Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Alternative splicing as a source of phenotypic diversity

Abstract

A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patterns of alternative splicing.
Fig. 2: Role of alternative splicing in sex determination.
Fig. 3: Genetic basis of novel splice forms and patterns.
Fig. 4: Alternative splicing can underpin morphological evolution.
Fig. 5: Divergent alternative splicing can mediate lineage-specific adaptations.

Similar content being viewed by others

References

  1. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Manning, K. S. & Cooper, T. A. The roles of RNA processing in translating genotype to phenotype. Nat. Rev. Mol. Cell Biol. 18, 102–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Stern, D. L. Perspective: Evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Carroll, S. B. Endless forms: the evolution of gene regulation and morphological diversity. Cell 101, 577–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Doebley, J. & Lukens, L. Transcriptional regulators and the evolution of plant form. Plant Cell 10, 1075–1082 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monlong, J., Calvo, M., Ferreira, P. G. & Guigó, R. Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat. Commun. 5, 4698 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, Y. et al. SNP2APA: a database for evaluating effects of genetic variants on alternative polyadenylation in human cancers. Nucleic Acids Res. 48, D226–D232 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Belkadi, A. et al. Identification of genetic variants controlling RNA editing and their effect on RNA structure stabilization. Eur. J. Hum. Genet. 28, 1753–1762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 3171–3175 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Gilbert, W. Why genes in pieces? Nature 271, 501 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Gilbert, W. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. 52, 901–905 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Rogers, J. et al. Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin mu chain. Cell 20, 303–312 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240–244 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hertel, K. J. Spliceosomal Pre-mRNA Splicing: Methods and Protocols (Humana Press, 2014).

  18. Tian, B. & Manley, J. L. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18, 18–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Pal, S., Gupta, R. & Davuluri, R. V. Alternative transcription and alternative splicing in cancer. Pharmacol. Ther. 136, 283–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, C., Yang, H. & Yang, H. Evolutionary character of alternative splicing in plants. Bioinform. Biol. Insights 9, 47–52 (2015).

    CAS  PubMed  Google Scholar 

  21. Grützmann, K. et al. Fungal alternative splicing is associated with multicellular complexity and virulence: a genome-wide multi-species study. DNA Res. 21, 27–39 (2014).

    Article  PubMed  Google Scholar 

  22. Schwartz, S. H. et al. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res. 18, 88–103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez-Hilarion, S. et al. Intron retention-dependent gene regulation in Cryptococcus neoformans. Sci. Rep. 6, 32252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalyna, M. et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res. 40, 2454–2469 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Smith, C. W., Patton, J. G. & Nadal-Ginard, B. Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23, 527–577 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Sharp, P. A. Split genes and RNA splicing (Nobel lecture). Angew. Chem. Int. Edn Engl. 33, 1229–1240 (1994).

    Article  Google Scholar 

  27. Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Merkin, J., Russell, C., Chen, P. & Burge, C. B. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Q. et al. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. eLife 3, e01201 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gallagher, T. L. et al. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions. Dev. Biol. 359, 251–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Terai, Y., Morikawa, N., Kawakami, K. & Okada, N. The complexity of alternative splicing of hagoromo mRNAs is increased in an explosively speciated lineage in East African cichlids. Proc. Natl Acad. Sci. USA 100, 12798–12803 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bolisetty, M. T., Rajadinakaran, G. & Graveley, B. R. Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biol. 16, 204 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hattori, D. et al. Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Nature 461, 644–648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bush, S. J., Chen, L., Tovar-Corona, J. M. & Urrutia, A. O. Alternative splicing and the evolution of phenotypic novelty. Phil. Trans. R. Soc. Lond. B 372, 20150474 (2017).

    Article  Google Scholar 

  35. Wilkinson, M. E., Charenton, C. & Nagai, K. RNA splicing by the spliceosome. Annu. Rev. Biochem. 89, 359–388 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Naftelberg, S., Schor, I. E., Ast, G. & Kornblihtt, A. R. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu. Rev. Biochem. 84, 165–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, Y. & Rio, D. C. Mechanisms and regulation of alternative pre-mRNA splicing. Annu. Rev. Biochem. 84, 291–323 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu, X.-D. & Ares, M. Jr Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Robberson, B. L., Cote, G. J. & Berget, S. M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10, 84–94 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

  41. Grau-Bové, X., Ruiz-Trillo, I. & Irimia, M. Origin of exon skipping-rich transcriptomes in animals driven by evolution of gene architecture. Genome Biol. 19, 135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marquez, Y., Höpfler, M., Ayatollahi, Z., Barta, A. & Kalyna, M. Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity. Genome Res. 25, 995–1007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sousa-Luís, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol. Cell 81, 1935–1950.e6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Saudemont, B. et al. The fitness cost of mis-splicing is the main determinant of alternative splicing patterns. Genome Biol. 18, 208 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Melamud, E. & Moult, J. Structural implication of splicing stochastics. Nucleic Acids Res. 37, 4862–4872 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pickrell, J. K., Pai, A. A., Gilad, Y. & Pritchard, J. K. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 6, e1001236 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stepankiw, N., Raghavan, M., Fogarty, E. A., Grimson, A. & Pleiss, J. A. Widespread alternative and aberrant splicing revealed by lariat sequencing. Nucleic Acids Res. 43, 8488–8501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reixachs-Solé, M. & Eyras, E. Uncovering the impacts of alternative splicing on the proteome with current omics techniques. Wiley Interdiscip. Rev. RNA https://doi.org/10.1002/wrna.1707 (2022).

  49. Kelemen, O. et al. Function of alternative splicing. Gene 514, 1–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. McGlincy, N. J. & Smith, C. W. J. Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem. Sci. 33, 385–393 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhuiyan, S. A. et al. Systematic evaluation of isoform function in literature reports of alternative splicing. BMC Genom. 19, 637 (2018).

    Article  Google Scholar 

  53. Stamm, S. et al. Function of alternative splicing. Gene 344, 1–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Resch, A. et al. Assessing the impact of alternative splicing on domain interactions in the human proteome. J. Proteome Res. 3, 76–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Xing, Y., Xu, Q. & Lee, C. Widespread production of novel soluble protein isoforms by alternative splicing removal of transmembrane anchoring domains. FEBS Lett. 555, 572–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Goeke, S. et al. Alternative splicing of lola generates 19 transcription factors controlling axon guidance in Drosophila. Nat. Neurosci. 6, 917–924 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Martín, G., Márquez, Y., Mantica, F., Duque, P. & Irimia, M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol. 22, 35 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Buljan, M. et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 46, 871–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell 46, 884–892 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Romero, P. R. et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl Acad. Sci. USA 103, 8390–8395 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lam, S. D., Babu, M. M., Lees, J. & Orengo, C. A. Biological impact of mutually exclusive exon switching. PLoS Comput. Biol. 17, e1008708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gabut, M. et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147, 132–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Floor, S. N. & Doudna, J. A. Tunable protein synthesis by transcript isoforms in human cells. eLife 5, e10921 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged landscape of alternative splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mockenhaupt, S. & Makeyev, E. V. Non-coding functions of alternative pre-mRNA splicing in development. Semin. Cell Dev. Biol. 47–48, 32–39 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lewis, B. P., Green, R. E. & Brenner, S. E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl Acad. Sci. USA 100, 189–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Ni, J. Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21, 708–718 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926–929 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. da Costa, P. J., Menezes, J. & Romão, L. The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease. Int. J. Biochem. Cell Biol. 91, 168–175 (2017).

    Article  PubMed  Google Scholar 

  70. Wollerton, M. C., Gooding, C., Wagner, E. J., Garcia-Blanco, M. A. & Smith, C. W. J. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Uzor, S. et al. Autoregulation of the human splice factor kinase CLK1 through exon skipping and intron retention. Gene 670, 46–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Leclair, N. K. et al. Poison exon splicing regulates a coordinated network of SR protein expression during differentiation and tumorigenesis. Mol. Cell 80, 648–665.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thomas, J. D. et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat. Genet. 52, 84–94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pan, Q. et al. Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev. 20, 153–158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rivas, M. A. et al. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 348, 666–669 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lindeboom, R. G. H., Supek, F. & Lehner, B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat. Genet. 48, 1112–1118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. García-Moreno, J. F. & Romão, L. Perspective in alternative splicing coupled to nonsense-mediated mRNA decay. Int. J. Mol. Sci. 21, 9424 (2020).

    Article  PubMed Central  Google Scholar 

  78. Zheng, Z.-Z. et al. Alternative splicing regulation of doublesex gene by RNA-binding proteins in the silkworm Bombyx mori. RNA Biol. 16, 809–820 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lagos, D., Koukidou, M., Savakis, C. & Komitopoulou, K. The transformer gene in Bactrocera oleae: the genetic switch that determines its sex fate. Insect Mol. Biol. 16, 221–230 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Shukla, J. N. & Palli, S. R. Sex determination in beetles: production of all male progeny by parental RNAi knockdown of transformer. Sci. Rep. 2, 602 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Salz, H. K. Sex determination in insects: a binary decision based on alternative splicing. Curr. Opin. Genet. Dev. 21, 395–400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Haltenhof, T. et al. A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression. Mol. Cell 78, 57–69.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Rhen, T. & Lang, J. W. Among-family variation for environmental sex determination in reptiles. Evolution 52, 1514–1520 (1998).

    PubMed  Google Scholar 

  84. Preußner, M. et al. Body temperature cycles control rhythmic alternative splicing in mammals. Mol. Cell 67, 433–446.e4 (2017).

    Article  PubMed  Google Scholar 

  85. Posé, D. et al. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503, 414–417 (2013).

    Article  PubMed  Google Scholar 

  86. Sureshkumar, S., Dent, C., Seleznev, A., Tasset, C. & Balasubramanian, S. Nonsense-mediated mRNA decay modulates FLM-dependent thermosensory flowering response in Arabidopsis. Nat. Plants 2, 16055 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Capovilla, G., Symeonidi, E., Wu, R. & Schmid, M. Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. J. Exp. Bot. 68, 5117–5127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lutz, U. et al. Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis. eLife 6, e22114 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Terrapon, N. et al. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 5, 3636 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Foret, S. et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl Acad. Sci. USA 109, 4968–4973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bonasio, R. et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22, 1755–1764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Price, J. et al. Alternative splicing associated with phenotypic plasticity in the bumble bee Bombus terrestris. Mol. Ecol. 27, 1036–1043 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Steward, R. A., de Jong, M. A., Oostra, V. & Wheat, C. W. Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change. Nat. Commun. 13, 755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Lemos, B., Araripe, L. O., Fontanillas, P. & Hartl, D. L. Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression. Proc. Natl Acad. Sci. USA 105, 14471–14476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Kondrashov, F. A. & Koonin, E. V. Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences. Trends Genet. 19, 115–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Ast, G. How did alternative splicing evolve? Nat. Rev. Genet. 5, 773–782 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Keren, H., Lev-Maor, G. & Ast, G. Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11, 345–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Hynes, R. O. The evolution of metazoan extracellular matrix. J. Cell Biol. 196, 671–679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Královičová, J. et al. Restriction of an intron size en route to endothermy. Nucleic Acids Res. 49, 2460–2487 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Waites, G. T. et al. Mutually exclusive splicing of calcium-binding domain exons in chick alpha-actinin. J. Biol. Chem. 267, 6263–6271 (1992).

    Article  CAS  PubMed  Google Scholar 

  103. Hatje, K. et al. The landscape of human mutually exclusive splicing. Mol. Syst. Biol. 13, 959 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Graveley, B. R. et al. The organization and evolution of the dipteran and hymenopteran Down syndrome cell adhesion molecule (Dscam) genes. RNA 10, 1499–1506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Baeza-Centurion, P., Miñana, B., Schmiedel, J. M., Valcárcel, J. & Lehner, B. Combinatorial genetics reveals a scaling law for the effects of mutations on splicing. Cell 176, 549–563.e23 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Glidden, D. T., Buerer, J. L., Saueressig, C. F. & Fairbrother, W. G. Hotspot exons are common targets of splicing perturbations. Nat. Commun. 12, 2756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krawczak, M. et al. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum. Mutat. 28, 150–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, G.-S. & Cooper, T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8, 749–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Schmitz, J. & Brosius, J. Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie 93, 1928–1934 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Attig, J. et al. Heteromeric RNP assembly at LINEs controls lineage-specific RNA processing. Cell 174, 1067–1081.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sorek, R. et al. Minimal conditions for exonization of intronic sequences: 5′ splice site formation in alu exons. Mol. Cell 14, 221–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Attig, J. et al. Splicing repression allows the gradual emergence of new Alu-exons in primate evolution. eLife 5, e19545 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Shen, S. et al. Widespread establishment and regulatory impact of Alu exons in human genes. Proc. Natl Acad. Sci. USA 108, 2837–2842 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lin, L. et al. Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet. 4, e1000225 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Sorek, R., Ast, G. & Graur, D. Alu-containing exons are alternatively spliced. Genome Res. 12, 1060–1067 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Alekseyenko, A. V., Kim, N. & Lee, C. J. Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes. RNA 13, 661–670 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Modrek, B. & Lee, C. J. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat. Genet. 34, 177–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Martinez-Gomez, L. et al. Few SINEs of life: Alu elements have little evidence for biological relevance despite elevated translation. Nar. Genom. Bioinform 2, lqz023 (2020).

    Article  PubMed  Google Scholar 

  119. Lin, L. et al. The contribution of Alu exons to the human proteome. Genome Biol. 17, 15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Merkin, J. J., Chen, P., Alexis, M. S., Hautaniemi, S. K. & Burge, C. B. Origins and impacts of new mammalian exons. Cell Rep. 10, 1992–2005 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fiszbein, A., Krick, K. S., Begg, B. E. & Burge, C. B. Exon-mediated activation of transcription starts. Cell 179, 1551–1565.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wong, E. S. et al. Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution. Nat. Commun. 8, 1092 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Smith, C. C. R. et al. Genetics of alternative splicing evolution during sunflower domestication. Proc. Natl Acad. Sci. USA 115, 6768–6773 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gueroussov, S. et al. An alternative splicing event amplifies evolutionary differences between vertebrates. Science 349, 868–873 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Liang, Y. et al. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia 32, 2659–2671 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zarnack, K. et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152, 453–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Torres-Méndez, A. et al. A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nat. Ecol. Evol. 3, 691–701 (2019).

    Article  PubMed  Google Scholar 

  128. Thatcher, S. R. et al. Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation. Plant Cell 26, 3472–3487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jelen, N., Ule, J., Zivin, M. & Darnell, R. B. Evolution of Nova-dependent splicing regulation in the brain. PLoS Genet. 3, 1838–1847 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Li, Y. et al. Global genetic robustness of the alternative splicing machinery in Caenorhabditis elegans. Genetics 186, 405–410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article  Google Scholar 

  132. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

    Article  Google Scholar 

  133. Hahn, M. W. & Wray, G. A. The G-value paradox. Evol. Dev. 4, 73–75 (2002).

    Article  PubMed  Google Scholar 

  134. Taft, R. J. & Mattick, J. S. Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. Genome Biol. 5, P1 (2003).

    Article  Google Scholar 

  135. Peterson, K. J., Dietrich, M. R. & McPeek, M. A. MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31, 736–747 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Chen, L., Bush, S. J., Tovar-Corona, J. M., Castillo-Morales, A. & Urrutia, A. O. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity. Mol. Biol. Evol. 31, 1402–1413 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Harr, B. & Turner, L. M. Genome-wide analysis of alternative splicing evolution among Mus subspecies. Mol. Ecol. 19, 228–239 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Tovar-Corona, J. M. et al. Alternative splice in alternative lice. Mol. Biol. Evol. 32, 2749–2759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Olds, B. P. et al. Comparison of the transcriptional profiles of head and body lice. Insect Mol. Biol. 21, 257–268 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Drali, R., Boutellis, A., Raoult, D., Rolain, J. M. & Brouqui, P. Distinguishing body lice from head lice by multiplex real-time PCR analysis of the Phum_PHUM540560 gene. PLoS ONE 8, e58088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fujikura, U. et al. Variation in splicing efficiency underlies morphological evolution in Capsella. Dev. Cell 44, 192–203.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Jarosch, A., Stolle, E., Crewe, R. M. & Moritz, R. F. A. Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera). Proc. Natl Acad. Sci. USA 108, 15282–15287 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jarosch-Perlow, A., Yusuf, A. A., Pirk, C. W. W., Crewe, R. M. & Moritz, R. F. A. Control of mandibular gland pheromone synthesis by alternative splicing of the CP-2 transcription factor gemini in honeybees (Apis mellifera carnica). Apidologie 49, 450–458 (2018).

    Article  CAS  Google Scholar 

  144. Winston, M. L. & Slessor, K. N. Honey bee primer pheromones and colony organization: gaps in our knowledge. Apidologie 29, 81–95 (1998).

    Article  Google Scholar 

  145. Sakagami, S. F. The false-queen: fourth adjustive response in dequeened honeybee colonies. Behaviour 13, 280–295 (1958).

  146. Marchinko, K. B. Predation’s role in repeated phenotypic and genetic divergence of armor in threespine stickleback. Evolution 63, 127–138 (2009).

    Article  PubMed  Google Scholar 

  147. Howes, T. R., Summers, B. R. & Kingsley, D. M. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A. BMC Biol. 15, 115 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Xiong, S. et al. Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity. Curr. Biol. https://doi.org/10.1016/j.cub.2022.03.038 (2022).

  149. Ceinos, R. M. et al. Mutations in blind cavefish target the light-regulated circadian clock gene, period 2. Sci. Rep. 8, 8754 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Blekhman, R., Marioni, J. C., Zumbo, P., Stephens, M. & Gilad, Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Brown, J. B. et al. Diversity and dynamics of the Drosophila transcriptome. Nature 512, 393–399 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gibilisco, L., Zhou, Q., Mahajan, S. & Bachtrog, D. Alternative splicing within and between Drosophila species, sexes, tissues, and developmental stages. PLoS Genet. 12, e1006464 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Graveley, B. R. et al. The developmental transcriptome of Drosophila melanogaster. Nature 471, 473–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Rogers, T. F., Palmer, D. H. & Wright, A. E. Sex-specific selection drives the evolution of alternative splicing in birds. Mol. Biol. Evol. 38, 519–530 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. Science 352, 600–604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gao, Q., Sun, W., Ballegeer, M., Libert, C. & Chen, W. Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol. Syst. Biol. 11, 816 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Wang, X. et al. Cis-regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. Plant. J. 97, 555–570 (2019).

    CAS  PubMed  Google Scholar 

  158. Singh, P., Börger, C., More, H. & Sturmbauer, C. The role of alternative splicing and differential gene expression in cichlid adaptive radiation. Genome Biol. Evol. 9, 2764–2781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Healy, T. M. & Schulte, P. M. Patterns of alternative splicing in response to cold acclimation in fish. J. Exp. Biol. 222, jeb193516 (2019).

    Article  PubMed  Google Scholar 

  160. Jacobs, A. & Elmer, K. R. Alternative splicing and gene expression play contrasting roles in the parallel phenotypic evolution of a salmonid fish. Mol. Ecol. https://doi.org/10.1111/mec.15817 (2021).

  161. Blencowe, B. J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Papakostas, S. et al. Gene pleiotropy constrains gene expression changes in fish adapted to different thermal conditions. Nat. Commun. 5, 4071 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Battle, A. et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 24, 14–24 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Reyes, A. et al. Drift and conservation of differential exon usage across tissues in primate species. Proc. Natl Acad. Sci. USA 110, 15377–15382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gracheva, E. O. et al. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 476, 88–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kürten, L. & Schmidt, U. Thermoperception in the common vampire bat (Desmodus rotundus). J. Comp. Physiol. A 146, 223–228 (1982).

    Article  Google Scholar 

  168. Verta, J.-P. & Jacobs, A. The role of alternative splicing in adaptation and evolution. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.11.010 (2021).

  169. Gehring, N. H. & Roignant, J.-Y. Anything but ordinary — emerging splicing mechanisms in eukaryotic gene regulation. Trends Genet. 37, 355–372 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Xia, B. et al. The genetic basis of tail-loss evolution in humans and apes. Preprint at bioRxiv https://doi.org/10.1101/2021.09.14.460388 (2021).

  171. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Arzalluz-Luque, Á. & Conesa, A. Single-cell RNAseq for the study of isoforms — how is that possible? Genome Biol. 19, 110 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Buen Abad Najar, C. F., Yosef, N. & Lareau, L. F. Coverage-dependent bias creates the appearance of binary splicing in single cells. eLife 9, e54603 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Buen Abad Najar, C., Burra, P., Yosef, N. & Lareau, L. F. Identifying cell-state associated alternative splicing events and their co-regulation. Preprint at bioRxiv https://doi.org/10.1101/2021.07.23.453605 (2021).

  176. Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cline, T. W. Two closely linked mutations in Drosophila melanogaster that are lethal to opposite sexes and interact with daughterless. Genetics 90, 683–698 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Inoue, K., Hoshijima, K., Sakamoto, H. & Shimura, Y. Binding of the Drosophila sex-lethal gene product to the alternative splice site of transformer primary transcript. Nature 344, 461–463 (1990).

    Article  CAS  PubMed  Google Scholar 

  180. Belote, J. M., McKeown, M., Boggs, R. T., Ohkawa, R. & Sosnowski, B. A. Molecular genetics of transformer, a genetic switch controlling sexual differentiation in Drosophila. Dev. Genet. 10, 143–154 (1989).

    Article  CAS  PubMed  Google Scholar 

  181. Boggs, R. T., Gregor, P., Idriss, S., Belote, J. M. & McKeown, M. Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell 50, 739–747 (1987).

    Article  CAS  PubMed  Google Scholar 

  182. Hoshijima, K., Inoue, K., Higuchi, I., Sakamoto, H. & Shimura, Y. Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 252, 833–836 (1991).

    Article  CAS  PubMed  Google Scholar 

  183. Bashaw, G. J. & Baker, B. S. The regulation of the Drosophila msl-2 gene reveals a function for sex-lethal in translational control. Cell 89, 789–798 (1997).

    Article  CAS  PubMed  Google Scholar 

  184. Kim, E., Goren, A. & Ast, G. Alternative splicing: current perspectives. Bioessays 30, 38–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Wang, Z. & Burge, C. B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Pandit, S. et al. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol. Cell 50, 223–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Buckanovich, R. J., Yang, Y. Y. & Darnell, R. B. The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies. J. Neurosci. 16, 1114–1122 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Jensen, K. B. et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Yang, Y. Y., Yin, G. L. & Darnell, R. B. The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Proc. Natl Acad. Sci. USA 95, 13254–13259 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Buckanovich, R. J. & Darnell, R. B. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol. Cell. Biol. 17, 3194–3201 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Jensen, K. B., Musunuru, K., Lewis, H. A., Burley, S. K. & Darnell, R. B. The tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 domain. Proc. Natl Acad. Sci. USA 97, 5740–5745 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Warf, M. B. & Berglund, J. A. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci. 35, 169–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Graveley, B. R. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123, 65–73 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Lewis, C. J. T., Pan, T. & Kalsotra, A. RNA modifications and structures cooperate to guide RNA–protein interactions. Nat. Rev. Mol. Cell Biol. 18, 202–210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Tress, M. L., Abascal, F. & Valencia, A. Alternative splicing may not be the key to proteome complexity. Trends Biochem. Sci. 42, 98–110 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Blencowe, B. J. The relationship between alternative splicing and proteomic complexity. Trends Biochem. Sci. 42, 407–408 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Ule, J. & Blencowe, B. J. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell 76, 329–345 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Reixachs-Solé, M., Ruiz-Orera, J., Albà, M. M. & Eyras, E. Ribosome profiling at isoform level reveals evolutionary conserved impacts of differential splicing on the proteome. Nat. Commun. 11, 1768 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Guttman, M., Russell, P., Ingolia, N. T., Weissman, J. S. & Lander, E. S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154, 240–251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Melamud, E. & Moult, J. Stochastic noise in splicing machinery. Nucleic Acids Res. 37, 4873–4886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Xu, C. & Zhang, J. Alternative polyadenylation of mammalian transcripts is generally deleterious, not. adaptive. Cell Syst. 6, 734–742.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Xu, G. & Zhang, J. Human coding RNA editing is generally nonadaptive. Proc. Natl Acad. Sci. USA 111, 3769–3774 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Xu, C., Park, J.-K. & Zhang, J. Evidence that alternative transcriptional initiation is largely nonadaptive. PLoS Biol. 17, e3000197 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Rodriguez, J. M., Pozo, F., di Domenico, T., Vazquez, J. & Tress, M. L. An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput. Biol. 16, e1008287 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Neverov, A. D. et al. Alternative splicing and protein function. BMC Bioinform. 6, 266 (2005).

    Article  CAS  Google Scholar 

  208. Yang, X. et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164, 805–817 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Pozo, F. et al. Assessing the functional relevance of splice isoforms. NAR Genom. Bioinform 3, lqab044 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Yuan, J. et al. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol. Cell 72, 380–394.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Charton, K. et al. Exploiting the CRISPR/Cas9 system to study alternative splicing in vivo: application to titin. Hum. Mol. Genet. 25, 4518–4532 (2016).

    CAS  PubMed  Google Scholar 

  212. Marti-Solano, M. et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 587, 650–656 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank everyone at the Insect Evolution and Genomics Group at the University of Cambridge for useful discussion and comments on the manuscript, and G. Simpson and J. Valcárcel for helpful discussions. This research was funded in part by the Wellcome Trust (grants 206194 and 218328). C.D.J. was supported by a European Research Council (grant 339873 Speciation Genetics) and the UK Biotechnology and Biological Sciences Research Council (grant BB/R007500/1). C.W.J.S. received funding from a Wellcome Trust Investigator award (209368/Z/17/Z). We thank A. Jacob for generating the consensus sequences in Fig. 1c.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Charlotte J. Wright, Christopher W. J. Smith or Chris D. Jiggins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alternative splicing

The process of selecting different combinations of splice sites within the pre-mRNAs of a gene, resulting in mature mRNA transcripts that differ in composition. These transcripts may result in different protein isoforms with potentially divergent functions.

Cassette exons

Alternative exons that can be included or skipped from the spliced mRNA.

Cis-regulatory elements

Genetic regions that regulate the expression of a coding sequence on the same DNA strand.

Effective population size

The number of individuals in an idealized population that would show the same amount of genetic drift as observed in the real population.

Exon definition

A process in which pairs of splice sites are first recognized, and splicing complexes assembled, across exons.

Introgression

The transfer of genetic material between two species owing to hybridization and subsequent backcrossing with one of the species.

Intron definition

A process in which pairs of splice sites are recognized and then splicing complexes are assembled directly across the intron to be spliced out.

Poison exons

Exons that introduce in-frame premature termination codons, frequently in all three reading frames.

Purifying selection

The removal of deleterious alleles from a population by natural selection.

Quantitative trait loci

(QTL). Regions of the genome whose variation is associated with a particular quantitative trait.

Spliceosome

The large macromolecular complex composed of proteins and small nuclear RNAs that functions as the basal splicing machinery.

Trans-regulatory factors

Cellular factors (RNA or protein) that regulate the expression of a coding sequence on a different DNA strand to which it is encoded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, C.J., Smith, C.W.J. & Jiggins, C.D. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 23, 697–710 (2022). https://doi.org/10.1038/s41576-022-00514-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00514-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing