Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spatial biology of cancer evolution

Abstract

The natural history of cancers can be understood through the lens of evolution given that the driving forces of cancer development are mutation and selection of fitter clones. Cancer growth and progression are spatial processes that involve the breakdown of normal tissue organization, invasion and metastasis. For these reasons, spatial patterns are an integral part of histological tumour grading and staging as they measure the progression from normal to malignant disease. Furthermore, tumour cells are part of an ecosystem of tumour cells and their surrounding tumour microenvironment. A range of new spatial genomic, transcriptomic and proteomic technologies offers new avenues for the study of cancer evolution with great molecular and spatial detail. These methods enable precise characterizations of the tumour microenvironment, cellular interactions therein and micro-anatomical structures. In conjunction with spatial genomics, it emerges that tumours and microenvironments co-evolve, which helps explain observable patterns of heterogeneity and offers new routes for therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Spatial biology of cancer evolution.
Fig. 2: Spatial cancer evolution.
Fig. 3: Mapping the cancer ecosystem.
Fig. 4: Evolution of the tumour ecosystem.
Fig. 5: Translational opportunities.

References

  1. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975). A seminal paper discussing the role of somatic evolution as well as tissue anatomies protective against evolution.

    Article  CAS  Google Scholar 

  2. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  Google Scholar 

  3. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 1483–1489 (2015).

    Article  CAS  Google Scholar 

  4. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021). A pan-body atlas of mutations and clonal expansion in normal tissues.

    Article  CAS  Google Scholar 

  5. Li, R. et al. A body map of somatic mutagenesis in morphologically normal human tissues. Nature 597, 398–403 (2021).

    Article  CAS  Google Scholar 

  6. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  Google Scholar 

  7. Greenman, C., Wooster, R., Futreal, P. A., Stratton, M. R. & Easton, D. F. Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 173, 2187–2198 (2006).

    Article  CAS  Google Scholar 

  8. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

    Article  CAS  Google Scholar 

  9. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  Google Scholar 

  10. Gonzalez-Perez, A. et al. IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082 (2013).

    Article  CAS  Google Scholar 

  11. Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018).

    Article  CAS  Google Scholar 

  12. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  13. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  Google Scholar 

  14. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  CAS  Google Scholar 

  15. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012). A seminal paper demonstrating that subclonal diversity is common in breast cancer and reconstructing the evolutionary history of copy number alterations.

    Article  CAS  Google Scholar 

  16. McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 7, 283ra54 (2015).

    Article  Google Scholar 

  17. Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2015).

    Article  Google Scholar 

  18. Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2658 human cancer genomes. Cell 184, 2239–2254.e39 (2021). A demonstration of universal subclonal divergence across cancer types.

    Article  CAS  Google Scholar 

  19. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011). A study pioneering the use of single-cell sequencing for understanding cancer evolution.

    Article  CAS  Google Scholar 

  20. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  Google Scholar 

  21. Casasent, A. K. et al. Multiclonal invasion in breast tumors identified by topographic single. Cell Sequencing. Cell 172, 205–217.e12 (2018).

    CAS  Google Scholar 

  22. McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016).

    Article  CAS  Google Scholar 

  23. Laks, E. et al. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. Cell 179, 1207–1221.e22 (2019).

    Article  CAS  Google Scholar 

  24. Salehi, S. et al. Clonal fitness inferred from time-series modelling of single-cell cancer genomes. Nature 595, 585–590 (2021).

    Article  CAS  Google Scholar 

  25. Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

    Article  CAS  Google Scholar 

  26. Navin, N. et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 20, 68–80 (2010).

    Article  CAS  Google Scholar 

  27. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012). One of the first studies using whole-genome sequencing to study patterns of branching and subclonal variegation in kidney cancer.

    Article  CAS  Google Scholar 

  28. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  Google Scholar 

  29. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  Google Scholar 

  30. Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015).

    Article  CAS  Google Scholar 

  31. Morrissy, A. S. et al. Spatial heterogeneity in medulloblastoma. Nat. Genet. 49, 780–788 (2017).

    Article  CAS  Google Scholar 

  32. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  Google Scholar 

  33. Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020).

    Article  CAS  Google Scholar 

  34. Heide, T. et al. The co-evolution of the genome and epigenome in colorectal cancer. Nature 611, 733–743 (2022).

    Article  CAS  Google Scholar 

  35. Woodcock, D. J. et al. Prostate cancer evolution from multilineage primary to single lineage metastases with implications for liquid biopsy. Nat. Commun. 11, 5070 (2020).

    Article  CAS  Google Scholar 

  36. Grossmann, S. et al. Development, maturation, and maintenance of human prostate inferred from somatic mutations. Cell Stem Cell 28, 1262–1274.e5 (2021).

    Article  CAS  Google Scholar 

  37. Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    Article  CAS  Google Scholar 

  38. Heide, T. et al. Multiregion human bladder cancer sequencing reveals tumour evolution, bladder cancer phenotypes and implications for targeted therapy. J. Pathol. 248, 230–242 (2019).

    Article  CAS  Google Scholar 

  39. Su, F. et al. Spatial intratumor genomic heterogeneity within localized prostate cancer revealed by single-nucleus sequencing. Eur. Urol. 74, 551–559 (2018).

    Article  Google Scholar 

  40. Bao, L. et al. Coexisting genomic aberrations associated with lymph node metastasis in breast cancer. J. Clin. Invest. 128, 2310–2324 (2018).

    Article  Google Scholar 

  41. Househam, J. et al. Phenotypic plasticity and genetic control in colorectal cancer evolution. Nature 611, 744–753 (2022).

    Article  Google Scholar 

  42. Biswas, D. et al. A clonal expression biomarker associates with lung cancer mortality. Nat. Med. 25, 1540–1548 (2019).

    Article  CAS  Google Scholar 

  43. Lomakin, A., Svedlund, J., Strell, C., Gataric, M. & Shmatko, A. Spatial genomics maps the structure, character and evolution of cancer clones. Nature 611, 594–602 (2022).

    Article  CAS  Google Scholar 

  44. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  Google Scholar 

  45. Waclaw, B. et al. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525, 261–264 (2015).

    Article  CAS  Google Scholar 

  46. Gallaher, J. A., Brown, J. S. & Anderson, A. R. A. The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer. Sci. Rep. 9, 2425 (2019).

    Article  Google Scholar 

  47. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).

    Article  CAS  Google Scholar 

  48. Lieberman, E., Hauert, C. & Nowak, M. A. Evolutionary dynamics on graphs. Nature 433, 312–316 (2005).

    Article  CAS  Google Scholar 

  49. Frean, M., Rainey, P. B. & Traulsen, A. The effect of population structure on the rate of evolution. Proc. Biol. Sci. 280, 20130211 (2013).

    Google Scholar 

  50. Tkadlec, J., Pavlogiannis, A., Chatterjee, K. & Nowak, M. A. Population structure determines the tradeoff between fixation probability and fixation time. Commun. Biol. 2, 138 (2019).

    Article  Google Scholar 

  51. Lopes, J. V., Pacheco, J. M. & Dingli, D. Acquired hematopoietic stem-cell disorders and mammalian size. Blood 110, 4120–4122 (2007).

    Article  CAS  Google Scholar 

  52. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    Article  CAS  Google Scholar 

  53. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  Google Scholar 

  54. Humphries, A. & Wright, N. A. Colonic crypt organization and tumorigenesis. Nat. Rev. Cancer 8, 415–424 (2008).

    Article  CAS  Google Scholar 

  55. Nowak, M. A., Michor, F. & Iwasa, Y. The linear process of somatic evolution. Proc. Natl Acad. Sci. USA 100, 14966–14969 (2003).

    Article  CAS  Google Scholar 

  56. Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48 (2021).

    Article  CAS  Google Scholar 

  57. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  Google Scholar 

  58. Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 640–646 (2020).

    Article  CAS  Google Scholar 

  59. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  Google Scholar 

  60. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014). Genovese et al.59 and Jaiswal et al.60 revealed the frequent presence of macroscopic clones with leukaemogenic mutations in the blood of healthy individuals.

    Article  Google Scholar 

  61. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015). A pioneering study revealing that normal skin is a patchwork of microscopic mutant clones.

    Article  CAS  Google Scholar 

  62. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  Google Scholar 

  63. Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).

    Article  CAS  Google Scholar 

  64. Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021).

    Article  CAS  Google Scholar 

  65. Fowler, J. C. et al. Selection of oncogenic mutant clones in normal human skin varies with body site. Cancer Discov. 11, 340–361 (2021).

    Article  CAS  Google Scholar 

  66. Abby, E. et al. Notch1 mutation drives clonal expansion in normal esophageal epithelium but impairs tumor growth. Preprint at bioRxiv https://doi.org/10.1101/2021.06.18.448956 (2021).

    Article  Google Scholar 

  67. Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    Article  Google Scholar 

  68. Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19, 403–410 (1991).

    Article  CAS  Google Scholar 

  69. Epstein, J. I. et al. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 40, 244–252 (2016).

    Article  Google Scholar 

  70. Greenough, R. B. Varying degrees of malignancy in cancer of the breast. J. Cancer Res. 9, 453–463 (1925).

    Google Scholar 

  71. Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265–273 (2009).

    Article  CAS  Google Scholar 

  72. Morin, P. J. et al. Activation of β-Catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  73. West, J., Schenck, R. O., Gatenbee, C., Robertson-Tessi, M. & Anderson, A. R. A. Normal tissue architecture determines the evolutionary course of cancer. Nat. Commun. 12, 2060 (2021).

    Article  CAS  Google Scholar 

  74. Noble, R. et al. Spatial structure governs the mode of tumour evolution. Nat. Ecol. Evol. 6, 207–217 (2022).

    Article  Google Scholar 

  75. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  Google Scholar 

  76. Gerstung, M. et al. The evolutionary history of 2658 cancers. Nature 578, 122–128 (2020).

    Article  CAS  Google Scholar 

  77. Baslan, T. et al. Ordered and deterministic cancer genome evolution after p53 loss. Nature 608, 795–802 (2022).

    Article  CAS  Google Scholar 

  78. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    Article  CAS  Google Scholar 

  79. Fidler, I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  Google Scholar 

  80. Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

    Article  CAS  Google Scholar 

  81. Mamlouk, S. et al. DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer. Nat. Commun. 8, 14093 (2017).

    Article  CAS  Google Scholar 

  82. Zhou, H. et al. Multi-region exome sequencing reveals the intratumoral heterogeneity of surgically resected small cell lung cancer. Nat. Commun. 12, 5431 (2021).

    Article  CAS  Google Scholar 

  83. Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184.e7 (2017).

    Article  CAS  Google Scholar 

  84. Noorani, A. et al. Genomic evidence supports a clonal diaspora model for metastases of esophageal adenocarcinoma. Nat. Genet. 52, 74–83 (2020).

    Article  CAS  Google Scholar 

  85. Karlsson, J. et al. Four evolutionary trajectories underlie genetic intratumoral variation in childhood cancer. Nat. Genet. 50, 944–950 (2018).

    Article  CAS  Google Scholar 

  86. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  Google Scholar 

  87. Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020).

    Article  CAS  Google Scholar 

  88. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015).

    Article  CAS  Google Scholar 

  89. Brown, D. et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat. Commun. 8, 14944 (2017).

    Article  Google Scholar 

  90. De Mattos-Arruda, L. et al. The genomic and immune landscapes of lethal metastatic breast cancer. Cell Rep. 27, 2690–2708.e10 (2019).

    Article  Google Scholar 

  91. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  Google Scholar 

  92. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  CAS  Google Scholar 

  93. Martínez-Jiménez, F. et al. Pan-cancer whole genome comparison of primary and metastatic solid tumors. Preprint at bioRxiv https://doi.org/10.1101/2022.06.17.496528 (2022).

    Article  Google Scholar 

  94. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022). One of the largest genomic analyses of metastasis and organotropism to date.

    Article  CAS  Google Scholar 

  95. Reiter, J. G. et al. An analysis of genetic heterogeneity in untreated cancers. Nat. Rev. Cancer 19, 639–650 (2019).

    Article  CAS  Google Scholar 

  96. Aran, D., Sirota, M. & Butte, A. J. Systematic pan-cancer analysis of tumour purity. Nat. Commun. 6, 8971 (2015).

    Article  CAS  Google Scholar 

  97. Somarelli, J. A. The hallmarks of cancer as ecologically driven phenotypes. Front. Ecol. Evol. 9, 661583 (2021).

    Article  Google Scholar 

  98. Darmanis, S. et al. Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).

    Article  CAS  Google Scholar 

  99. Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, 1391 (2017).

    Article  CAS  Google Scholar 

  100. Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

    Article  CAS  Google Scholar 

  101. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    Article  CAS  Google Scholar 

  102. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  Google Scholar 

  103. Izar, B. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 26, 1271–1279 (2020).

    Article  CAS  Google Scholar 

  104. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    Article  CAS  Google Scholar 

  105. Chung, W. et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 8, 15081 (2017).

    Article  CAS  Google Scholar 

  106. Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat. Methods 14, 873–876 (2017).

    Article  CAS  Google Scholar 

  107. Arnol, D., Schapiro, D., Bodenmiller, B., Saez-Rodriguez, J. & Stegle, O. Modeling cell-cell interactions from spatial molecular data with spatial variance component analysis. Cell Rep. 29, 202–211.e6 (2019).

    Article  CAS  Google Scholar 

  108. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  109. Raskov, H., Orhan, A., Christensen, J. P. & Gögenur, I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 124, 359–367 (2021).

    Article  CAS  Google Scholar 

  110. Philip, M. & Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022).

    Article  CAS  Google Scholar 

  111. Borst, J., Ahrends, T., Bąbała, N., Melief, C. J. M. & Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647 (2018).

    Article  CAS  Google Scholar 

  112. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  Google Scholar 

  113. Sharonov, G. V., Serebrovskaya, E. O., Yuzhakova, D. V., Britanova, O. V. & Chudakov, D. M. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat. Rev. Immunol. 20, 294–307 (2020).

    Article  CAS  Google Scholar 

  114. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    Article  CAS  Google Scholar 

  115. Sautès-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article  Google Scholar 

  116. Wolf, N. K., Kissiov, D. U. & Raulet, D. H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00732-1 (2022).

    Article  Google Scholar 

  117. Goswami, S., Anandhan, S., Raychaudhuri, D. & Sharma, P. Myeloid cell-targeted therapies for solid tumours. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00737-w (2022).

    Article  Google Scholar 

  118. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).

    Article  CAS  Google Scholar 

  119. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article  CAS  Google Scholar 

  120. Valkenburg, K. C., de Groot, A. E. & Pienta, K. J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15, 366–381 (2018).

    Article  Google Scholar 

  121. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  Google Scholar 

  122. Lendahl, U., Muhl, L. & Betsholtz, C. Identification, discrimination and heterogeneity of fibroblasts. Nat. Commun. 13, 3409 (2022).

    Article  CAS  Google Scholar 

  123. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  Google Scholar 

  124. Davidson, S. et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31, 107628 (2020).

    Article  CAS  Google Scholar 

  125. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  Google Scholar 

  126. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  Google Scholar 

  127. Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021).

    Article  CAS  Google Scholar 

  128. Berglund, E. et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat. Commun. 9, 2419 (2018).

    Article  Google Scholar 

  129. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    Article  CAS  Google Scholar 

  130. Qi, J. et al. Single-cell and spatial analysis reveal interaction of FAP+fibroblasts and SPP1+macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022).

    Article  CAS  Google Scholar 

  131. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514.e22 (2020).

    Article  CAS  Google Scholar 

  132. Ravi, V. M. et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat. Commun. 13, 925 (2022).

    Article  CAS  Google Scholar 

  133. Wu, R. et al. Comprehensive analysis of spatial architecture in primary liver cancer. Sci. Adv. 7, eabg3750 (2021).

    Article  CAS  Google Scholar 

  134. Gouin, K. H. III et al. An N-Cadherin 2 expressing epithelial cell subpopulation predicts response to surgery, chemotherapy and immunotherapy in bladder cancer. Nat. Commun. 12, 4906 (2021).

    Article  Google Scholar 

  135. Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).

    Article  CAS  Google Scholar 

  136. Barkley, D. et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet. 54, 1192–1201 (2022).

    Article  CAS  Google Scholar 

  137. Danenberg, E. et al. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. Nat. Genet. 54, 660–669 (2022). A detailed spatial proteomic analysis of more than 500 breast cancers revealing recurrent cellular neighbourhoods associated with clinical outcomes.

    Article  CAS  Google Scholar 

  138. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  CAS  Google Scholar 

  139. Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022). A detailed multiplexed spatial proteomics analysis of melanoma revealing spatially variegated TMEs and cellular interactions.

    Article  CAS  Google Scholar 

  140. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19 (2020).

    Article  Google Scholar 

  141. Wieland, A. et al. Defining HPV-specific B cell responses in patients with head and neck cancer. Nature 597, 274–278 (2021).

    Article  CAS  Google Scholar 

  142. Gaglia, G. et al. Temporal and spatial topography of cell proliferation in cancer. Nat. Cell Biol. 24, 316–326 (2022).

    Article  CAS  Google Scholar 

  143. Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).

    Article  CAS  Google Scholar 

  144. Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).

    Article  CAS  Google Scholar 

  145. Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

    Article  CAS  Google Scholar 

  146. Loeffler, C. M. L. et al. Artificial intelligence–based detection of FGFR3 mutational status directly from routine histology in bladder cancer: a possible preselection for molecular testing? Eur. Urol. Focus. 8, 472–479 (2022).

    Article  Google Scholar 

  147. Kole, A. J. et al. Overall survival is improved when DCIS accompanies invasive breast cancer. Sci. Rep. 9, 9934 (2019).

    Article  Google Scholar 

  148. Ponz de Leon, M. et al. Evidence for the existence of different types of large bowel tumor: suggestions from the clinical data of a population-based registry. J. Surg. Oncol. 44, 35–43 (1990).

    Article  CAS  Google Scholar 

  149. Sawas, T. et al. Identification of prognostic phenotypes of esophageal adenocarcinoma in 2 independent cohorts. Gastroenterology 155, 1720–1728.e4 (2018).

    Article  Google Scholar 

  150. Ross-Innes, C. S. et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat. Genet. 47, 1038–1046 (2015).

    Article  CAS  Google Scholar 

  151. Stachler, M. D. et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat. Genet. 47, 1047–1055 (2015).

    Article  CAS  Google Scholar 

  152. Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955).

    Article  CAS  Google Scholar 

  153. Hammerl, D. et al. Spatial immunophenotypes predict response to anti-PD1 treatment and capture distinct paths of T cell evasion in triple negative breast cancer. Nat. Commun. 12, 5668 (2021).

    Article  CAS  Google Scholar 

  154. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018).

    Article  CAS  Google Scholar 

  155. Galon, J. et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).

    Article  CAS  Google Scholar 

  156. Hegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020).

    Article  CAS  Google Scholar 

  157. Grünwald, B. T. et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 184, 5577–5592.e18 (2021).

    Article  Google Scholar 

  158. Tavernari, D. et al. Nongenetic evolution drives lung adenocarcinoma spatial heterogeneity and progression. Cancer Discov. 11, 1490–1507 (2021).

    Article  CAS  Google Scholar 

  159. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  Google Scholar 

  160. Thorsson, V. et al. The immune landscape of cancer. Immunity 51, 411–412 (2019).

    Article  CAS  Google Scholar 

  161. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  Google Scholar 

  162. Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).

    Article  CAS  Google Scholar 

  163. Goodman, A. M. et al. Prevalence of PDL1 amplification and preliminary response to immune checkpoint blockade in solid tumors. JAMA Oncol. 4, 1237–1244 (2018).

    Article  Google Scholar 

  164. Van den Eynden, J., Jiménez-Sánchez, A., Miller, M. L. & Larsson, E. Lack of detectable neoantigen depletion signals in the untreated cancer genome. Nat. Genet. 51, 1741–1748 (2019).

    Article  Google Scholar 

  165. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017). A seminal study that revealed ample evidence of subclonal immune evasion.

    Article  CAS  Google Scholar 

  166. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    Article  CAS  Google Scholar 

  167. Łuksza, M. et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature 606, 389–395 (2022).

    Article  Google Scholar 

  168. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    Article  Google Scholar 

  169. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  Google Scholar 

  170. Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022). A mouse experimental CRISPR model demonstrating direct effects of gene knockouts and TMEs.

    Article  CAS  Google Scholar 

  171. Vennin, C. et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat. Commun. 10, 3637 (2019).

    Article  Google Scholar 

  172. Tape, C. J. et al. Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 165, 1818 (2016).

    Article  CAS  Google Scholar 

  173. Ali, H. R. et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1, 163–175 (2020).

    Article  CAS  Google Scholar 

  174. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

    Article  CAS  Google Scholar 

  175. Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    Article  CAS  Google Scholar 

  176. Baldominos, P. et al. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell 185, 1694–1708.e19 (2022).

    Article  CAS  Google Scholar 

  177. Miller, B. E., Miller, F. R. & Heppner, G. H. Therapeutic perturbation of the tumor ecosystem in reconstructed heterogeneous mouse mammary tumors. Cancer Res. 49, 3747–3753 (1989).

    CAS  Google Scholar 

  178. Alonso-Curbelo, D. et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).

    Article  CAS  Google Scholar 

  179. Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508, 113–117 (2014).

    Article  CAS  Google Scholar 

  180. Zhou, H., Neelakantan, D. & Ford, H. L. Clonal cooperativity in heterogenous cancers. Semin. Cell Dev. Biol. 64, 79–89 (2017).

    Article  Google Scholar 

  181. Tammela, T. et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545, 355–359 (2017).

    Article  CAS  Google Scholar 

  182. Williams, J. B. et al. Tumor heterogeneity and clonal cooperation influence the immune selection of IFN-γ-signaling mutant cancer cells. Nat. Commun. 11, 602 (2020).

    Article  CAS  Google Scholar 

  183. Diamantopoulou, Z. et al. The metastatic spread of breast cancer accelerates during sleep. Nature 607, 156–162 (2022).

    Article  CAS  Google Scholar 

  184. Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

    Article  CAS  Google Scholar 

  185. Adams, D. L. et al. Circulating giant macrophages as a potential biomarker of solid tumors. Proc. Natl Acad. Sci. USA 111, 3514–3519 (2014).

    Article  CAS  Google Scholar 

  186. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889).

    Article  Google Scholar 

  187. Zeng, Q. et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573, 526–531 (2019).

    Article  CAS  Google Scholar 

  188. Venkataramani, V. et al. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell 185, 2899–2917.e31 (2022).

    Article  CAS  Google Scholar 

  189. Quinn, J. J. et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts.Science 371, eabc1944 (2021).

    Article  CAS  Google Scholar 

  190. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    Article  CAS  Google Scholar 

  191. Shiozawa, Y. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298–1312 (2011).

    Article  CAS  Google Scholar 

  192. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    Article  CAS  Google Scholar 

  193. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    Article  CAS  Google Scholar 

  194. Fane, M. E. et al. Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature 606, 396–405 (2022).

    Article  CAS  Google Scholar 

  195. Reticker-Flynn, N. E. et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 185, 1924–1942.e23 (2022).

    Article  CAS  Google Scholar 

  196. van Maldegem, F. et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat. Commun. 12, 5906 (2021).

    Article  Google Scholar 

  197. Moldoveanu, D. et al. Spatially mapping the immune landscape of melanoma using imaging mass cytometry. Sci. Immunol. 7, eabi5072 (2022).

    Article  CAS  Google Scholar 

  198. Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).

    Article  CAS  Google Scholar 

  199. Azimi, F. et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J. Clin. Oncol. 30, 2678–2683 (2012).

    Article  Google Scholar 

  200. Lee, H. J. et al. Tertiary lymphoid structures: prognostic significance and relationship with tumour-infiltrating lymphocytes in triple-negative breast cancer. J. Clin. Pathol. 69, 422–430 (2016).

    Article  Google Scholar 

  201. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  Google Scholar 

  202. Chen, B. et al. Prognostic value of the common tumour-infiltrating lymphocyte subtypes for patients with non-small cell lung cancer: a meta-analysis. PLoS One 15, e0242173 (2020).

    Article  CAS  Google Scholar 

  203. Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015).

    Article  CAS  Google Scholar 

  204. Lu, S. et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 5, 1195–1204 (2019).

    Article  Google Scholar 

  205. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  Google Scholar 

  206. Pagès, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    Article  Google Scholar 

  207. Färkkilä, A. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 11, 1459 (2020).

    Article  Google Scholar 

  208. González-Silva, L., Quevedo, L. & Varela, I. Tumor functional heterogeneity unraveled by scRNA-seq technologies. Trends Cancer Res. 6, 13–19 (2020).

    Article  Google Scholar 

  209. Janiszewska, M. et al. Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nat. Cell Biol. 21, 879–888 (2019).

    Article  CAS  Google Scholar 

  210. Gatenbee, C. D. et al. Immunosuppressive niche engineering at the onset of human colorectal cancer. Nat. Commun. 13, 1798 (2022).

    Article  CAS  Google Scholar 

  211. Weinstein, J. N. et al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  Google Scholar 

  212. International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  Google Scholar 

  213. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  Google Scholar 

  214. Rozenblatt-Rosen, O. et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  CAS  Google Scholar 

  215. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  CAS  Google Scholar 

  216. Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  CAS  Google Scholar 

  217. Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).

    Article  CAS  Google Scholar 

  218. Nichterwitz, S. et al. Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nat. Commun. 7, 12139 (2016).

    Article  CAS  Google Scholar 

  219. Cui Zhou, D. et al. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat. Genet. 54, 1390–1405 (2022).

    Article  CAS  Google Scholar 

  220. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  Google Scholar 

  221. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  CAS  Google Scholar 

  222. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  Google Scholar 

  223. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

    Article  CAS  Google Scholar 

  224. Cho, C.-S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572.e22 (2021).

    Article  CAS  Google Scholar 

  225. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article  CAS  Google Scholar 

  226. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article  CAS  Google Scholar 

  227. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

    Article  CAS  Google Scholar 

  228. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  Google Scholar 

  229. Lyubimova, A. et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc. 8, 1743–1758 (2013).

    Article  Google Scholar 

  230. Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684 (2016).

    Article  CAS  Google Scholar 

  231. Coskun, A. F. & Cai, L. Dense transcript profiling in single cells by image correlation decoding. Nat. Methods 13, 657–660 (2016).

    Article  CAS  Google Scholar 

  232. Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).

    Article  CAS  Google Scholar 

  233. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article  Google Scholar 

  234. Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

    Article  CAS  Google Scholar 

  235. Qian, X. et al. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods 17, 101–106 (2020).

    Article  CAS  Google Scholar 

  236. Chen, X., Sun, Y.-C., Church, G. M., Lee, J. H. & Zador, A. M. Efficient in situ barcode sequencing using padlock probe-based BaristaSeq. Nucleic Acids Res. 46, e22 (2018).

    Article  CAS  Google Scholar 

  237. Alon, S. et al. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science 371, eaax2656 (2021).

    Article  CAS  Google Scholar 

  238. Gyllborg, D. et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res. 48, e112 (2020).

    Article  CAS  Google Scholar 

  239. Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659.e26 (2020).

    Article  CAS  Google Scholar 

  240. Lu, T., Ang, C. E. & Zhuang, X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell 185, 4448-4464.e17 (2022).

    Article  CAS  Google Scholar 

  241. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article  CAS  Google Scholar 

  242. Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

    Article  CAS  Google Scholar 

  243. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article  CAS  Google Scholar 

  244. Baker, A.-M. et al. Robust RNA-based in situ mutation detection delineates colorectal cancer subclonal evolution. Nat. Commun. 8, 1998 (2017).

    Article  Google Scholar 

  245. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e15 (2018).

    Article  CAS  Google Scholar 

  246. Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).

    Article  CAS  Google Scholar 

  247. Lin, J.-R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).

    Article  Google Scholar 

  248. Lin, J.-R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).

    Article  CAS  Google Scholar 

  249. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl Acad. Sci. USA 110, 11982–11987 (2013).

    Article  CAS  Google Scholar 

  250. Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).

    Article  CAS  Google Scholar 

  251. He, S. et al. High-plex multiomic analysis in FFPE at subcellular level by spatial molecular imaging. Preprint at bioRxiv https://doi.org/10.1101/2021.11.03.467020 (2022).

    Article  Google Scholar 

  252. Bergholtz, H. et al. Best practices for spatial profiling for breast cancer research with the GeoMx® digital spatial profiler. Cancers 13, 4456 (2021).

    Article  CAS  Google Scholar 

  253. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  Google Scholar 

  254. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    Article  CAS  Google Scholar 

  255. Mund, A., Brunner, A.-D. & Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82, 2335–2349 (2022).

    Article  CAS  Google Scholar 

  256. Mund, A. et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nat Biotechnol 40, 1231–1240 (2022).

    Article  CAS  Google Scholar 

  257. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article  CAS  Google Scholar 

  258. Lin, J.-R. et al. Multiplexed 3D atlas of state transitions and immune interactions in colorectal cancer. Preprint at bioRxiv https://doi.org/10.1101/2021.03.31.437984 (2021).

    Article  Google Scholar 

  259. Gataric, M. et al. PoSTcode: Probabilistic image-based spatial transcriptomics decoder. Preprint at bioRxiv https://doi.org/10.1101/2021.10.12.464086 (2021).

    Article  Google Scholar 

  260. Dries, R. et al. Advances in spatial transcriptomic data analysis. Genome Res. 31, 1706–1718 (2021).

    Article  Google Scholar 

  261. Perkel, J. M. Starfish enterprise: finding RNA patterns in single cells. Nature 572, 549–551 (2019).

    Article  CAS  Google Scholar 

  262. Hickey, J. W. et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nat. Methods 19, 284–295 (2022).

    Article  CAS  Google Scholar 

  263. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

    Article  CAS  Google Scholar 

  264. Nieto, P. et al. A single-cell tumor immune atlas for precision oncology. Genome Res. 31, 1913–1926 (2021).

    Article  Google Scholar 

  265. Park, J. et al. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nat. Commun. 12, 3545 (2021).

    Article  CAS  Google Scholar 

  266. Petukhov, V. et al. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2022).

    Article  CAS  Google Scholar 

  267. Soldatov, R. et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 364, eaas9536 (2019).

    Article  CAS  Google Scholar 

  268. Prabhakaran, S. Sparcle: assigning transcripts to cells in multiplexed images. Bioinforma. Adv. 2, vbac048 (2022).

    Article  Google Scholar 

  269. Schapiro, D. et al. MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nat. Methods 19, 311–315 (2022).

    Article  CAS  Google Scholar 

  270. Lohoff, T. et al. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat. Biotechnol. 40, 74–85 (2022).

    Article  CAS  Google Scholar 

  271. Zhang, Y. et al. Reference-based cell type matching of spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2022.03.28.486139 (2022).

    Article  Google Scholar 

  272. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  Google Scholar 

  273. Kiemen, A. et al. In situ characterization of the 3D microanatomy of the pancreas and pancreatic cancer at single cell resolution. Preprint at bioRxiv https://doi.org/10.1101/2020.12.08.416909 (2020).

    Article  Google Scholar 

  274. Velten, B. et al. Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nat. Methods 19, 179–186 (2022).

    Article  CAS  Google Scholar 

  275. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat. Methods 15, 343–346 (2018).

    Article  CAS  Google Scholar 

  276. Lopez, R. et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat. Biotechnol. 40, 1360–1369 (2022).

    Article  CAS  Google Scholar 

  277. McCaffrey, E. F. et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat. Immunol. 23, 318–329 (2022).

    Article  CAS  Google Scholar 

  278. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739 (2022).

    Article  CAS  Google Scholar 

  279. Nagasawa, S. et al. Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast. Commun. Biol. 4, 438 (2021).

    Article  CAS  Google Scholar 

  280. Elyanow, R., Zeira, R., Land, M. & Raphael, B. J. STARCH: copy number and clone inference from spatial transcriptomics data. Phys. Biol. 18, 035001 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Dentro, I. Martincorena and T. Grünewald for critical feedback on the manuscript. L.R.Y. is funded by a Wellcome Trust Clinical Research Career Development Fellowship ref: 214584/Z/18/Z.

Author information

Authors and Affiliations

Authors

Contributions

Z.S. and A.L. conducted the literature research. Z.S. drew the initial figures based on discussions with all authors. M.G. conceived and supervised the study with L.R.Y. All authors wrote the manuscript.

Corresponding author

Correspondence to Moritz Gerstung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Alexander Anderson, Alexander Swarbrick, who co-reviewed with Sonny Ramkomuth, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adjuvant therapies

Cancer treatments given after primary therapy (particularly following surgical resection of a tumour) to reduce the risk of relapse.

Carcinomas in situ

Neoplastic expansions of epithelial cells that are confined to the normal tissue structure in which they arose, without invasion of the adjacent stroma.

Clones

A clone is a population of cells that derive from a common ancestor. Cancers are found to be clones deriving from a single cell that expanded during the lifetime of a host. Clonal alterations are mutations that are present in all cells of a cancer because their occurrence preceded the expansion of the tumour.

Immune-checkpoint blockade

A type of anticancer immunotherapy that blocks checkpoint proteins on T cells or their targets on cancer cells and promotes an immune response and killing of the tumour.

Immune evasion

The process by which tumour cells develop several mechanisms that help them to continue to grow and expand by escaping immune control. Immune evasion is thought to be typically preceded by two other phases: elimination, when the immune system recognizes and eliminates tumour cells, and equilibrium, when the pressure from the immune system stalls tumour growth and expansion, and negative selection takes place.

Invasion

The process of penetration and spread of cancer cells into the neighbouring normal tissue. In the case of carcinomas, invasion involves a breach of the basement membrane.

Metastasis

A process of cancer spreading from the primary disease site to lymph nodes or other organs, resulting in the formation of metastatic deposits known as metastases.

Most recent common ancestor

In cancer evolution, the most recent founder cell from which all other tumour cells have directly descended.

Mutation

Changes in the DNA sequence that are inherited across cell generations. Sources of mutation are erroneous replication, biochemical alterations of DNA and failed DNA repair. To date, all cells within the human body are found to accumulate mutations over their lifetime.

Negative selection

The removal of deleterious variants from the population.

Neoantigen

A tumour-specific antigen that is the result of a somatic coding mutation in the corresponding part of a gene. Antigens are protein fragments presented on the cell surface by the human leukocyte antigen (HLA) complex and recognized by different cells of the immune system.

Positive selection

The spread of advantageous alleles within a population.

Selection

In evolution, natural selection denotes the process of survival and reproduction of the fittest organism within a given environment.

Subclones

Further clones emerging within a tumour from one founder clone. Subclonal mutations are limited to a fraction of cancer cells and occur during tumour expansion.

Tissue architecture

The micro-anatomical spatial organization of the tissue. Typical examples are layered epithelial tissues, glands and crypts. Tissue architecture can be combined with other means of tissue organization such as differentiation hierarchies.

Tumour ecosystems

The collective set of heterogeneous cells in the vicinity of a tumour comprising cancer cells and the TME.

Tumour microenvironment

(TME). A combination of non-tumour cells, such as stromal and immune cells, vessels, metabolites, signalling molecules, and other extracellular components among which tumour cells exist.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seferbekova, Z., Lomakin, A., Yates, L.R. et al. Spatial biology of cancer evolution. Nat Rev Genet (2022). https://doi.org/10.1038/s41576-022-00553-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-022-00553-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer