Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Measuring biological age using omics data

Abstract

Age is the key risk factor for diseases and disabilities of the elderly. Efforts to tackle age-related diseases and increase healthspan have suggested targeting the ageing process itself to ‘rejuvenate’ physiological functioning. However, achieving this aim requires measures of biological age and rates of ageing at the molecular level. Spurred by recent advances in high-throughput omics technologies, a new generation of tools to measure biological ageing now enables the quantitative characterization of ageing at molecular resolution. Epigenomic, transcriptomic, proteomic and metabolomic data can be harnessed with machine learning to build ‘ageing clocks’ with demonstrated capacity to identify new biomarkers of biological ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classes of ageing biomarkers.
Fig. 2: Select machine learning concepts important in the field of omics ageing clocks.
Fig. 3: Timeline of major advances and studies in ageing clocks research between 2008 and 2021.
Fig. 4: Associations between clock age gaps and ageing phenotypes.
Fig. 5: Measuring ageing across the body.

Similar content being viewed by others

References

  1. Beard, J. R. et al. The World report on ageing and health: a policy framework for healthy ageing. Lancet 387, 2145–2154 (2016).

    Article  PubMed  Google Scholar 

  2. Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 22, R741–R752 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). This landmark review organized a framework to think about ageing through the lens of multiple conserved cellular and molecular processes and has become highly influential in the field of ageing research.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Partridge, L., Deelen, J. & Slagboom, P. E. Facing up to the global challenges of ageing. Nature 561, 45–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Vijg, J. & Suh, Y. Genetics of longevity and aging. Annu. Rev. Med. 56, 193–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Helfand, S. L. & Rogina, B. Genetics of aging in the fruit fly, Drosophila melanogaster. Annu. Rev. Genet. 37, 329–348 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Singh, P. P., Demmitt, B. A., Nath, R. D. & Brunet, A. The genetics of aging: a vertebrate perspective. Cell 177, 200–220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Kaplanis, J. et al. Quantitative analysis of population-scale family trees with millions of relatives. Science https://doi.org/10.1126/science.aam9309 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zenin, A. et al. Identification of 12 genetic loci associated with human healthspan. Commun. Biol. 2, 41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Deelen, J. et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat. Commun. 10, 3669 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Khan, S. S. et al. A null mutation in SERPINE1 protects against biological aging in humans. Sci. Adv. https://doi.org/10.1126/sciadv.aao1617 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martin, G. M., Bergman, A. & Barzilai, N. Genetic determinants of human health span and life span: progress and new opportunities. PLoS Genet. 3, e125 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roth, G. S. et al. Biomarkers of caloric restriction may predict longevity in humans. Science https://doi.org/10.1126/science.1071851 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020). This study experimentally demonstrated a direct link between alterations in DNA methylation in epigenetic injury response and regeneration, and a potential causal role for DNA demethylation enzymes in cellular ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rando, T. A. & Chang, H. Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Miguel, Z. et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 600, 494–499 (2021).

    Article  PubMed  Google Scholar 

  22. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18–28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Jesus, B. B. et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 4, 691–704 (2012).

    Article  Google Scholar 

  25. Anisimov, V. N. Metformin: do we finally have an anti-aging drug? Cell Cycle 12, 3483–3489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  PubMed  Google Scholar 

  27. Alavez, S., Vantipalli, M. C., Zucker, D. J. S., Klang, I. M. & Lithgow, G. J. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472, 226–229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rebo, J. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat. Commun. 7, 13363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anstey, K. J., Lord, S. R. & Smith, G. A. Measuring human functional age: a review of empirical findings. Exp. Aging Res. 22, 245–266 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Howlett, S. E., Rutenberg, A. D. & Rockwood, K. The degree of frailty as a translational measure of health in aging. Nat. Aging 1, 651–665 (2021).

    Article  Google Scholar 

  31. Levine, M. E. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J. Gerontol. A Biol. Sci. Med. Sci. 68, 667–674 (2013).

    Article  PubMed  Google Scholar 

  32. Xia, X., Chen, W., McDermott, J. & Han, J.-D. J. Molecular and phenotypic biomarkers of aging. F1000Research 6, 860 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ludwig, F. C. & Smoke, M. E. The measurement of biological age. Exp. Aging Res. 6, 497–522 (1980).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, W. et al. Three-dimensional human facial morphologies as robust aging markers. Cell Res. 25, 574–587 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sebastiani, P. et al. Biomarker signatures of aging. Aging Cell 16, 329–338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kojima, G., Iliffe, S. & Walters, K. Frailty index as a predictor of mortality: a systematic review and meta-analysis. Age Ageing 47, 193–200 (2018).

    Article  PubMed  Google Scholar 

  37. Comfort, A. Test-battery to measure ageing-rate in man. Lancet 294, 1411–1415 (1969).

    Article  Google Scholar 

  38. Baker, G. T. & Sprott, R. L. Biomarkers of aging. Exp. Gerontol. 23, 223–239 (1988).

    Article  PubMed  Google Scholar 

  39. Bobrov, E. et al. PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging. Aging 10, 3249–3259 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sanders, J. L. & Newman, A. B. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol. Rev. 35, 112–131 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Almanzar, N. et al. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020). This study demonstrates that, in mice, different organs experience different patterns and rates of molecular and cellular ageing, which highlights the need for more sophisticated ageing clocks to account for intra-individual ageing variation.

    Article  CAS  Google Scholar 

  42. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, 3156 (2013). This study comprehensively investigated CpG methylation ageing clocks across multiple human tissues and cell lines and discovered that there are some widely conserved methylation changes that occur throughout the body with ageing, which may be related to cancer and other diseases of ageing.

    Article  Google Scholar 

  45. Galkin, F. et al. Biohorology and biomarkers of aging: current state-of-the-art, challenges and opportunities. Ageing Res. Rev. 60, 101050 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018). This study developed an innovative composite ageing score that incorporated chronological and biomarker measurements of age to train an improved second-generation DNA methylation ageing clock. The method has been influential in improving the performance and biological relevance of ageing clock models.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging Cell 17, e12799 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Y. et al. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat. Commun. 8, 14617 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sarkar, T. J. et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11, 1545 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bocklandt, S. et al. Epigenetic predictor of age. PLoS One 6, e14821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weidner, C. I. et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, R24 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lin, Q. et al. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging 8, 394–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vidal-Bralo, L., Lopez-Golan, Y. & Gonzalez, A. Simplified assay for epigenetic age estimation in whole blood of adults. Front. Genet. 7, 126 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fransquet, P. D., Wrigglesworth, J., Woods, R. L., Ernst, M. E. & Ryan, J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin. Epigenetics 11, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fagnoni, F. F. et al. Shortage of circulating naive CD8+ T cells provides new insights on immunodeficiency in aging. Blood 95, 2860–2868 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging 7, 1159–1170 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54 (2019). This study demonstrates an important paradox in the training of first-generation ageing clocks: increasingly perfect prediction of chronological age by a clock trained only on chronological age reduces its ability to discover drivers of variation in biological ageing between people.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, Z. et al. Correlation of an epigenetic mitotic clock with cancer risk. Genome Biol. 17, 205 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Verschoor, C. P. et al. Epigenetic age is associated with baseline and 3-year change in frailty in the Canadian longitudinal study on aging. Clin. Epigenetics 13, 163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maddock, J. et al. DNA methylation age and physical and cognitive aging. J. Gerontol. Ser. A 75, 504–511 (2020).

    CAS  Google Scholar 

  66. Sibbett, R. A. et al. DNA methylation-based measures of accelerated biological ageing and the risk of dementia in the oldest-old: a study of the Lothian Birth Cohort 1921. BMC Psychiatry 20, 91 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kuo, P.-L., Moore, A. Z., Lin, F. R. & Ferrucci, L. Epigenetic age acceleration and hearing: observations from the Baltimore Longitudinal Study of Aging. Front. Aging Neurosci. 13, 790926 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McCrory, C. et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J. Gerontol. Ser. A 76, 741–749 (2021).

    Article  Google Scholar 

  69. Crimmins, E. M., Thyagarajan, B., Levine, M. E., Weir, D. R. & Faul, J. Associations of age, sex, race/ethnicity, and education with 13 epigenetic clocks in a nationally representative U.S. sample: the health and retirement study. J. Gerontol. Ser. A 76, 1117–1123 (2021).

    Article  Google Scholar 

  70. Hillary, R. F. et al. An epigenetic predictor of death captures multi-modal measures of brain health. Mol. Psychiatry 26, 3806–3816 (2021).

    Article  PubMed  Google Scholar 

  71. Joyce, B. T. et al. Epigenetic age acceleration reflects long-term cardiovascular health. Circ. Res. 129, 770–781 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shiau, S. et al. Epigenetic aging biomarkers associated with cognitive impairment in older African American adults with human immunodeficiency virus (HIV). Clin. Infect. Dis. 73, 1982–1991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 9, e54870 (2020). Here, the authors developed a DNA methylation clock surrogate for longitudinal health and biomarker measurements to more directly predict an individual’s ageing rate instead of relying on cross-sectional measures of relative biological age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl Acad. Sci. USA 112, E4104–E4110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rando, T. A. & Wyss-Coray, T. Asynchronous, contagious and digital aging. Nat. Aging 1, 29–35 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ahadi, S. et al. Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat. Med. 26, 83–90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Levine, M. E., Lu, A. T., Bennett, D. A. & Horvath, S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging 7, 1198–1211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Horvath, S. et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford progeria syndrome and ex vivo studies. Aging 10, 1758–1775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Choukrallah, M.-A., Hoeng, J., Peitsch, M. C. & Martin, F. Lung transcriptomic clock predicts premature aging in cigarette smoke-exposed mice. BMC Genomics 21, 291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sillanpää, E. et al. Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning. Clin. Epigenetics 13, 110 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 6, 8570 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Fleischer, J. G. et al. Predicting age from the transcriptome of human dermal fibroblasts. Genome Biol. 19, 221 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meyer, D. H. & Schumacher, B. BiT age: a transcriptome-based aging clock near the theoretical limit of accuracy. Aging Cell 20, e13320 (2021). This study developed multiple methodological innovations for training accurate and reproducible transcriptomic ageing clocks, and developed clocks with striking generalizable performance across multiple ageing treatment conditions in worms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Holzscheck, N. et al. Modeling transcriptomic age using knowledge-primed artificial neural networks. NPJ Aging Mech. Dis. 7, 15 (2021). This study aimed to design a more transparent and biologically interpretable neural network ageing clock, showcasing some of the methods available to make inferences about ageing with these more complex models.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, W. et al. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biol. 16, 133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pappireddi, N., Martin, L. & Wühr, M. A review on quantitative multiplexed proteomics. ChemBioChem 20, 1210–1224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 22, 19–37 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5, e15004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lundberg, M., Eriksson, A., Tran, B., Assarsson, E. & Fredriksson, S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 39, e102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Menni, C. et al. Circulating proteomic signatures of chronological. Age. J. Gerontol. Ser. A 70, 809–816 (2015).

    Article  CAS  Google Scholar 

  92. Ignjatovic, V. et al. Age-related differences in plasma proteins: how plasma proteins change from neonates to adults. PLoS One 6, e17213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu, J. et al. Profiling plasma peptides for the identification of potential ageing biomarkers in Chinese Han adults. PLoS One 7, e39726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baird, G. S. et al. Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am. J. Pathol. 180, 446–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 25, 1843–1850 (2019). This study developed a highly predictive plasma proteomic ageing clock and showed relationships between the proteomic age gap and many ageing traits such as cognitive function and motor function. It also describes the non-linear patterns of proteomic ageing, which have implications for future ageing clock models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tanaka, T. et al. Plasma proteomic biomarker signature of age predicts health and life span. eLife 9, e61073 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lehallier, B., Shokhirev, M. N., Wyss‐Coray, T. & Johnson, A. A. Data mining of human plasma proteins generates a multitude of highly predictive aging clocks that reflect different aspects of aging. Aging Cell 19, e13256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Johnson, A. A., Shokhirev, M. N., Wyss-Coray, T. & Lehallier, B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res. Rev. 60, 101070 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Johnson, A. A., Shokhirev, M. N. & Lehallier, B. The protein inputs of an ultra-predictive aging clock represent viable anti-aging drug targets. Ageing Res. Rev. 70, 101404 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 25, 1851–1857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tryggvason, K. & Wartiovaara, J. How does the kidney filter plasma? Physiology 20, 96–101 (2005).

    Article  PubMed  Google Scholar 

  103. Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Md Dom, Z. I. et al. Effect of TNFα stimulation on expression of kidney risk inflammatory proteins in human umbilical vein endothelial cells cultured in hyperglycemia. Sci. Rep. 11, 11133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thanasupawat, T. et al. Slow off-rate modified aptamer (SOMAmer) proteomic analysis of patient-derived malignant glioma identifies distinct cellular proteomes. Int. J. Mol. Sci. 22, 9566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang, C. et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 24, 1302–1312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eggel, A. & Wyss-Coray, T. A revival of parabiosis in biomedical research. Swiss Med. Wkly. https://doi.org/10.4414/smw.2014.13914 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Alkahest, Inc. A Randomized, Double-Blind, Placebo-Controlled Study to Assess the Safety and Tolerability of Pulsed GRF6019 Infusions in Subjects With Severe Alzheimer’s Disease https://clinicaltrials.gov/ct2/show/results/NCT03765762 (2021).

  113. Rist, M. J. et al. Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) study. PLoS One 12, e0183228 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yu, Z. et al. Human serum metabolic profiles are age dependent. Aging Cell 11, 960–967 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Lawton, K. A. et al. Analysis of the adult human plasma metabolome. Pharmacogenomics 9, 383–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Menni, C. et al. Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int. J. Epidemiol. 42, 1111–1119 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Fischer, K. et al. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 Persons. PLoS Med. 11, e1001606 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Deelen, J. et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat. Commun. 10, 3346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. van den Akker, E. B. et al. Metabolic age based on the BBMRI-NL 1H-NMR metabolomics repository as biomarker of age-related disease. Circ. Genom. Precis. Med. 13, 541–547 (2020). This study developed a biobank-scale targeted metabolomic ageing clock that is predictive of mortality and cardiovascular outcomes.

    Article  PubMed  Google Scholar 

  120. Robinson, O. et al. Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging Cell 19, e13149 (2020). This study compared multiple untargeted metabolomic methods for developing ageing clocks and additionally assessed their relationship to health traits and to the Horvath, Hannum and PhenoAge epigenetic ageing clocks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hertel, J. et al. Measuring biological age via metabonomics: the metabolic age score. J. Proteome Res. 15, 400–410 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Bingol, K. Recent advances in targeted and untargeted metabolomics by NMR and MS/NMR methods. High Throughput 7, 9 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  123. Gertsman, I. & Barshop, B. A. Promises and pitfalls of untargeted metabolomics. J. Inherit. Metab. Dis. 41, 355–366 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gorrochategui, E., Jaumot, J., Lacorte, S. & Tauler, R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. TrAC. Trends Anal. Chem. 82, 425–442 (2016).

    Article  CAS  Google Scholar 

  125. Krumsiek, J. et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLoS Genet. 8, e1003005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. López-Otín, C., Galluzzi, L., Freije, J. M. P., Madeo, F. & Kroemer, G. Metabolic control of longevity. Cell 166, 802–821 (2016).

    Article  PubMed  Google Scholar 

  127. Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Machin, D. R. et al. Advanced age results in a diminished endothelial glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 315, H531–H539 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Krištić, J. et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. Ser. A 69, 779–789 (2014).

    Article  Google Scholar 

  130. Merleev, A. A. et al. A site-specific map of the human plasma glycome and its age and gender-associated alterations. Sci. Rep. 10, 17505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Badal, V. D. et al. The gut microbiome, aging, and longevity: a systematic review. Nutrients 12, 3759 (2020).

    Article  PubMed Central  Google Scholar 

  132. Collino, S. et al. Metabolic signatures of extreme longevity in Northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 8, e56564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rampelli, S. et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging 5, 902–912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bárcena, C. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234–1242 (2019).

    Article  PubMed  Google Scholar 

  135. Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Galkin, F. et al. Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience 23, 101199 (2020). The first attempt to develop an ageing clock based on microbiome sequencing data; the authors compared multiple methods, settling on a simple neural network architecture to predict age and detect accelerated microbiome ageing in patients with diabetes mellitus.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yardımcı, G. G. et al. Measuring the reproducibility and quality of Hi-C data. Genome Biol. 20, 57 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Kudlow, B. A., Kennedy, B. K. & Monnat, R. J. Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat. Rev. Mol. Cell Biol. 8, 394–404 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, W. et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science https://doi.org/10.1126/science.aaa1356 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Moskowitz, D. M. et al. Epigenomics of human CD8 T cell differentiation and aging. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aag0192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Pulko, V. et al. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat. Immunol. 17, 966–975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ucar, D. et al. The chromatin accessibility signature of human immune aging stems from CD8+ T cells. J. Exp. Med. 214, 3123–3144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Goronzy, J. J., Hu, B., Kim, C., Jadhav, R. R. & Weyand, C. M. Epigenetics of T cell aging. J. Leukoc. Biol. 104, 691–699 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Zhou, W. et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat. Genet. 50, 591–602 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, J.-Y. et al. Misexpression of genes lacking CpG islands drives degenerative changes during aging. Sci. Adv. https://doi.org/10.1126/sciadv.abj9111 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Li, X. et al. Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. eLife 9, e51507 (2020). One of the few current papers that compares multiple omics ageing-clock measurements longitudinally; this study found that the age gaps for the different clocks tested are largely uncorrelated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bose, M. et al. Evaluation of microarray-based DNA methylation measurement using technical replicates: the Atherosclerosis Risk In Communities (ARIC) study. BMC Bioinformatics 15, 312–312 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Logue, M. W. et al. The correlation of methylation levels measured using Illumina 450K and EPIC BeadChips in blood samples. Epigenomics 9, 1363–1371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sugden, K. et al. Patterns of reliability: assessing the reproducibility and integrity of DNA methylation measurement. Patterns 1, 100014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jansen, R. et al. An integrative study of five biological clocks in somatic and mental health. eLife 10, e59479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zahn, J. M. et al. AGEMAP: a gene expression database for aging in mice. PLoS Genet. 3, e201 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Arrojo e Drigo, R. et al. Age Mosaicism across multiple scales in adult tissues. Cell Metab. 30, 343–351.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Işıldak, U., Somel, M., Thornton, J. M. & Dönertaş, H. M. Temporal changes in the gene expression heterogeneity during brain development and aging. Sci. Rep. 10, 4080 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Tuttle, C. S. L. et al. Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell 19, e13083 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Ganz, P. et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA 315, 2532–2541 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Elsevier. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics-6th Edition https://www.elsevier.com/books/tietz-textbook-of-clinical-chemistry-and-molecular-diagnostics/rifai/978-0-323-35921-4 (2017).

  163. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Emdin, C. A., Khera, A. V. & Kathiresan, S. Mendelian randomization. JAMA 318, 1925–1926 (2017).

    Article  PubMed  Google Scholar 

  165. Lu, A. T. et al. GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nat. Commun. 9, 387 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. McCartney, D. L. et al. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol. 22, 194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lu, A. T. et al. DNA methylation-based estimator of telomere length. Aging 11, 5895–5923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nelson, P. G., Promislow, D. E. L. & Masel, J. Biomarkers for aging identified in cross-sectional studies tend to be non-causative. J. Gerontol. Ser. A 75, 466–472 (2020). This study demonstrated important limitations of ageing-clock models that are built with cross-sectional cohort studies and used simulation studies to show that the use of more complex second-generation ageing score training objectives overcomes some of these limitations.

    Article  Google Scholar 

  169. Delgado-Rodríguez, M. & Llorca, J. Bias. J. Epidemiol. Commun. Health 58, 635–641 (2004).

    Article  Google Scholar 

  170. Zhou, Z., Rahme, E., Abrahamowicz, M. & Pilote, L. Survival bias associated with time-to-treatment initiation in drug effectiveness evaluation: a comparison of methods. Am. J. Epidemiol. 162, 1016–1023 (2005).

    Article  PubMed  Google Scholar 

  171. Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nakamura, E., Miyao, K. & Ozeki, T. Assessment of biological age by principal component analysis. Mech. Ageing Dev. 46, 1–18 (1988).

    Article  CAS  PubMed  Google Scholar 

  174. Pyrkov, T. V. et al. Extracting biological age from biomedical data via deep learning: too much of a good thing? Sci. Rep. 8, 5210 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Pyrkov, T. V. et al. Quantitative characterization of biological age and frailty based on locomotor activity records. Aging 10, 2973–2990 (2022).

    Article  Google Scholar 

  176. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Márquez, E. J. et al. Sexual-dimorphism in human immune system aging. Nat. Commun. 11, 751 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Holzscheck, N. et al. Multi-omics network analysis reveals distinct stages in the human aging progression in epidermal tissue. Aging 12, 12393–12409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics 1, 177–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Fahy, G. M. et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18, e13028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Soininen, P. et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 134, 1781–1785 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Mamoshina, P. et al. Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification. Front. Genet. 9, 242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, e301 (2008).

    Article  PubMed Central  Google Scholar 

  192. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 58, 267–288 (1996).

    Google Scholar 

  194. Hilt, D. E. & Seegrist, D. W. Ridge: a computer program for calculating ridge regression estimates. Research Note NE-236. 7p (U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, 1977).

  195. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301–320 (2005).

    Article  Google Scholar 

  196. Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832–2854 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10, 61–74 (1999).

    Google Scholar 

  198. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  199. Hinton, G. Connectionist learning procedures. Artif. Intell. 40, 185–234 (1989).

    Article  Google Scholar 

  200. Alzubaidi, L. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 53 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Fedor Galkin, P. M., Kirill, K., Denis, S. & Alex, Z. DeepMAge: a methylation aging clock developed with deep learning. Aging Dis. 12, 1252–1262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Ma, J. et al. Using deep learning to model the hierarchical structure and function of a cell. Nat. Methods 15, 290–298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Shrikumar, A., Greenside, P. & Kundaje, A. In Proceedings of the 34th International Conference on Machine Learning 3145–3153 (PMLR, 2017).

Download references

Acknowledgements

This work was funded by the Stanford Alzheimer’s Disease Research Centers (AG047366), the National Institute on Ageing (AG072255), the Milky Way Research Foundation, the Stanford Graduate Fellowship (H.O. and J.R.), and the National Science Foundation Graduate Research Fellowship (H.O.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Tony Wyss-Coray.

Ethics declarations

Competing interests

T.W.-C. is a co-founder and scientific adviser of Alkahest and Qinotto. T.W.-C., J.R. and H.O. are co-founders and scientific advisers of Teal Omics.

Peer review

Peer review information

Nature Reviews Genetics thanks Luigi Ferrucci, Paolo Vineis, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Heterochronic parabiosis

An experimental paradigm where the circulatory systems of a young and old animal are surgically joined together.

Partial epigenetic reprogramming

Delivery of factors that can de-differentiate cells into induced pluripotent stem cells, typically short term, to de-age the epigenetic state of cells.

Biological age

The level of biological functioning of an organism, organ or cell as assessed in comparison to an expected level of function for a given chronological age.

Chronological age

The amount of time an organism has been alive for, typically measured in years for humans and tracked by birthdays.

Age gap

The difference between a biological age measurement and the expectation of that measurement for a given chronological age.

Overfit

When a machine learning model learns patterns that are actually the result of random noise in a dataset and which do not reflect the underlying distribution of the data.

LASSO

A ‘regularized’ linear regression algorithm that enforces an L1 norm penalty on regression parameters.

Linear discriminant analysis

A machine learning method used on categorical data that identifies linear hyperplanes in a dataset that can best split data into different groups, similar to the more commonly used logistic regression method.

r2

A metric that measures the amount of variance in the data that can be explained by a statistical model, ranging from cannot explain anything (r2 = 0) to perfect explanation (r2 = 1).

Black-box model

A model with parameters that cannot be easily interpreted or understood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. Nat Rev Genet 23, 715–727 (2022). https://doi.org/10.1038/s41576-022-00511-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00511-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research