Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of circadian rhythms and sleep in human health and disease

Abstract

Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of the circadian and sleep systems.
Fig. 2: A timeline of circadian and sleep research discoveries with a focus on genetics.
Fig. 3: Measurable approximates of circadian rhythm and sleep physiologic phenotypes.
Fig. 4: Sleep and circadian rhythms link to health using genetics.
Fig. 5: Potential sources of sleep and circadian genetic relationships to environmental factors and other traits and disorders.

Similar content being viewed by others

References

  1. Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).

    Article  CAS  Google Scholar 

  2. Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).

    Article  CAS  Google Scholar 

  3. Borbély, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982).

    Google Scholar 

  4. Buysse, D. J. Sleep health: can we define it? Does it matter? Sleep 37, 9–17 (2014).

    Article  Google Scholar 

  5. Duffy, J. F. et al. Circadian rhythm sleep–wake disorders: gaps and opportunities. Sleep 44, zsaa281 (2021).

    Article  Google Scholar 

  6. Chellappa, S. L., Vujovic, N., Williams, J. S. & Scheer, F. A. J. L. Impact of circadian disruption on cardiovascular function and disease. Trends Endocrinol. Metab. 30, 767–779 (2019).

    Article  CAS  Google Scholar 

  7. Kecklund, G. & Axelsson, J. Health consequences of shift work and insufficient sleep. BMJ 355, i5210 (2016).

    Article  Google Scholar 

  8. Rijo-Ferreira, F. & Takahashi, J. S. Genomics of circadian rhythms in health and disease. Genome Med. 11, 82 (2019).

    Article  Google Scholar 

  9. Allada, R., Cirelli, C. & Sehgal, A. Molecular mechanisms of sleep homeostasis in flies and mammals. Cold Spring Harb. Perspect. Biol. 9, a027730 (2017).

    Article  Google Scholar 

  10. Deboer, T., Vansteensel, M. J., Détári, L. & Meijer, J. H. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat. Neurosci. 6, 1086–1090 (2003).

    Article  CAS  Google Scholar 

  11. Khalsa, S. B. S., Jewett, M. E., Cajochen, C. & Czeisler, C. A. A phase response curve to single bright light pulses in human subjects. J. Physiol. 549, 945–952 (2003).

    Article  CAS  Google Scholar 

  12. Dijk, D. J. & Czeisler, C. A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 15, 3526–3538 (1995).

    Article  CAS  Google Scholar 

  13. Hasan, S. et al. A human sleep homeostasis phenotype in mice expressing a primate-specific PER3 variable-number tandem-repeat coding-region polymorphism. FASEB J. 28, 2441–2454 (2014).

    Article  CAS  Google Scholar 

  14. Möller-Levet, C. S. et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc. Natl Acad. Sci. USA 110, E1132–E1141 (2013).

    Article  Google Scholar 

  15. Takahashi, J. S., Hong, H.-K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764–775 (2008).

    Article  CAS  Google Scholar 

  16. Jones, S. E. et al. Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour. Nat. Commun. 10, 1585 (2019).

    Article  Google Scholar 

  17. Dashti, H. S. et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 10, 1100 (2019).

    Article  Google Scholar 

  18. Doherty, A. et al. GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat. Commun. 9, 5257 (2018).

    Article  Google Scholar 

  19. Duffy, J. F. & Dijk, D. J. Getting through to circadian oscillators: why use constant routines? J. Biol. Rhythms. 17, 4–13 (2002).

    Article  Google Scholar 

  20. Wang, W. et al. Using Kleitman’s Forced Desynchrony protocol to assess the intrinsic period of circadian oscillators and estimate the contributions of the circadian pacemaker and the sleep-wake homeostat to physiology and behavior in clinical research. Nat. Protoc. (In Press, 2022).

  21. Perez-Pozuelo, I. et al. The future of sleep health: a data-driven revolution in sleep science and medicine. npj Digit. Med. 3, 42 (2020).

    Article  Google Scholar 

  22. Ambrosius, U. et al. Heritability of sleep electroencephalogram. Biol. Psychiat. 64, 344–348 (2008).

    Article  Google Scholar 

  23. De Gennaro, L. et al. The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann. Neurol. 64, 455–460 (2008).

    Article  Google Scholar 

  24. Vitaterna, M. H., Shimomura, K. & Jiang, P. Genetics of circadian rhythms. Neurol. Clin. 37, 487–504 (2019).

    Article  Google Scholar 

  25. Andreani, T. S., Itoh, T. Q., Yildirim, E., Hwangbo, D.-S. & Allada, R. Genetics of circadian rhythms. Sleep. Med. Clin. 10, 413–421 (2015).

    Article  Google Scholar 

  26. Roenneberg, T. & Merrow, M. Entrainment of the human circadian clock. Cold Spring Harb. Symp. Quant. Biol. 72, 293–299 (2007).

    Article  CAS  Google Scholar 

  27. Archer, S. N. et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26, 413–415 (2003).

    Article  Google Scholar 

  28. Ebisawa, T. et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2, 342–346 (2001).

    Article  CAS  Google Scholar 

  29. Parsons, M. J. et al. Polymorphisms in the circadian expressed genes PER3 and ARNTL2 are associated with diurnal preference and GNβ3 with sleep measures. J. Sleep. Res. 23, 595–604 (2014).

    Article  Google Scholar 

  30. Hu, Y. et al. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 7, 10448 (2016).

    Article  CAS  Google Scholar 

  31. Jones, S. E. et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 12, e1006125 (2016).

    Article  Google Scholar 

  32. Lane, J. M. et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 7, 10889 (2016).

    Article  CAS  Google Scholar 

  33. Jones, S. E. et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 10, 343 (2019).

    Article  CAS  Google Scholar 

  34. Ferguson, A. et al. Genome-wide association study of circadian rhythmicity in 71,500 UK biobank participants and polygenic association with mood instability. eBioMedicine 35, 279–287 (2018).

    Article  Google Scholar 

  35. Chang, A.-M. et al. Chronotype genetic variant in PER2 is associated with intrinsic circadian period in humans. Sci. Rep. 9, 5350 (2019).

    Article  Google Scholar 

  36. Lee, D. A. et al. Evolutionarily conserved regulation of sleep by epidermal growth factor receptor signaling. Sci. Adv. 5, eaax4249 (2019).

    Article  CAS  Google Scholar 

  37. Gaspar, L. et al. The genomic landscape of human cellular circadian variation points to a novel role for the signalosome. eLife 6, e24994 (2017).

    Article  Google Scholar 

  38. He, Y. et al. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325, 866–870 (2009). This paper described the first gene for natural short sleep discovered using a human genetic family-based approach.

    Article  CAS  Google Scholar 

  39. Hirano, A. et al. DEC2 modulates orexin expression and regulates sleep. Proc. Natl Acad. Sci. USA 115, 3434–3439 (2018).

    Article  CAS  Google Scholar 

  40. Pellegrino, R. et al. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. Sleep 37, 1327–1336 (2014).

    Article  Google Scholar 

  41. Shi, G. et al. Mutations in metabotropic glutamate receptor 1 contribute to natural short sleep trait. Curr. Biol. 31, 13–24.e4 (2021).

    Article  CAS  Google Scholar 

  42. Shi, G. et al. A rare mutation of β1-adrenergic receptor affects sleep/wake behaviors. Neuron https://doi.org/10.1016/j.neuron.2019.07.026 (2019).

    Article  Google Scholar 

  43. Xing, L. et al. Mutant neuropeptide S receptor reduces sleep duration with preserved memory consolidation. Sci. Transl. Med. 11, eaax2014 (2019).

    Article  CAS  Google Scholar 

  44. Toda, H., Shi, M., Williams, J. A. & Sehgal, A. Genetic mechanisms underlying sleep. Cold Spring Harb. Symp. Quant. Biol. https://doi.org/10.1101/sqb.2018.83.037705 (2019).

    Article  Google Scholar 

  45. Summa, K. C. & Turek, F. W. The genetics of sleep: insight from rodent models. Sleep. Med. Clin. 6, 141–154 (2011).

    Article  Google Scholar 

  46. Cirelli, C. The genetic and molecular regulation of sleep: from fruit flies to humans. Nat. Rev. Neurosci. 10, 549–560 (2009).

    Article  CAS  Google Scholar 

  47. Gottlieb, D. J. et al. Novel loci associated with usual sleep duration: the CHARGE consortium genome-wide association study. Mol. Psychiat. 20, 1232–1239 (2015).

    Article  CAS  Google Scholar 

  48. Nishiyama, T. et al. Genome-wide association meta-analysis and Mendelian randomization analysis confirm the influence of ALDH2 on sleep duration in the Japanese population. Sleep https://doi.org/10.1093/sleep/zsz046 (2019).

    Article  Google Scholar 

  49. Wang, H. et al. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 10, 3503 (2019).

    Article  Google Scholar 

  50. Dashti, H. S. et al. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat. Commun. 12, 900 (2021).

    Article  CAS  Google Scholar 

  51. Udler, M. S. et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 15, e1002654 (2018).

    Article  Google Scholar 

  52. Visscher, P. M., Yengo, L., Cox, N. J. & Wray, N. R. Discovery and implications of polygenicity of common diseases. Science 373, 1468–1473 (2021).

    Article  CAS  Google Scholar 

  53. Diessler, S. et al. A systems genetics resource and analysis of sleep regulation in the mouse. PLoS Biol. 16, e2005750 (2018).

    Article  Google Scholar 

  54. Harbison, S. T., McCoy, L. J. & Mackay, T. F. C. Genome-wide association study of sleep in Drosophila melanogaster. BMC Genom. 14, 281 (2013).

    Article  CAS  Google Scholar 

  55. Kumar, S., Tunc, I., Tansey, T. R., Pirooznia, M. & Harbison, S. T. Identification of genes contributing to a long circadian period in Drosophila melanogaster. J. Biol. Rhythms 36, 239–253 (2021).

    Article  CAS  Google Scholar 

  56. Duffy, J. F., Zitting, K.-M. & Chinoy, E. D. Aging and circadian rhythms. Sleep. Med. Clin. 10, 423–434 (2015).

    Article  Google Scholar 

  57. Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27, 1255–1273 (2004).

    Article  Google Scholar 

  58. Marinelli, M. et al. Heritability and genome-wide association analyses of sleep duration in children: the EAGLE consortium. Sleep 39, 1859–1869 (2016).

    Article  Google Scholar 

  59. Merikanto, I. et al. Circadian preference and sleep timing from childhood to adolescence in relation to genetic variants from a genome-wide association study. Sleep Med. 50, 36–41 (2018).

    Article  Google Scholar 

  60. Sateia, M. J. International classification of sleep disorders-third edition: highlights and modifications. Chest 146, 1387–1394 (2014).

    Article  Google Scholar 

  61. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 5th edn (American Psychiatric Pub, 2013).

  62. Curtis, B. J. et al. Extreme morning chronotypes are often familial and not exceedingly rare: the estimated prevalence of advanced sleep phase, familial advanced sleep phase, and advanced sleep–wake phase disorder in a sleep clinic population. Sleep https://doi.org/10.1093/sleep/zsz148 (2019).

    Article  Google Scholar 

  63. Sivertsen, B., Harvey, A. G., Gradisar, M., Pallesen, S. & Hysing, M. Delayed sleep–wake phase disorder in young adults: prevalence and correlates from a national survey of Norwegian university students. Sleep. Med. 77, 184–191 (2021).

    Article  Google Scholar 

  64. Paine, S.-J., Fink, J., Gander, P. H. & Warman, G. R. Identifying advanced and delayed sleep phase disorders in the general population: a national survey of New Zealand adults. Chronobiol. Int. 31, 627–636 (2014).

    Article  Google Scholar 

  65. Murray, J. M. et al. Prevalence of circadian misalignment and its association with depressive symptoms in delayed sleep phase disorder. Sleep 40, zsw002 (2017).

    Google Scholar 

  66. Satoh, K., Mishima, K., Inoue, Y., Ebisawa, T. & Shimizu, T. Two pedigrees of familial advanced sleep phase syndrome in Japan. Sleep 26, 416–417 (2003).

    Article  Google Scholar 

  67. Pereira, D. S. et al. Association of the length polymorphism in the human Per3 gene with the delayed sleep–phase syndrome: does latitude have an influence upon it? Sleep 28, 29–32 (2005).

    Google Scholar 

  68. Xu, Y. et al. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644 (2005).

    Article  CAS  Google Scholar 

  69. Jones, C. R. et al. Familial advanced sleep–phase syndrome: a short-period circadian rhythm variant in humans. Nat. Med. 5, 1062–1065 (1999).

    Article  CAS  Google Scholar 

  70. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001). This paper described the first gene for advanced sleep phase syndrome discovered using a human genetic family-based approach.

    Article  CAS  Google Scholar 

  71. Kurien, P. et al. TIMELESS mutation alters phase responsiveness and causes advanced sleep phase. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1819110116 (2019).

    Article  Google Scholar 

  72. MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

    Article  CAS  Google Scholar 

  73. Zhang, L. et al. A PERIOD3 variant causes a circadian phenotype and is associated with a seasonal mood trait. Proc. Natl Acad. Sci. USA 113, E1536–E1544 (2016).

    CAS  Google Scholar 

  74. Kornum, B. R. et al. Narcolepsy. Nat. Rev. Dis. Prim. 3, 16100 (2017).

    Article  Google Scholar 

  75. Ollila, H. M. Narcolepsy type 1: what have we learned from genetics? Sleep https://doi.org/10.1093/sleep/zsaa099 (2020).

    Article  Google Scholar 

  76. Mignot, E. Genetic and familial aspects of narcolepsy. Neurology 50, S16–S22 (1998).

    Article  CAS  Google Scholar 

  77. Langdon, N., Welsh, K. I., van Dam, M., Vaughan, R. W. & Parkes, D. Genetic markers in narcolepsy. Lancet 2, 1178–1180 (1984).

    Article  CAS  Google Scholar 

  78. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).

    Article  CAS  Google Scholar 

  79. Luo, G. et al. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc. Natl Acad. Sci. USA 115, E12323–E12332 (2018).

    Article  CAS  Google Scholar 

  80. Hor, H. et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat. Genet. 42, 786–789 (2010).

    Article  CAS  Google Scholar 

  81. Faraco, J. et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet. 9, e1003270 (2013).

    Article  CAS  Google Scholar 

  82. Han, F. et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet. 9, e1003880 (2013).

    Article  Google Scholar 

  83. Degn, M. et al. Rare missense mutations in P2RY11 in narcolepsy with cataplexy. Brain 140, 1657–1668 (2017).

    Article  Google Scholar 

  84. Han, F. et al. HLA-DQ association and allele competition in Chinese narcolepsy. Tissue Antigens 80, 328–335 (2012).

    Article  CAS  Google Scholar 

  85. Mignot, E., Hayduk, R., Black, J., Grumet, F. C. & Guilleminault, C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep 20, 1012–1020 (1997).

    CAS  Google Scholar 

  86. Capittini, C. et al. Correlation between HLA-DQB1*06:02 and narcolepsy with and without cataplexy: approving a safe and sensitive genetic test in four major ethnic groups. A systematic meta-analysis. Sleep. Med. 52, 150–157 (2018).

    Article  CAS  Google Scholar 

  87. Miyagawa, T. & Tokunaga, K. Genetics of narcolepsy. Hum. Genome Var. 6, 4 (2019).

    Article  Google Scholar 

  88. Trenkwalder, C. et al. Comorbidities, treatment, and pathophysiology in restless legs syndrome. Lancet Neurol. https://doi.org/10.1016/S1474-4422(18)30311-9 (2018).

    Article  Google Scholar 

  89. Earley, C. J. et al. Altered brain iron homeostasis and dopaminergic function in restless legs syndrome (Willis–Ekbom disease). Sleep Med. 15, 1288–1301 (2014).

    Article  Google Scholar 

  90. Jiménez-Jiménez, F. J., Alonso-Navarro, H., García-Martín, E. & Agúndez, J. A. G. Neurochemical features of idiopathic restless legs syndrome. Sleep. Med. Rev. 45, 70–87 (2019).

    Article  Google Scholar 

  91. Schormair, B. et al. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol. 16, 898–907 (2017).

    Article  Google Scholar 

  92. Akçimen, F. et al. Transcriptome-wide association study for restless legs syndrome identifies new susceptibility genes. Commun. Biol. 3, 373 (2020).

    Article  Google Scholar 

  93. Jiménez-Jiménez, F. J., Alonso-Navarro, H., García-Martín, E. & Agúndez, J. A. G. Genetics of restless legs syndrome: an update. Sleep Med. Rev. 39, 108–121 (2018).

    Article  Google Scholar 

  94. Spieler, D. et al. Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 24, 592–603 (2014).

    Article  CAS  Google Scholar 

  95. Drgonova, J. et al. Mouse model for protein tyrosine phosphatase D (PTPRD) associations with restless leg syndrome or Willis–Ekbom disease and addiction: reduced expression alters locomotion, sleep behaviors and cocaine-conditioned place preference. Mol. Med. 21, 717–725 (2015).

    Article  CAS  Google Scholar 

  96. Stefansson, H. et al. A genetic risk factor for periodic limb movements in sleep. N. Engl. J. Med. 357, 639–647 (2007).

    Article  CAS  Google Scholar 

  97. Sarayloo, F. et al. SKOR1 has a transcriptional regulatory role on genes involved in pathways related to restless legs syndrome. Eur. J. Hum. Genet. 28, 1520–1528 (2020).

    Article  CAS  Google Scholar 

  98. Liang, J. et al. Comparison of heritability estimation and linkage analysis for multiple traits using principal component analyses. Genet. Epidemiol. 40, 222–232 (2016).

    Article  Google Scholar 

  99. Campos, A. I. et al. Insights into the aetiology of snoring from observational and genetic investigations in the UK Biobank. Nat. Commun. 11, 817 (2020).

    Article  CAS  Google Scholar 

  100. Strausz, S. et al. Genetic analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic health. Eur. Respir. J. 57, 2003091 (2021).

    Article  CAS  Google Scholar 

  101. Wang, H. et al. Admixture mapping identifies novel loci for obstructive sleep apnea in hispanic/latino americans. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddy387 (2018).

    Article  Google Scholar 

  102. Wang, H. et al. Variants in angiopoietin-2 (ANGPT2) contribute to variation in nocturnal oxyhaemoglobin saturation level. Hum. Mol. Genet. 25, 5244–5253 (2016).

    CAS  Google Scholar 

  103. Liang, J. et al. Sequencing analysis at 8p23 identifies multiple rare variants in DLC1 associated with sleep-related oxyhemoglobin saturation level. Am. J. Hum. Genet. 105, 1057–1068 (2019).

    Article  CAS  Google Scholar 

  104. Cade, B. E. et al. Genetic associations with obstructive sleep apnea traits in Hispanic/Latino Americans. Am. J. Respir. Crit. Care Med. 194, 886–897 (2016).

    Article  Google Scholar 

  105. Cade, B. E. et al. Associations of variants In the hexokinase 1 and interleukin 18 receptor regions with oxyhemoglobin saturation during sleep. PLoS Genet. 15, e1007739 (2019).

    Article  Google Scholar 

  106. Chen, H. et al. Multiethnic meta-analysis identifies RAI1 as a possible obstructive sleep apnea–related quantitative trait locus in men. Am. J. Respir. Cell Mol. Biol. 58, 391–401 (2018).

    Article  CAS  Google Scholar 

  107. Mukherjee, S., Saxena, R. & Palmer, L. J. The genetics of obstructive sleep apnoea. Respirology 23, 18–27 (2018).

    Article  Google Scholar 

  108. Morin, C. M. et al. Insomnia disorder. Nat. Rev. Dis. Prim. 1, 15026 (2015).

    Article  Google Scholar 

  109. Lind, M. J., Aggen, S. H., Kirkpatrick, R. M., Kendler, K. S. & Amstadter, A. B. A longitudinal twin study of insomnia symptoms in adults. Sleep 38, 1423–1430 (2015).

    Article  Google Scholar 

  110. Amin, N. et al. Genetic variants in RBFOX3 are associated with sleep latency. Eur. J. Hum. Genet. 24, 1488–1495 (2016).

    Article  CAS  Google Scholar 

  111. Ban, H.-J., Kim, S. C., Seo, J., Kang, H.-B. & Choi, J. K. Genetic and metabolic characterization of insomnia. PLoS ONE 6, e18455 (2011).

    Article  CAS  Google Scholar 

  112. Spada, J. et al. Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE adult study. J. Sleep. Res. 25, 690–701 (2016).

    Article  Google Scholar 

  113. Parsons, M. J. et al. Replication of genome-wide association studies (GWAS) loci for sleep in the British G1219 cohort. Am. J. Med. Genet. B 162B, 431–438 (2013).

    Article  Google Scholar 

  114. Lane, J. M. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49, 274–281 (2017).

    Article  CAS  Google Scholar 

  115. Lane, J. M. et al. Biological and clinical insights from genetics of insomnia symptoms. Nat. Genet. https://doi.org/10.1038/s41588-019-0361-7 (2019).

    Article  Google Scholar 

  116. Jansen, P. R. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. https://doi.org/10.1038/s41588-018-0333-3 (2019). This largest-to-date GWAS for insomnia identified 202 genetic loci associated with insomnia symptoms and causal links to cardiometabolic traits.

    Article  Google Scholar 

  117. Hammerschlag, A. R. et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet. 49, 1584–1592 (2017).

    Article  CAS  Google Scholar 

  118. Khlghatyan, J. et al. Fxr1 regulates sleep and synaptic homeostasis. EMBO J. 39, e103864 (2020).

    Article  CAS  Google Scholar 

  119. Lind, M. J. & Gehrman, P. R. Genetic pathways to insomnia. Brain Sci. 6, 64 (2016).

    Article  Google Scholar 

  120. Mainieri, G. et al. The genetics of sleep disorders in children: a narrative review. Brain Sci. 11, 1245 (2021).

    Article  Google Scholar 

  121. El Gewely, M. et al. Reassessing GWAS findings for the shared genetic basis of insomnia and restless legs syndrome. Sleep https://doi.org/10.1093/sleep/zsy164 (2018).

    Article  Google Scholar 

  122. Watanabe, K. et al. Genome-wide meta-analysis of insomnia in over 2.3 million individuals implicates involvement of specific biological pathways through gene-prioritization. Preprint at medRxiv https://doi.org/10.1101/2020.12.07.20245209 (2020).

    Article  Google Scholar 

  123. Krystal, A. D. & Prather, A. A. Sleep pharmacogenetics: the promise of precision medicine. Sleep. Med. Clin. 14, 317–331 (2019).

    Article  Google Scholar 

  124. Barateau, L. & Dauvilliers, Y. Recent advances in treatment for narcolepsy. Ther. Adv. Neurol. Disord. 12, 1756286419875622 (2019).

    Article  CAS  Google Scholar 

  125. Equihua-Benítez, A. C., Equihua-Benítez, J. A., Guzmán-Vásquez, K., Prospero-García, O. & Drucker-Colín, R. Orexin cell transplant reduces behavioral arrest severity in narcoleptic mice. Brain Res. 1745, 146951 (2020).

    Article  Google Scholar 

  126. Pingault, J.-B. et al. Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet. 19, 566–580 (2018).

    Article  CAS  Google Scholar 

  127. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  Google Scholar 

  128. Byrne, E. M. The relationship between insomnia and complex diseases-insights from genetic data. Genome Med. 11, 57 (2019).

    Article  Google Scholar 

  129. Emdin, C. A., Khera, A. V. & Kathiresan, S. Mendelian randomization. JAMA 318, 1925–1926 (2017).

    Article  Google Scholar 

  130. Smith, G. D. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Article  Google Scholar 

  131. Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380, 572–580 (2012).

    Article  CAS  Google Scholar 

  132. Vetter, C. et al. Prospective study of chronotype and incident depression among middle- and older-aged women in the Nurses’ Health Study II. J. Psychiat. Res. 103, 156–160 (2018).

    Article  Google Scholar 

  133. Haraden, D. A., Mullin, B. C. & Hankin, B. L. The relationship between depression and chronotype: a longitudinal assessment during childhood and adolescence. Depress. Anxiety 34, 967–976 (2017).

    Article  Google Scholar 

  134. O’Loughlin, J. et al. Using Mendelian randomisation methods to understand whether diurnal preference is causally related to mental health. Mol. Psychiat. https://doi.org/10.1038/s41380-021-01157-3 (2021).

    Article  Google Scholar 

  135. Daghlas, I., Lane, J. M., Saxena, R. & Vetter, C. Genetically proxied diurnal preference, sleep timing, and risk of major depressive disorder. JAMA Psychiat. https://doi.org/10.1001/jamapsychiatry.2021.0959 (2021).

    Article  Google Scholar 

  136. Facer-Childs, E. R., Middleton, B., Skene, D. J. & Bagshaw, A. P. Resetting the late timing of ‘night owls’ has a positive impact on mental health and performance. Sleep. Med. 60, 236–247 (2019).

    Article  Google Scholar 

  137. Javaheri, S. & Redline, S. Insomnia and risk of cardiovascular disease. Chest 152, 435–444 (2017).

    Article  Google Scholar 

  138. Zheng, B. et al. Insomnia symptoms and risk of cardiovascular diseases among 0.5 million adults: a 10-year cohort. Neurology https://doi.org/10.1212/WNL.0000000000008581 (2019).

    Article  Google Scholar 

  139. Baranova, A., Cao, H. & Zhang, F. Shared genetic liability and causal effects between major depressive disorder and insomnia. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddab328 (2021).

    Article  Google Scholar 

  140. Högl, B., Stefani, A. & Videnovic, A. Idiopathic REM sleep behaviour disorder and neurodegeneration — an update. Nat. Rev. Neurol. 14, 40–55 (2018).

    Article  Google Scholar 

  141. Gan-Or, Z., Alcalay, R. N., Rouleau, G. A. & Postuma, R. B. Sleep disorders and Parkinson disease; lessons from genetics. Sleep Med. Rev. 41, 101–112 (2018).

    Article  Google Scholar 

  142. Gros, P. & Videnovic, A. Overview of sleep and circadian rhythm disorders in parkinson disease. Clin. Geriatr. Med. 36, 119–130 (2020).

    Article  Google Scholar 

  143. Leng, Y., Ackley, S. F., Glymour, M. M., Yaffe, K. & Brenowitz, W. D. Genetic risk of Alzheimer’s disease and sleep duration in non-demented elders. Ann. Neurol. 89, 177–181 (2021).

    Article  CAS  Google Scholar 

  144. Lucey, B. P. et al. Sleep and longitudinal cognitive performance in preclinical and early symptomatic Alzheimer’s disease. Brain https://doi.org/10.1093/brain/awab272 (2021).

    Article  Google Scholar 

  145. Medori, R. et al. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N. Engl. J. Med. 326, 444–449 (1992).

    Article  CAS  Google Scholar 

  146. Watson, N. F. et al. Sleep duration and body mass index in twins: a gene–environment interaction. Sleep 35, 597–603 (2012).

    Article  Google Scholar 

  147. Wang, H. et al. Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure. Mol. Psychiatry 26, 6293–6304 (2021).

    Article  CAS  Google Scholar 

  148. Noordam, R. et al. Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat. Commun. 10, 5121 (2019).

    Article  Google Scholar 

  149. Rask-Andersen, M., Karlsson, T., Ek, W. E. & Johansson, Å. Gene–environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLoS Genet. 13, e1006977 (2017).

    Article  Google Scholar 

  150. Celis-Morales, C. et al. Sleep characteristics modify the association of genetic predisposition with obesity and anthropometric measurements in 119,679 UK Biobank participants. Am. J. Clin. Nutr. 105, 980–990 (2017). This paper demonstrates genetic effects via sleep and chronotype behaviour interactions on obesity-related phenotypes.

    Article  CAS  Google Scholar 

  151. Fan, M. et al. Sleep patterns, genetic susceptibility, and incident cardiovascular disease: a prospective study of 385 292 UK biobank participants. Eur. Heart J. 41, 1182–1189 (2020).

    Article  Google Scholar 

  152. Fu, J. et al. Childhood sleep duration modifies the polygenic risk for obesity in youth through leptin pathway: the Beijing child and adolescent metabolic syndrome cohort study. Int. J. Obes. 43, 1556–1567 (2019).

    Article  CAS  Google Scholar 

  153. Garaulet, M. et al. Melatonin effects on glucose metabolism: time to unlock the controversy. Trends Endocrinol. Metab. https://doi.org/10.1016/j.tem.2019.11.011 (2020).

    Article  Google Scholar 

  154. Gill, S. & Panda, S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 22, 789–798 (2015).

    Article  CAS  Google Scholar 

  155. eMERGE Consortium Lessons learned from the eMERGE Network: balancing genomics in discovery and practice. HGG Adv. 2, 100018 (2021).

    Google Scholar 

  156. Lappalainen, T. & MacArthur, D. G. From variant to function in human disease genetics. Science 373, 1464–1468 (2021).

    Article  CAS  Google Scholar 

  157. Weedon, M. N. et al. The impact of Mendelian sleep and circadian genetic variants in a population setting. Preprint at bioRxiv https://doi.org/10.1101/2022.01.04.21268199 (2022).

    Article  Google Scholar 

  158. Geyer, H. Über den Schlaf von Zwillingen. Z. Vererbungslehre 73, 524–527 (1937).

    Google Scholar 

  159. Aserinsky, E. & Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118, 273–274 (1953).

    Article  CAS  Google Scholar 

  160. Dement, W. & Kleitman, N. Incidence of eye motility during sleep in relation to varying EEG pattern. Fed. Proc. 14, 216 (1955).

    Google Scholar 

  161. Dement, W. & Kleitman, N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr. Clin. Neurophysiol. 9, 673–690 (1957).

    Article  CAS  Google Scholar 

  162. Juji, T., Satake, M., Honda, Y. & Doi, Y. HLA antigens in Japanese patients with narcolepsy. All the patients were DR2 positive. Tissue Antigens 24, 316–319 (1984).

    Article  CAS  Google Scholar 

  163. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).

    Article  CAS  Google Scholar 

  164. Winkelmann, J. et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat. Genet. 39, 1000–1006 (2007).

    Article  CAS  Google Scholar 

  165. Viola, A. U. et al. PER3 polymorphism predicts sleep structure and waking performance. Curr. Biol. 17, 613–618 (2007).

    Article  CAS  Google Scholar 

  166. Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 (2008).

    Article  CAS  Google Scholar 

  167. Konopka, R. J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 68, 2112–2116 (1971).

    Article  CAS  Google Scholar 

  168. Moore, R. Y. & Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–206 (1972).

    Article  CAS  Google Scholar 

  169. Stephan, F. K. & Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl Acad. Sci. USA 69, 1583–1586 (1972).

    Article  CAS  Google Scholar 

  170. Reddy, P. et al. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38, 701–710 (1984).

    Article  CAS  Google Scholar 

  171. Bargiello, T. A. & Young, M. W. Molecular genetics of a biological clock in Drosophila. Proc. Natl Acad. Sci. USA 81, 2142–2146 (1984).

    Article  CAS  Google Scholar 

  172. Sawaki, Y., Nihonmatsu, I. & Kawamura, H. Transplantation of the neonatal suprachiasmatic nuclei into rats with complete bilateral suprachiasmatic lesions. Neurosci. Res. 1, 67–72 (1984).

    Article  CAS  Google Scholar 

  173. Lehman, M. N. et al. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J. Neurosci. 7, 1626–1638 (1987).

    Article  CAS  Google Scholar 

  174. Ralph, M. R., Foster, R. G., Davis, F. C. & Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978 (1990).

    Article  CAS  Google Scholar 

  175. Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994).

    Article  CAS  Google Scholar 

  176. Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685 (2000).

    Article  CAS  Google Scholar 

  177. Tosini, G. & Menaker, M. Circadian rhythms in cultured mammalian retina. Science 272, 419–421 (1996).

    Article  CAS  Google Scholar 

  178. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  Google Scholar 

  179. Grundschober, C. et al. Circadian regulation of diverse gene products revealed by mRNA expression profiling of synchronized fibroblasts. J. Biol. Chem. 276, 46751–46758 (2001).

    Article  CAS  Google Scholar 

  180. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  Google Scholar 

  181. Scheer, F. A. J. L., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).

    Article  CAS  Google Scholar 

  182. Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41, 77–81 (2009).

    Article  CAS  Google Scholar 

  183. Patke, A. et al. Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 169, 203–215.e13 (2017).

    Article  CAS  Google Scholar 

  184. Ruben, M. D. et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci. Transl. Med. 10, eaat8806 (2018).

    Article  Google Scholar 

  185. McClung, C. R. Plant circadian rhythms. Plant Cell 18, 792–803 (2006).

    Article  CAS  Google Scholar 

  186. Blume, C. et al. Across the consciousness continuum-from unresponsive wakefulness to sleep. Front. Hum. Neurosci. https://doi.org/10.3389/fnhum.2015.00105 (2015).

    Article  Google Scholar 

  187. Daghlas, I. et al. Sleep duration and myocardial infarction. J. Am. Coll. Cardiol. 74, 1304–1314 (2019). This study used a longitudinal study design and Mendelian randomization to investigate the causal relationship between sleep duration and myocardial infarction.

    Article  CAS  Google Scholar 

  188. Panda, S. Circadian physiology of metabolism. Science 354, 1008–1015 (2016).

    Article  CAS  Google Scholar 

  189. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).

    Article  CAS  Google Scholar 

  190. Dashti, H. S. & Ordovás, J. M. Genetics of sleep and insights into its relationship with obesity. Annu. Rev. Nutr. https://doi.org/10.1146/annurev-nutr-082018-124258 (2021).

    Article  Google Scholar 

  191. Sparsø, T. et al. G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release. Diabetes 58, 1450–1456 (2009).

    Article  Google Scholar 

  192. Lyssenko, V. et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41, 82–88 (2009). This study demonstrates a role for a circadian-related gene, MTNR1B, in type 2 diabetes mellitus, highlighting the role of the hormone melatonin in diabetes pathogenesis via a direct inhibitory effect in pancreatic β cells.

    Article  CAS  Google Scholar 

  193. Wood, A. R. et al. A genome-wide association study of IVGTT-based measures of first-phase insulin secretion refines the underlying physiology of type 2 diabetes variants. Diabetes 66, 2296–2309 (2017).

    Article  CAS  Google Scholar 

  194. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  Google Scholar 

  195. Karamitri, A. & Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat. Rev. Endocrinol. 15, 105–125 (2019).

    Article  CAS  Google Scholar 

  196. Gaulton, K. J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415–1425 (2015).

    Article  CAS  Google Scholar 

  197. Tuomi, T. et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 23, 1067–1077 (2016).

    Article  CAS  Google Scholar 

  198. Garaulet, M. et al. Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans. Metabolism 64, 1650–1657 (2015).

    Article  CAS  Google Scholar 

  199. Lopez-Minguez, J., Saxena, R., Bandín, C., Scheer, F. A. & Garaulet, M. Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: a randomized, cross-over study. Clin. Nutr. https://doi.org/10.1016/j.clnu.2017.04.003 (2017).

    Article  Google Scholar 

  200. Garaulet, M. et al. Interplay of dinner timing and MTNR1B type 2 diabetes risk variant on glucose tolerance and insulin secretion: a randomized crossover trial. Diabetes Care 45, 512–519 (2022).

    Article  CAS  Google Scholar 

  201. Lane, J. M. et al. Impact of common diabetes risk variant in MTNR1B on sleep, circadian, and melatonin physiology. Diabetes 65, 1741–1751 (2016).

    Article  CAS  Google Scholar 

  202. Bonnefond, A. et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44, 297–301 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.M.L. is supported by NIH grant number K01 HL136884. J.Q. is supported by NIH grant number K99HL148500. S.R. is supported by NIH grants on genetics of sleep apnea. E.M. is supported by NIH grants. F.A.J.L.S. is supported by NIH grants R01 DK105072, R01 HL140574, R01 HL153969 and R01 DK102696. R.S. is supported by NIH grants R01 DK105072, R01 DK102696, R01 DK107859, R01 HL146751 and R21 AG068890, DOD grant W81XWH2010776, a Dreem Jury prize (in-kind support) and a Phyllis and Jerome Lyle Rappaport MGH Research Scholar Award.

Author information

Authors and Affiliations

Authors

Contributions

J.M.L., F.A.J.L.S., J.Q. and R.S. wrote the article. All authors contributed to discussions of the content, and reviewed and/or edited the manuscript.

Corresponding authors

Correspondence to Frank A. J. L. Scheer or Richa Saxena.

Ethics declarations

Competing interests

S.R. reports receipt of NIH grants that include studies of the genetics of sleep apnea. F.A.J.L.S. served on the Board of Directors for the Sleep Research Society and has received consulting fees from the University of Alabama at Birmingham. The interests of F.A.J.L.S. were reviewed and managed by Brigham and Women’s Hospital and Partners HealthCare in accordance with their conflict-of-interest policies. The consultancies of F.A.J.L.S. are not related to the current work. R.S. is a founder and shareholder of Magnet Biomedicine, not related to the current work. R.S. has received in-kind support from Dreem. The other authors report no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Suprachiasmatic nucleus

(SCN). Located in the hypothalamus, the SCN is the master circadian oscillator and coordinates circadian rhythms throughout the body.

Circadian rhythm

An approximately 24-hour rhythm in cellular, physiological or behavioural processes that are driven by the internal circadian timekeeping system; this rhythm is sustained in the absence of environmental and behavioural rhythms and can be entrained to solar day/night cycle by light.

Molecular clock

Molecular mechanism driving circadian rhythms, consisting of transcriptional–translational feedback loops of core clock genes.

Homeostatic

The sleep–wake homeostat balances the need for sleep and wakefulness and regulates sleep intensity. The longer you are awake the greater your body’s need for sleep (‘homeostatic sleep pressure’), which subsides during sleep (‘sleep dissipation’). The sleep–wake homeostat works in concert with the circadian rhythm.

REM sleep

REM sleep, which occurs primarily during the latter half of a sleep cycle (primarily owing to the influence of process C), is associated with the highest brain activity during sleep and with dreaming. During REM sleep, most of the body’s skeletal muscles are paralysed.

Clock genes

Core clock genes are directly involved in the primary transcriptional–translational feedback loops. By contrast, clock-controlled genes are those genes whose expression is driven by the transcriptional–translational feedback loops within cells and tissues, resulting in circadian oscillations in their function.

Circadian period

Duration of time for completion of a full cycle, that is, the time it takes to move from a reference point in a rhythmic process (a particular phase) to return to the same point (for example, time difference between two sequential dim light melatonin onsets). In humans, the endogenous circadian period is roughly 24.15 hours.

Phase

Reference time within the circadian cycle, for example, at which a particular event occurs such as the minimum or maximum of a circadian measure.

Electroencephalograph

(EEG). A measurement of electrical brain activity that uses sensors and can be used to identify stages of sleep.

Polysomnography

(PSG). A measurement of multiple parallel channels of data during sleep, typically including EEG and measures of muscle activity (electromyography), eye movements (electrooculography), and heart rate (electrocardiography). For clinical PSGs, the following measures are typically measured in addition: oxygen levels (pulse oximetry), breathing (respiratory belts, nasal pressure sensor, thermistor), and leg movements (leg electromyography). PSG is frequently used to diagnose a variety of sleep disorders, such as sleep apnea.

Wearable devices

Also known as wearables, these devices record real-time environmental, behavioural and/or physiological parameters such as accelerometry, skin temperature and heart rate.

Melatonin

A hormone produced by the pineal gland during the circadian night, and which can be suppressed by retinal light in mammals. Synthesis and secretion of melatonin into the circulation is controlled by the SCN, and therefore melatonin is used as a marker of the phase of internal circadian time.

Actigraphy

A non-invasive wrist-worn accelerometer-based objective measurement of average motor activity over a period of time.

Polygenic score

Also known as polygenic risk score. A score that summarizes genetic liability to a trait or disease and is typically calculated by aggregating the weighted effect of many trait-associated genetic variants

Excessive daytime sleepiness

Difficulty staying awake or alert during the day, which is often a symptom of sleep problems and/or disorders.

Entrainment

The synchronization of a (here, circadian) rhythm to an environmental, behavioural, or other circadian cycle, such as the light/dark cycle, eating/fasting or temperature cycles.

Sleep–wake cycle

The daily pattern of alternating wakefulness and sleep with a periodicity typically approximating the 24-hour day–night cycle.

Nearables

Devices worn not on but near to the body, with a variety of sensors that can measure and record signals, such as snoring sounds, body movement or heart rate, as physiological proxies to estimate (for example) sleep duration, timing and/or quality.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lane, J.M., Qian, J., Mignot, E. et al. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet 24, 4–20 (2023). https://doi.org/10.1038/s41576-022-00519-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00519-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing