat. Commun. 8, 2100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017). This study reports a splicing-based mechanism for the anticancer activity of sulfonamides and highlights the relevance of controlling RBM39 levels in haematopoietic and lymphoid cancer cell lineages.

    Article  PubMed  Google Scholar 

  91. Wang, E. et al. Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell 35, 369–384 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jayasinghe, R. G. et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 23, 270–281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224 (2018). This study reveals extensive generation of tumour-specific alternative splicing events with the potential to generate MHC class I-binding neoantigen peptides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, L. et al. Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer. Br. J. Cancer 123, 1024–1032 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Charenton, C., Wilkinson, M. E. & Nagai, K. Mechanism of 5′ splice site transfer for human spliceosome activation. Science 364, 362–367 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sharma, S., Wongpalee, S. P., Vashisht, A., Wohlschlegel, J. A. & Black, D. L. Stem–loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly. Genes. Dev. 28, 2518–2531 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Martelly, W., Fellows, B., Senior, K., Marlowe, T. & Sharma, S. Identification of a noncanonical RNA binding domain in the U2 snRNP protein SF3A1. RNA 25, 1509–1521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martelly, W. et al. Synergistic roles for human U1 snRNA stem–loops in pre-mRNA splicing. RNA Biol. 18, 2576–2593 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Abovich, N. & Rosbash, M. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89, 403–412 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Becerra, S., Andrés-León, E., Prieto-Sánchez, S., Hernández-Munain, C. & Suñé, C. Prp40 and early events in splice site definition. Wiley Interdiscip. Rev. RNA 7, 17–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. De Conti, L., Baralle, M. & Buratti, E. Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip. Rev. RNA 4, 49–60 (2013).

    Article  PubMed  Google Scholar 

  102. Schneider, M. et al. Exon definition complexes contain the tri-snRNP and can be directly converted into B-like precatalytic splicing complexes. Mol. Cell 38, 223–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Robberson, B. L., Cote, G. J. & Berget, S. M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10, 84–94 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Gonatopoulos-Pournatzis, T. & Blencowe, B. J. Microexons: at the nexus of nervous system development, behaviour and autism spectrum disorder. Curr. Opin. Genet. Dev. 65, 22–33 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Gonatopoulos-Pournatzis, T. et al. Autism-misregulated eIF4G microexons control synaptic translation and higher order cognitive functions. Mol. Cell 77, e16 (2020).

    Article  Google Scholar 

  107. Parras, A. et al. Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing. Nature 560, 441–446 (2018). Gonatopoulos-Pournatzis et al. and Parras et al. reveal a link between misregulation of microexons in the cap-binding translation factor eIF4G and autism disorder.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ule, J. & Blencowe, B. J. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell 76, 329–345 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Gonatopoulos-Pournatzis, T. et al. Genome-wide CRISPR–Cas9 interrogation of splicing networks reveals a mechanism for recognition of autism-misregulated neuronal microexons. Mol. Cell 72, 510–524 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Choudhary, B., Marx, O. & Norris, A. D. Spliceosomal component PRP-40 is a central regulator of microexon splicing. Cell Rep. 36, 109464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Salz, H. K. Sex determination in insects: a binary decision based on alternative splicing. Curr. Opin. Genet. Dev. 21, 395–400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat. Genet. 37, 844–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Roy Burman, D., Das, S., Das, C. & Bhattacharya, R. Alternative splicing modulates cancer aggressiveness: role in EMT/metastasis and chemoresistance. Mol. Biol. Rep. 48, 897–914 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Ke, S. et al. Saturation mutagenesis reveals manifold determinants of exon definition. Genome Res. 28, 11–24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fu, X. D. & Ares, M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wu, J. Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993).

    Article  CAS  PubMed  Google Scholar 

  117. Jobbins, A. M. et al. The mechanisms of a mammalian splicing enhancer. Nucleic Acids Res. 46, 2145–2158 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Clerte, C. & Hall, K. B. Characterization of multimeric complexes formed by the human PTB1 protein on RNA. RNA 12, 457–475 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Braun, J. E., Friedman, L. J., Gelles, J. & Moore, M. J. Synergistic assembly of human pre-spliceosomes across introns and exons. eLife 7, 1–18 (2018).

    Article  Google Scholar 

  120. Sharma, S., Maris, C., Allain, F. H. T. & Black, D. L. U1 snRNA directly interacts with polypyrimidine tract-binding protein during splicing repression. Mol. Cell 41, 579–588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gueroussov, S. et al. Regulatory expansion in mammals of multivalent hnRNP assemblies that globally control alternative splicing. Cell 170, 324–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Ying, Y. et al. Splicing activation by Rbfox requires self-aggregation through its tyrosine-rich domain. Cell 170, 312–323 (2017). Gueroussov et al. and Ying et al. illustrate the importance of intrinsically disordered domains mediating higher order multivalent assemblies for the function of various families of splicing regulatory factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Witten, J. T. & Ule, J. Understanding splicing regulation through RNA splicing maps. Trends Genet. 27, 89–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yee, B. A., Pratt, G. A., Graveley, B. R., van Nostrand, E. L. & Yeo, G. W. RBP-Maps enables robust generation of splicing regulatory maps. RNA 25, 193–204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mikl, M., Hamburg, A., Pilpel, Y. & Segal, E. Dissecting splicing decisions and cell-to-cell variability with designed sequence libraries. Nat. Commun. 10, 1–14 (2019).

    Article  CAS  Google Scholar 

  126. Julien, P., Miñana, B., Baeza-Centurion, P., Valcárcel, J. & Lehner, B. The complete local genotype–phenotype landscape for the alternative splicing of a human exon. Nat. Commun. 7, 1–8 (2016).

    Article  Google Scholar 

  127. Baeza-Centurion, P., Miñana, B., Schmiedel, J. M., Valcárcel, J. & Lehner, B. Combinatorial genetics reveals a scaling law for the effects of mutations on splicing. Cell 176, 549–563 (2019). Deep mutagenesis of an alternatively spliced exon reveals that the effect of a mutation is maximal at intermediate initial levels of exon inclusion.

    Article  CAS  PubMed  Google Scholar 

  128. Baeza-Centurion, P., Miñana, B., Valcárcel, J. & Lehner, B. Mutations primarily alter the inclusion of alternatively spliced exons. eLife 9, 1–74 (2020).

    Article  Google Scholar 

  129. Souček, P. et al. High-throughput analysis revealed mutations’ diverging effects on SMN1 exon 7 splicing. RNA Biol. 16, 1364–1376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Braun, S. et al. Decoding a cancer-relevant splicing decision in the RON proto-oncogene using high-throughput mutagenesis. Nat. Commun. 9, 3315 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Soemedi, R. et al. Pathogenic variants that alter protein code often disrupt splicing. Nat. Genet. 49, 848–855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rong, S. et al. Mutational bias and the protein code shape the evolution of splicing enhancers. Nat. Commun. 11, 1–10 (2020).

    Article  Google Scholar 

  133. Mueller, W. F., Larsen, L. S. Z., Garibaldi, A., Hatfield, G. W. & Hertel, K. J. The silent sway of splicing by synonymous substitutions. J. Biol. Chem. 290, 27700–27711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dufner-Almeida, L. G., do Carmo, R. T., Masotti, C. & Haddad, L. A. Understanding human DNA variants affecting pre-mRNA splicing in the NGS era. Adv. Genet. 103, 39–90 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Cummings, B. B. et al. Transcript expression-aware annotation improves rare variant interpretation. Nature 581, 452–458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Supek, F., Miñana, B., Valcárcel, J., Gabaldón, T. & Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156, 1324–1335 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Sharma, Y. et al. A pan-cancer analysis of synonymous mutations. Nat. Commun. 10, 2569 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rosenberg, A. B., Patwardhan, R. P., Shendure, J. & Seelig, G. Learning the sequence determinants of alternative splicing from millions of random sequences. Cell 163, 698–711 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Ke, S. et al. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res. 21, 1360–1374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Arias, M. A., Lubkin, A. & Chasin, L. A. Splicing of designer exons informs a biophysical model for exon definition. RNA 21, 213–229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548 (2019). This study developed a deep neural network to predict splice site utilization, including cryptic splice sites induced by genetic variants associated with autism and intellectual disability.

    Article  CAS  PubMed  Google Scholar 

  142. Bao, S., Moakley, D. F. & Zhang, C. The splicing code goes deep. Cell 176, 414–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Cheng, J. et al. MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol. 20, 1–15 (2019).

    Article  Google Scholar 

  144. Rhine, C. L. et al. Future directions for high-throughput splicing assays in precision medicine. Hum. Mutat. 40, 1225–1234 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Riepe, T. V., Khan, M., Roosing, S., Cremers, F. P. M. & t Hoen, P. A. C. Benchmarking deep learning splice prediction tools using functional splice assays. Hum. Mutat. 42, 799–810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cheung, R. et al. A multiplexed assay for exon recognition reveals that an unappreciated fraction of rare genetic variants cause large-effect splicing disruptions. Mol. Cell 73, 183–194 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Lim, K. R. Q., Maruyama, R. & Yokota, T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug. Des. Devel. Ther. 11, 533–545 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Beyer, A. L. & Osheim, Y. N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes. Dev. 2, 754–765 (1988).

    Article  CAS  PubMed  Google Scholar 

  149. Carrillo Oesterreich, F. et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell 165, 372–381 (2016).

    Article  CAS  Google Scholar 

  150. Neugebauer, K. M. Nascent RNA and the coordination of splicing with transcription. Cold Spring Harb. Perspect. Biol. 11, a032227 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Custódio, N. & Carmo-Fonseca, M. Co-transcriptional splicing and the CTD code. Crit. Rev. Biochem. Mol. Biol. 51, 395–411 (2016).

    Article  PubMed  Google Scholar 

  152. Moon, K. H., Zhao, X. & Yu, Y. T. Pre-mRNA splicing in the nuclei of Xenopus oocytes. Methods Mol. Biol. 322, 149–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Herzel, L., Ottoz, D. S. M., Alpert, T. & Neugebauer, K. M. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18, 637–650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Anvar, S. Y. et al. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. Genome Biol. 19, 1–18 (2018).

    Article  Google Scholar 

  155. Giono, L. E. & Kornblihtt, A. R. Linking transcription, RNA polymerase II elongation and alternative splicing. Biochem. J. 477, 3091–3104 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Bentley, D. L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dujardin, G. et al. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell 54, 683–690 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Godoy Herz, M. A. et al. Light regulates plant alternative splicing through the control of transcriptional elongation. Mol. Cell 73, 1066–1074 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Maslon, M. M. et al. A slow transcription rate causes embryonic lethality and perturbs kinetic coupling of neuronal genes. EMBO J. 38, 1–18 (2019).

    Article  Google Scholar 

  160. Chathoth, K. T., Barrass, J. D., Webb, S. & Beggs, J. D. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol. Cell 53, 779–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fiszbein, A., Krick, K. S., Begg, B. E. & Burge, C. B. Exon-mediated activation of transcription starts. Cell 179, 1551–1565 (2019). This study provides evidence for the general mechanisms by which alternative splicing influences alternative transcription initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3′ end cleavage during mammalian erythropoiesis. Mol. Cell 81, 998–1012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bedi, K. et al. Cotranscriptional splicing efficiencies differ within genes and between cell types. RNA 27, 829–840 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Sousa-Luís, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol. Cell 81, 1935–1950 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Tilgner, H. et al. Microfluidic isoform sequencing shows widespread splicing coordination in the human transcriptome. Genome Res. 28, 231–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018). This technique allows for high-resolution discovery and analysis of alternative splicing in individual cells from complex tissues.

    Article  CAS  Google Scholar 

  168. Gordon, J. M., Phizicky, D. V. & Neugebauer, K. M. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr. Opin. Genet. Dev. 67, 67–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Boutz, P. L., Bhutkar, A. & Sharp, P. A. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes. Dev. 29, 63–80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Naro, C. et al. An orchestrated intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation. Dev. Cell 41, 82–93 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mauger, O., Lemoine, F. & Scheiffele, P. Targeted intron retention and excision for rapid gene regulation in response to neuronal activity. Neuron 92, 1266–1278 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Braun, C. J. et al. Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32, 411–426 (2017). This study demonstrates the relevance of a splicing regulatory programme affecting detained introns in cancer cells and its potential targeting using inihibitors of argininine methylation enzymes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ilık, İ. A. et al. SON and SRRM2 are essential for nuclear speckle formation. eLife 9, 1–48 (2020).

    Article  Google Scholar 

  175. Ilık, İ. A. & Aktaş, T. Nuclear speckles: dynamic hubs of gene expression regulation. FEBS J. https://doi.org/10.1111/febs.16117 (2021).

    Article  PubMed  Google Scholar 

  176. Girard, C. et al. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat. Commun. 3, 994 (2012).

    Article  PubMed  Google Scholar 

  177. Dias, A. P., Dufu, K., Lei, H. & Reed, R. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat. Commun. 1, 97 (2010).

    Article  PubMed  Google Scholar 

  178. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019). This study reveals the existence of functionally distinct nuclear condensates involved in transcription initiation and RNA processing and the role of protein phosphorylation in the switch between them.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Barutcu, A. R. et al. Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol. Cell 82, 1035–1052 (2022).

    Article  CAS  PubMed  Google Scholar 

  180. Tammer, L. et al. Gene architecture directs splicing outcome in separate nuclear spatial regions. Mol. Cell 82, 1021–1034 (2022). Barutcu et al. and Tammer et al. reveal that the nuclear sub-localization of transcription influences alternative splicing decisions.

    Article  CAS  PubMed  Google Scholar 

  181. Amit, M. et al. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep. 1, 543–556 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Iannone, C. & Valcárcel, J. Chromatin’s thread to alternative splicing regulation. Chromosoma 122, 465–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. de Almeida, S. F. & Carmo-Fonseca, M. Reciprocal regulatory links between cotranscriptional splicing and chromatin. Semin. Cell Dev. Biol. 32, 2–10 (2014).

    Article  PubMed  Google Scholar 

  184. Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Segelle, A. et al. Histone marks regulate the epithelial-to-mesenchymal transition via alternative splicing. Cell Rep. 38, 110357 (2022). An early demonstration that modification of chromatin epigenetic marks can directly affect splice site choice.

    Article  CAS  PubMed  Google Scholar 

  187. Marasco, L. E. et al. Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy. Cell 185, 2057–2070 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Helm, M. & Motorin, Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet. 18, 275–291 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Mendel, M. et al. Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell 184, 1–18 (2021).

    Article  Google Scholar 

  192. Pendleton, K. E. et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835 (2017). Mendel et al. and Pendleton et al. link m6A modification of pre-mRNAs with splicing regulation events important for S-adenosylmethionine homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhou, K. I. et al. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Mol. Cell 76, 70–81 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Kasowitz, S. D. et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 14, 1–28 (2018).

    Article  Google Scholar 

  196. Louloupi, A., Ntini, E., Conrad, T. & Ørom, U. A. V. Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep. 23, 3429–3437 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Ke, S. et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes. Dev. 31, 990–1006 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Martinez, N. M. et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 82, 645–659 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Morais, P., Adachi, H. & Yu, Y.-T. Spliceosomal snRNA epitranscriptomics. Front. Genet. 12, 652129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Goh, Y. T., Koh, C. W. Q., Sim, D. Y., Roca, X. & Goh, W. S. S. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res. 48, 9250–9261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lu, Z. & Chang, H. Y. Decoding the RNA structurome. Curr. Opin. Struct. Biol. 36, 142–148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Saldi, T., Riemondy, K., Erickson, B. & Bentley, D. L. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol. Cell 81, 1789–1801 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Bartys, N., Kierzek, R. & Lisowiec-Wachnicka, J. The regulation properties of RNA secondary structure in alternative splicing. Biochim. Biophys. Acta — Gene Regul. Mech. 1862, 194401 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Xu, B., Meng, Y. & Jin, Y. RNA structures in alternative splicing and back-splicing. Wiley Interdiscip. Rev. RNA 12, 1–39 (2021).

    Article  Google Scholar 

  206. Meyer, M., Plass, M., Pérez-Valle, J., Eyras, E. & Vilardell, J. Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Mol. Cell 43, 1033–1039 (2011).

    Article  CAS  PubMed  Google Scholar 

  207. Kalmykova, S. et al. Conserved long-range base pairings are associated with pre-mRNA processing of human genes. Nat. Commun. 12, 1–17 (2021).

    Article  Google Scholar 

  208. Warf, M. B., Diegel, J. V., Von Hippel, P. H. & Berglund, J. A. The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc. Natl Acad. Sci. USA 106, 9203–9208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Varani, L. et al. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl Acad. Sci. USA 96, 8229–8234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kar, A. et al. RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem–loop structure at the 5′ splice site. Mol. Cell. Biol. 31, 1812–1821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Singh, N. N. & Singh, R. N. How RNA structure dictates the usage of a critical exon of spinal muscular atrophy gene. Biochim. Biophys. Acta—Gene Regul. Mech. 1862, 194403 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Georgakopoulos-Soares, I. et al. Alternative splicing modulation by G-quadruplexes. Nat. Commun. 13, 2404 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Huang, H., Zhang, J., Harvey, S. E., Hu, X. & Cheng, C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes. Dev. 31, 2296–2309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Fish, L. et al. A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. Science 372, eabc7531 (2021). Early evidence that a structural splicing enhancer coordinates an exon inclusion programme relevant for highly metastatic cancer cells. This regulatory element is activated by a non-canonical function of the snRNP protein SNRPA1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Dubin, R. A., Kazmi, M. A. & Ostrer, H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene 167, 245–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  216. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 426 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  217. Ashwal-Fluss, R. et al. CircRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  219. Liang, D. & Wilusz, J. E. Short intronic repeat sequences facilitate circular RNA production. Genes. Dev. 28, 2233–2247 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Ivanov, A. et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10, 170–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Gruhl, F., Janich, P., Kaessmann, H. & Gatfield, D. Circular RNA repertoires are associated with evolutionarily young transposable elements. eLife 10, 1–33 (2021).

    Article  Google Scholar 

  222. Santos-Rodriguez, G., Voineagu, I. & Weatheritt, R. J. Evolutionary dynamics of circular rnas in primates. eLife 10, 1–22 (2021).

    Article  Google Scholar 

  223. Xu, C. & Zhang, J. Mammalian circular RNAs result largely from splicing errors. Cell Rep. 36, 109439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Du, W. W. et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  226. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

    Article  PubMed  Google Scholar 

  227. Li, S. et al. Screening for functional circular RNAs using the CRISPR–Cas13 system. Nat. Methods 18, 51–59 (2021).

    Article  PubMed  Google Scholar 

  228. Pamudurti, N. R. et al. Translation of CircRNAs. Mol. Cell 66, 9–21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Weigelt, C. M. et al. An insulin-sensitive circular RNA that regulates lifespan in Drosophila. Mol. Cell 79, 268–279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hansen, T. B. Signal and noise in circRNA translation. Methods 196, 68–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat. Commun. 12, 1–16 (2021).

    Article  Google Scholar 

  234. Dominguez, D. et al. Sequence, structure, and context preferences of human RNA binding proteins. Mol. Cell 70, 854–867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020). A massive effort to identify binding sites on RNA and chromatin for 356 RNA binding proteins and to determine the functional implications for RNA stability, splicing regulation and RNA localization.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Van Nostrand, E. L. et al. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biol. 21, 1–26 (2020).

    Google Scholar 

  237. Feng, H. et al. Complexity and graded regulation of neuronal cell-type-specific alternative splicing revealed by single-cell RNA sequencing. Proc. Natl Acad. Sci. USA 118, 1–12 (2021).

    Article  Google Scholar 

  238. Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Song, Y. et al. Single-cell alternative splicing analysis with expedition reveals splicing dynamics during neuron differentiation. Mol. Cell 67, 148–161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Liu, W. & Zhang, X. Single-cell alternative splicing analysis reveals dominance of single transcript variant. Genomics 112, 2418–2425 (2020).

    Article  CAS  PubMed  Google Scholar 

  241. Huang, Y. & Sanguinetti, G. BRIE2: computational identification of splicing phenotypes from single-cell transcriptomic experiments. Genome Biol. 22, 1–15 (2021).

    Article  Google Scholar 

  242. Linker, S. M. et al. Combined single-cell profiling of expression and DNA methylation reveals splicing regulation and heterogeneity. Genome Biol. 20, 1–14 (2019).

    Article  Google Scholar 

  243. Kim, H. S., Grimes, S. M., Hooker, A. C., Lau, B. T. & Ji, H. P. Single-cell characterization of CRISPR-modified transcript isoforms with nanopore sequencing. Genome Biol. 22, 1–16 (2021).

    Article  Google Scholar 

  244. Thompson, M. et al. Splicing in a single neuron is coordinately controlled by RNA binding proteins and transcription factors. eLife 8, 1–19 (2019).

    Article  Google Scholar 

  245. Lukačišin, M., Espinosa-Cantú, A. & Bollenbach, T. Intron-mediated induction of phenotypic heterogeneity. Nature 605, 113–118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Wan, Y. et al. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184, 2878–2895 (2021). This study reports a quasi-genome-scale platform for observing the synthesis and procesing kinetics of single nascent RNA molecules in real time; it reveals large kinetic variation of single intron removal in single cells and widespread stochastic recursive splicing within introns.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Martin, R. M., Rino, J., Carvalho, C., Kirchhausen, T. & Carmo-Fonseca, M. Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep. 4, 1144–1155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Burnette, J. M., Miyamoto-Sato, E., Schaub, M. A., Conklin, J. & Lopez, A. J. Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements. Genetics 170, 661–674 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Sibley, C. R. et al. Recursive splicing in long vertebrate genes. Nature 521, 371–375 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Kim, S. W. et al. Widespread intra-dependencies in the removal of introns from human transcripts. Nucleic Acids Res. 45, 9503–9513 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Jangi, M. & Sharp, P. A. Building robust transcriptomes with master splicing factors. Cell 159, 487–498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Kokic, G., Wagner, F. R., Chernev, A., Urlaub, H. & Cramer, P. Structural basis of human transcription–DNA repair coupling. Nature 598, 368–372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Zhang, S. et al. Structure of a transcribing RNA polymerase II–U1 snRNP complex. Science 371, 305–309 (2021).

    Article  CAS  PubMed  Google Scholar 

  254. Haselbach, D. et al. Structure and conformational dynamics of the human spliceosomal bact complex. Cell 172, 454–464 (2018).

    Article  CAS  PubMed  Google Scholar 

  255. Sebbag-Sznajder, N. et al. Dynamic supraspliceosomes are assembled on different transcripts regardless of their intron number and splicing state. Front. Genet. 11, 1–14 (2020).

    Article  Google Scholar 

  256. Papasaikas, P., Tejedor, J. R., Vigevani, L. & Valcárcel, J. Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery. Mol. Cell 57, 7–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  257. Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  258. Deveson, I. W. et al. Universal alternative splicing of noncoding exons. Cell Syst. 6, 245–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  259. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. North, K. et al. Synthetic introns enable splicing factor mutation-dependent targeting of cancer cells. Nat. Biotechnol. 40, 1103–1113 (2022). In this study, splicing alterations characteristic of cancer cells are leveraged to engineer synthetic introns that are specifically spliced in and induce the death of cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Zhang, X. et al. Structures of the human spliceosomes before and after release of the ligated exon. Cell Res. 29, 274–285 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Tholen, J., Razew, M., Weis, F. & Galej, W. P. Structural basis of branch site recognition by the human spliceosome. Science 375, 50–57 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Zhan, X., Yan, C., Zhang, X., Lei, J. & Shi, Y. Structures of the human pre-catalytic spliceosome and its precursor spliceosome. Cell Res. 28, 1129–1140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Li, X. et al. A unified mechanism for intron and exon definition and back-splicing. Nature 573, 375–380 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zhan, X., Yan, C., Zhang, X., Lei, J. & Shi, Y. Structure of a human catalytic step I spliceosome. Science 359, 537–545 (2018).

    Article  CAS  PubMed  Google Scholar 

  266. Bertram, K. et al. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542, 318–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  267. Fica, S. M., Oubridge, C., Wilkinson, M. E., Newman, A. J. & Nagai, K. A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. Science 363, 710–714 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Townsend, C. et al. Mechanism of protein-guided folding of the active site U2/U6 RNA during spliceosome activation. Science 370, eabc3753 (2020).

    Article  CAS  PubMed  Google Scholar 

  269. Shapiro, M. B. & Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15, 7155–7174 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Reese, M. G., Eeckman, F. H., Kulp, D. & Haussler, D. Improved splice site detection in Genie. J. Comput. Biol. 4, 311–323 (1997).

    Article  CAS  PubMed  Google Scholar 

  271. Pertea, M., Lin, X. & Salzberg, S. L. GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 29, 1185–1190 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  273. Castelo, R. & Guigó, R. Splice site identification by idlBNs. Bioinformatics 20, 69–76 (2004).

    Article  Google Scholar 

  274. Barash, Y. et al. Deciphering the splicing code. Nature 465, 53–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  275. Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015).

    Article  PubMed  Google Scholar 

  276. Jha, A., Gazzara, M. R. & Barash, Y. Integrative deep models for alternative splicing. Bioinformatics 33, i274–i282 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Jha, A. et al. Enhanced integrated gradients: improving interpretability of deep learning models using splicing codes as a case study. Genome Biol. 21, 1–22 (2020).

    Article  CAS  Google Scholar 

  278. Zuallaert, J. et al. Splicerover: interpretable convolutional neural networks for improved splice site prediction. Bioinformatics 34, 4180–4188 (2018).

    Article  CAS  PubMed  Google Scholar 

  279. Bretschneider, H., Gandhi, S., Deshwar, A. G., Zuberi, K. & Frey, B. J. COSSMO: predicting competitive alternative splice site selection using deep learning. Bioinformatics 34, i429–i437 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Cheng, J., Çelik, M. H., Kundaje, A. & Gagneur, J. MTSplice predicts effects of genetic variants on tissue-specific splicing. Genome Biol. 22, 1–19 (2021).

    Google Scholar 

  281. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019).

    Article  CAS  PubMed  Google Scholar 

  282. Rentzsch, P., Schubach, M., Shendure, J. & Kircher, M. CADD-Splice — improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 13, 1–12 (2021).

    Article  Google Scholar 

  283. Zeng, T. & Li, Y. I. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 23, 103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Zhang, X. H. F., Arias, M. A., Shengdong, K. E. & Chasin, L. A. Splicing of designer exons reveals unexpected complexity in pre-mRNA splicing. RNA 15, 367–376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Schirman, D., Yakhini, Z., Pilpel, Y. & Dahan, O. A broad analysis of splicing regulation in yeast using a large library of synthetic introns. PLOS Genet. 17, e1009805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Adamson, S. I., Zhan, L. & Graveley, B. R. Vex-seq: high-throughput identification of the impact of genetic variation on pre-mRNA splicing efficiency. Genome Biol. 19, 1–12 (2018).

    Article  Google Scholar 

  287. Mount, S. M. et al. Assessing predictions of the impact of variants on splicing in CAGI5. Hum. Mutat. 40, 1215–1224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Tubeuf, H. et al. Large-scale comparative evaluation of user-friendly tools for predicting variant-induced alterations of splicing regulatory elements. Hum. Mutat. 41, 1811–1829 (2020).

    Article  CAS  PubMed  Google Scholar 

  289. Cortés-López, M. et al. High-throughput mutagenesis identifies mutations and RNA-binding proteins controlling CD19 splicing and CART-19 therapy resistance. Nat. Commun. 13, 5570 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon–intron structure. Nat. Struct. Mol. Biol. 16, 990–995 (2009).

    Article  CAS  PubMed  Google Scholar 

  292. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 16, 996–1001 (2009).

    Article  CAS  PubMed  Google Scholar 

  293. Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C. & Komorowski, J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res. 19, 1732–1741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. David, C. J., Boyne, A. R., Millhouse, S. R. & Manley, J. L. The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65–Prp19 complex. Genes. Dev. 25, 972–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Morgan, J. T., Fink, G. R. & Bartel, D. P. Excised linear introns regulate growth in yeast. Nature 565, 606–611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Parenteau, J. et al. Introns are mediators of cell response to starvation. Nature 565, 612–617 (2019).

    Article  CAS  PubMed  Google Scholar 

  297. Mattick, J. S. & Gagen, M. J. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol. Biol. Evol. 18, 1611–1630 (2001).

    Article  CAS  PubMed  Google Scholar 

  298. Dieci, G., Preti, M. & Montanini, B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 94, 83–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  299. Kelemen, O. et al. Function of alternative splicing. Gene 514, 1–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  300. Vuong, C. K., Black, D. L. & Zheng, S. The neurogenetics of alternative splicing. Nat. Rev. Neurosci. 17, 265–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Tress, M. L., Abascal, F. & Valencia, A. Alternative splicing may not be the key to proteome complexity. Trends Biochem. Sci. 42, 98–110 (2017).

    Article  CAS  PubMed  Google Scholar 

  302. Rodriguez, J. M., Pozo, F., Di Domenico, T., Vazquez, J. & Tress, M. L. An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput. Biol. 16, e1008287 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged landscape of alternative splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol. Cell 46, 884–892 (2012). High-throughput analyses of the impact of alternative splicing reveal widespread effects on the modulation of protein–protein interactions.

    Article  CAS  PubMed  Google Scholar 

  305. Sinha, A. & Nagarajaram, H. A. Effect of alternative splicing on the degree centrality of nodes in protein–protein interaction networks of Homo sapiens. J. Proteome Res. 12, 1980–1988 (2013).

    Article  CAS  PubMed  Google Scholar 

  306. Yang, Y. et al. Determination of a comprehensive alternative splicing regulatory network and combinatorial regulation by key factors during the epithelial-to-mesenchymal transition. Mol. Cell. Biol. 36, 1704–1719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Climente-González, H., Porta-Pardo, E., Godzik, A. & Eyras, E. The functional impact of alternative splicing in cancer. Cell Rep. 20, 2215–2226 (2017).

    Article  PubMed  Google Scholar 

  308. Louadi, Z. et al. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases. Genome Biol. 22, 1–22 (2021).

    Article  Google Scholar 

  309. Ezkurdia, I. et al. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Mol. Biol. Evol. 29, 2265–2283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Buljan, M. et al. Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Curr. Opin. Struct. Biol. 23, 443–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  311. Buljan, M. et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 46, 871–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Lewis, B. P., Green, R. E. & Brenner, S. E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl Acad. Sci. USA 100, 189–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  313. Lindeboom, R. G. H., Supek, F. & Lehner, B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat. Genet. 48, 1112–1118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Supek, F., Lehner, B. & Lindeboom, R. G. H. To NMD or not to NMD: nonsense-mediated mRNA decay in cancer and other genetic diseases. Trends Genet. 37, 657–668 (2021).

    Article  CAS  PubMed  Google Scholar 

  315. Tapial, J. et al. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res. 27, 1759–1768 (2017). This study provides a comprehensive database of alternative splicing in tissues and organisms and facilitates the identification of tissue-specific regulatory programmes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Schlautmann, L. P. & Gehring, N. H. A day in the life of the exon junction complex. Biomolecules 10, 1–17 (2020).

    Article  Google Scholar 

  317. Thomas, J. D. et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat. Genet. 52, 84–94 (2020). This study reports a high-throughput functional analysis of poison exons, revealing their functions in cancer biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Irimia, B. Lehner, members of our group and four reviewers for suggestions on the manuscript. M.E.R. was supported by a MSCA Postdoctoral Fellowship and C.V. by a FPI-Severo Ochoa PhD Fellowship from the Spanish Ministry of Economy and Competitiveness. Work in the authors' laboratory has been supported by the European Research Council, European Innovation Council, LaCaixa Health, Worldwide Cancer Research, AGAUR, Spanish Ministry of Economy and Competitiveness and the Centre of Excellence Severo Ochoa. The authors acknowledge support of the Spanish Ministry of Science and Innovation to the EMBL partnership and the CERCA Programme/Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Juan Valcárcel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks R. Luco, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Genome Aggregation Database: https://gnomad.broadinstitute.org/

Supplementary information

Glossary

Alternative splicing

The process by which intron and/or exon sequences are differentially recognized in different cell types or biological conditions to generate distinct mRNAs and long non-coding RNAs from the same primary transcript.

Back splicing

The process by which a 5′ splice site is spliced to a 3′ splice site located upstream in the same pre-mRNA molecule, leading to the generation of a circular RNA, typically spanning one or a few exons.

Branch point

(BP). An intronic adenosine nucleotide, typically located 15–45 nucleotides 5′ of the 3′ end of introns, which engages in formation of a 2′–5′ phosphodiester bond with the 5′ end of the intron after the first catalytic step of the splicing reaction.

Exon definition

A model for the mutual stabilization of splicing factors recognizing splice sites flanking internal exons in multicellular organisms.

Intron definition

A model for the mutual stabilization of splicing factors recognizing the splice sites across an intron, which likely has a major role in the efficient co-transcriptional splicing of many introns.

Introns

Internal sequences within primary transcripts produced by eukaryotic RNA polymerase II (RNA Pol II) that are removed through the process of pre-mRNA splicing, allowing their flanking sequences (exons) to be spliced together and thus generate functional mRNAs and long non-coding RNAs.

MicroRNAs

A class of small regulatory RNAs whose function is to induce the degradation or repress the translation of mRNAs with which they have full or partial complementarity, respectively. They are often transcribed as part of intronic sequences, from which they are released to be assembled with specific proteins on microRNA-induced silencing complexes.

Premature termination codons

Translation termination codons in mRNA arising from single-nucleotide mutations or from alternative splicing events that disrupt an open reading frame, often leading to mRNA degradation by the process of nonsense-mediated decay.

Recursive splicing

The sequential excision of shorter pieces of a long intron, each piece being separated from the next by a zero-length exon.

Small nucleolar RNAs

(snoRNAs). A class of small regulatory RNAs whose function is to guide the addition of chemical modifications at specific residues in other RNAs, including ribosomal, transfer or small nuclear RNAs (snRNAs). They are often transcribed as part of intronic sequences, from which they are released to be assembled with specific proteins on small nucleolar RNP complexes.

Spliceosome

The molecular machinery involved in intron removal, composed of 5 small nuclear ribonucleoprotein (snRNP) complexes (U1, U2, U4, U5 and U6) and more than 150 accessory proteins.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogalska, M.E., Vivori, C. & Valcárcel, J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 24, 251–269 (2023). https://doi.org/10.1038/s41576-022-00556-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00556-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing