Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

tRNA dysregulation and disease

Abstract

tRNAs are key adaptor molecules that decipher the genetic code during translation of mRNAs in protein synthesis. In contrast to the traditional view of tRNAs as ubiquitously expressed housekeeping molecules, awareness is now growing that tRNA-encoding genes display tissue-specific and cell type-specific patterns of expression, and that tRNA gene expression and function are both dynamically regulated by post-transcriptional RNA modifications. Moreover, dysregulation of tRNAs, mediated by alterations in either their abundance or function, can have deleterious consequences that contribute to several distinct human diseases, including neurological disorders and cancer. Accumulating evidence shows that reprogramming of mRNA translation through altered tRNA activity can drive pathological processes in a codon-dependent manner. This Review considers the emerging evidence in support of the precise control of functional tRNA levels as an important regulatory mechanism that coordinates mRNA translation and protein expression in physiological cell homeostasis, and highlights key examples of human diseases that are linked directly to tRNA dysregulation.

Key points

  • tRNA-encoding genes display tissue-specific and cell type-specific patterns of expression.

  • tRNA gene expression and function are both dynamically regulated by post-transcriptional RNA modifications.

  • Dysregulation of tRNAs, mediated by alterations in either their abundance or function, can have deleterious consequences that contribute to several distinct human diseases.

  • Reprogramming of mRNA translation through altered tRNA activity can drive pathological processes in a codon-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: tRNA molecular structure and variance in isodecoder prevalence in eukaryotic species.
Fig. 2: RNA polymerase III involvement in disease.
Fig. 3: Epigenetic mechanisms and sequence variability might influence nuclear tRNA expression.
Fig. 4: tRNA maturation and splicing defects in disease.
Fig. 5: Defects in tRNA modifications or aminoacylation influence translation.
Fig. 6: Alterations in the tRNA pool can drive disease and offer avenues for therapeutic intervention.

Similar content being viewed by others

References

  1. Hoagland, M. B., Stephenson, M. L., Scott, J. F., Hecht, L. I. & Zamecick, P. C. A soluble ribonucleic acid intermediate in protein synthesis. J. Biol. Chem. 231, 241–257 (1958). This paper describes the discovery of tRNAs.

    Article  CAS  PubMed  Google Scholar 

  2. Holley, R. W. et al. Structure of a ribonucleic acid. Science 147, 1462–1465 (1965). This paper describes the structure of tRNAs and the finding of a modified base (inosine).

    Article  CAS  PubMed  Google Scholar 

  3. Crick, F. H. C. Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966). This paper describes the possibility of non-canonical (wobble) pairing of the anticodon loop with its cognate codon sequence on mRNAs.

    Article  CAS  PubMed  Google Scholar 

  4. Chou, H.-J., Donnard, E., Gustafsson, H. T., Garber, M. & Rando, O. J. Transcriptome-wide analysis of roles for tRNA modifications in translational regulation. Mol. Cell 68, 978–992.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Crécy-Lagard, V. et al. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res. 47, 2143–2159 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alexandrov, A., Martzen, M. R. & Phizicky, E. M. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8, S1355838202024019 (2002).

    Article  Google Scholar 

  7. Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Goodenbour, J. M. & Pan, T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res. 34, 6137–6146 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Canella, D., Praz, V., Reina, J. H., Cousin, P. & Hernandez, N. Defining the RNA polymerase III transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome Res. 20, 710–721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Bortle, K., Phanstiel, D. H. & Snyder, M. P. Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation. Genome Biol. 18, 180 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ishimura, R. et al. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345, 455–459 (2014). This paper shows for the first time the existence of tissue-specific tRNA isodecoder expression and hints at the differential functions of isodecoders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geslain, R. & Pan, T. Functional analysis of human tRNA isodecoders. J. Mol. Biol. 396, 821–831 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Rapino, F. et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature 558, 605–609 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Goodarzi, H. et al. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 165, 1416–1427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Orellana, E. A. et al. METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol. Cell 81, 3323–3338.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loayza-Puch, F. et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature 530, 490–494 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Thandapani, P. et al. Valine tRNA levels and availability regulate complex I assembly in leukaemia. Nature 601, 428–433 (2021).

    Article  PubMed  Google Scholar 

  20. Deng, W. et al. Trm9-catalyzed tRNA modifications regulate global protein expression by codon-biased translation. PLoS Genet. 11, e1005706 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Su, Z., Wilson, B., Kumar, P. & Dutta, A. Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu. Rev. Genet. 54, 47–69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M. & Pagano, A. The expanding RNA polymerase III transcriptome. Trends Genet. 23, 614–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Ramsay, E. P. et al. Structure of human RNA polymerase III. Nat. Commun. 11, 6409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yeganeh, M. & Hernandez, N. RNA polymerase III transcription as a disease factor. Genes Dev. 34, 865–882 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lata, E. et al. RNA polymerase III subunit mutations in genetic diseases. Front. Mol. Biosci. 8, 696438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernard, G. et al. Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. Am. J. Hum. Genet. 89, 415–423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saitsu, H. et al. Mutations in POLR3A and POLR3B encoding RNA polymerase III subunits cause an autosomal-recessive hypomyelinating leukoencephalopathy. Am. J. Hum. Genet. 89, 644–651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thiffault, I. et al. Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nat. Commun. 6, 7623 (2015).

    Article  PubMed  Google Scholar 

  29. Dorboz, I. et al. Mutation in POLR3K causes hypomyelinating leukodystrophy and abnormal ribosomal RNA regulation. Neurol. Genet. 4, e289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Franca, M. M. et al. Exome sequencing reveals the POLR3H gene as a novel cause of primary ovarian insufficiency. J. Clin. Endocrinol. Metab. 104, 2827–2841 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Terhal, P. A. et al. Biallelic variants in POLR3GL cause endosteal hyperostosis and oligodontia. Eur. J. Hum. Genet. 28, 31–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Beauregard-Lacroix, E. et al. A variant of neonatal progeroid syndrome, or Wiedemann–Rautenstrauch syndrome, is associated with a nonsense variant in POLR3GL. Eur. J. Hum. Genet. 28, 461–468 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Borck, G. et al. BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies. Genome Res. 25, 155–166 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, W. & Popko, B. Endoplasmic reticulum stress in disorders of myelinating cells. Nat. Neurosci. 12, 379–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Azmanov, D. N. et al. Transcriptome-wide effects of a POLR3A gene mutation in patients with an unusual phenotype of striatal involvement. Hum. Mol. Genet. 25, 4302–4314 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Choquet, K. et al. Leukodystrophy-associated POLR3A mutations down-regulate the RNA polymerase III transcript and important regulatory RNA BC200. J. Biol. Chem. 294, 7445–7459 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. White, R. J. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet. 24, 622–629 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Kantidakis, T., Ramsbottom, B. A., Birch, J. L., Dowding, S. N. & White, R. J. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc. Natl Acad. Sci. USA 107, 11823–11828 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shor, B. et al. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J. Biol. Chem. 285, 15380–15392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Michels, A. A. et al. mTORC1 directly phosphorylates and regulates human MAF1. Mol. Cell. Biol. 30, 3749–3757 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei, Y., Tsang, C. K. & Zheng, X. F. S. Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1. EMBO J. 28, 2220–2230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huber, A. et al. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 23, 1929–1943 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, J., Moir, R. D., McIntosh, K. B. & Willis, I. M. W. TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases. Mol. Cell 45, 836–843 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Kenneth, N. S. et al. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc. Natl Acad. Sci. USA 104, 14917–14922 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goodfellow, S. J. et al. Regulation of RNA polymerase III transcription during hypertrophic growth. EMBO J. 25, 1522–1533 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhong, S., Zhang, C. & Johnson, D. L. Epidermal growth factor enhances cellular TATA binding protein levels and induces RNA polymerase I- and III-dependent gene activity. Mol. Cell. Biol. 24, 5119–5129 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cairns, C. A. & White, R. J. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 17, 3112–3123 (1998). This work shows that the tumour suppressor p53 can regulate Pol III transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Crighton, D. et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810–2820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sutcliffe, J. E., Brown, T. R. P., Allison, S. J., Scott, P. H. & White, R. J. Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol. Cell. Biol. 20, 9192–9202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Larminie, C. G. C. et al. Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. EMBO J. 16, 2061–2071 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hirsch, H. A., Gu, L. & Henry, R. W. The retinoblastoma tumor suppressor protein targets distinct general transcription factors to regulate RNA polymerase III gene expression. Mol. Cell. Biol. 20, 9182–9191 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chu, W. M., Wang, Z., Roeder, R. G. & Schmid, C. W. RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J. Biol. Chem. 272, 14755–14761 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Bell, C. G. et al. Novel regional age-associated DNA methylation changes within human common disease-associated loci. Genome Biol. 17, 193 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Acton, R. J. et al. The genomic loci of specific human tRNA genes exhibit ageing-related DNA hypermethylation. Nat. Commun. 12, 2655 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Waddington, C. H. The epigenotype. 1942. Int. J. Epidemiol. 41, 10–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Shukla, A. & Bhargava, P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. Biophys. Acta Gene Regul. Mech. 1861, 295–309 (2018).

    Article  CAS  Google Scholar 

  58. Park, J. L. et al. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 9, 171–187 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, C. K., Shibata, Y., Rao, B., Strahl, B. D. & Lieb, J. D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36, 900–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Guffanti, E. et al. Nucleosome depletion activates poised RNA polymerase III at unconventional transcription sites in Saccharomyces cerevisiae. J. Biol. Chem. 281, 29155–29164 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Kumar, Y. & Bhargava, P. A unique nucleosome arrangement, maintained actively by chromatin remodelers facilitates transcription of yeast tRNA genes. BMC Genomics 14, 402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389–402 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ruiz-Pesini, E. et al. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 35, D823–D828 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Tsutomu, S., Asuteka, N. & Takeo, S. Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley Interdiscip. Rev. RNA 2, 376–386 (2011). This review discusses modopathies linked to mt-tRNAs, which were the first modopathies to be described in humans.

    Article  Google Scholar 

  67. Kirino, Y. et al. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc. Natl Acad. Sci. USA 101, 15070–15075 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Suzuki, T. et al. Complete chemical structures of human mitochondrial tRNAs. Nat. Commun. 11, 4269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thornlow, B. P. et al. Transfer RNA genes experience exceptionally elevated mutation rates. Proc. Natl Acad. Sci. USA 115, 8996–9001 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yan, B., Tzertzinis, G., Schildkraut, I. & Ettwiller, L. Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq. Genome Res. 32, 162–174 (2021).

    Article  PubMed  Google Scholar 

  71. Doran, J. L., Bingle, W. H. & Roy, K. L. Two human genes encoding tRNA(GCCGly). Gene 65, 329–336 (1988).

    Article  CAS  PubMed  Google Scholar 

  72. Clarke, C. J. et al. The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Curr. Biol. 26, 755–765 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schoenmakers, E. et al. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J. Clin. Invest. 126, 992–996 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Iben, J. R. & Maraia, R. J. tRNA gene copy number variation in humans. Gene 536, 376–384 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Frank, D. N. & Pace, N. R. Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu. Rev. Biochem. 67, 153–180 (2003).

    Article  Google Scholar 

  76. Takaku, H., Minagawa, A., Takagi, M. & Nashimoto, M. A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res. 31, 2272–2278 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, Y., Cheng, K., Liang, W. & Wang, X. lncRNA RPPH1 promotes non-small cell lung cancer progression through the miR-326/WNT2B axis. Oncol. Lett. 20, 105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zschocke, J. HSD10 disease: clinical consequences of mutations in the HSD17B10 gene. J. Inherit. Metab. Dis. 35, 81–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Chatfield, K. C. et al. Mitochondrial energy failure in HSD10 disease is due to defective mtDNA transcript processing. Mitochondrion 21, 1–10 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oerum, S. et al. Novel patient missense mutations in the HSD17B10 gene affect dehydrogenase and mitochondrial tRNA modification functions of the encoded protein. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 3294–3302 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Vilardo, E. & Rossmanith, W. Molecular insights into HSD10 disease: impact of SDR5C1 mutations on the human mitochondrial RNase P complex. Nucleic Acids Res. 43, 5112–5119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Metodiev, M. D. et al. Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies. Am. J. Hum. Genet. 98, 993–1000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hochberg, I. et al. Bi-allelic variants in the mitochondrial RNase P subunit PRORP cause mitochondrial tRNA processing defects and pleiotropic multisystem presentations. Am. J. Hum. Genet. 108, 2195–2204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rackham, O. et al. Hierarchical RNA processing is required for mitochondrial ribosome assembly. Cell Rep. 16, 1874–1890 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Rauschenberger, K. et al. A non-enzymatic function of 17β-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol. Med. 2, 51–62 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Saoji, M., Sen, A. & Cox, R. T. Loss of individual mitochondrial ribonuclease P complex proteins differentially affects mitochondrial tRNA processing in vivo. Int. J. Mol. Sci. 22, 6066 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yip, M. C. J., Savickas, S., Gygi, S. P. & Shao, S. ELAC1 repairs tRNAs cleaved during ribosome-associated quality control. Cell Rep. 30, 2106–2114.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rebbeck, T. R. et al. Association of HPC2/ELAC2 genotypes and prostate cancer. Am. J. Hum. Genet. 67, 1014–1019 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Haack, T. B. et al. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am. J. Hum. Genet. 93, 211–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wedatilake, Y. et al. TRNT1 deficiency: clinical, biochemical and molecular genetic features. Orphanet J. Rare Dis. 11, 90 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Paushkin, S. V., Patel, M., Furia, B. S., Peltz, S. W. & Trotta, C. R. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 117, 311–321 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Budde, B. S. et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat. Genet. 40, 1113–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Namavar, Y. et al. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain 134, 143–156 (2011).

    Article  PubMed  Google Scholar 

  95. Bierhals, T., Korenke, G. C., Uyanik, G. & Kutsche, K. Pontocerebellar hypoplasia type 2 and TSEN2: review of the literature and two novel mutations. Eur. J. Med. Genet. 56, 325–330 (2013).

    Article  PubMed  Google Scholar 

  96. Alazami, A. M. et al. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 10, 148–161 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Breuss, M. W. et al. Autosomal-recessive mutations in the tRNA splicing endonuclease subunit TSEN15 cause pontocerebellar hypoplasia and progressive microcephaly. Am. J. Hum. Genet. 99, 228–235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weitzer, S. & Martinez, J. The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447, 222–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Hanada, T. et al. CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495, 474–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karaca, E. et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157, 636–650 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sekulovski, S. et al. Assembly defects of human tRNA splicing endonuclease contribute to impaired pre-tRNA processing in pontocerebellar hypoplasia. Nat. Commun. 12, 5610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Van Dijk, T., Baas, F., Barth, P. G. & Poll-The, B. T. What’s new in pontocerebellar hypoplasia? An update on genes and subtypes. Orphanet J. Rare Dis. 13, 92 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sissler, M., González-Serrano, L. E. & Westhof, E. Recent advances in mitochondrial aminoacyl-tRNA synthetases and disease. Trends Mol. Med. 23, 693–708 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Antonellis, A. et al. Glycyl tRNA synthetase mutations in Charcot–Marie–Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293–1299 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zuko, A. et al. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science 373, 1161–1166 (2021). This work showcases a potential approach to treat Charcot–Marie–Tooth disease by inducing overexpression of a tRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Spaulding, E. L. et al. The integrated stress response contributes to tRNA synthetase-associated peripheral neuropathy. Science 373, 1156–1161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hoffmann, A. et al. Accurate mapping of tRNA reads. Bioinformatics 34, 1116–1124 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Pinkard, O., McFarland, S., Sweet, T. & Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11, 4104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Patil, A. et al. Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. RNA Biol. 9, 990–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Begley, U. et al. Trm9 catalyzed tRNA modifications link translation to the DNA damage response. Mol. Cell 28, 860–870 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Murphy, F. V. & Ramakrishnan, V. Structure of a purine–purine wobble base pair in the decoding center of the ribosome. Nat. Struct. Mol. Biol. 11, 1251–1252 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Lin, H. et al. CO2-sensitive tRNA modification associated with human mitochondrial disease. Nat. Commun. 9, 1875 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zhang, Z. et al. Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers. Commun. Biol. 1, 234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wolfe, A. L. et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513, 65–70 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Truitt, M. L. et al. Differential requirements for eIF4E dose in normal development and cancer. Cell 162, 59–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pavon-Eternod, M. et al. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res. 37, 7268–7280 (2009). This paper demonstrates that overexpression of tRNAs can result in malignant phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Birch, J. et al. The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biol. Open. 5, 1371–1379 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dai, Z. et al. N7-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol. Cell 81, 3339–3355.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Kwon, N. H., Fox, P. L. & Kim, S. Aminoacyl-tRNA synthetases as therapeutic targets. Nat. Rev. Drug Discov. 18, 629–650 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lueck, J. D. et al. Engineered transfer RNAs for suppression of premature termination codons. Nat. Commun. 10, 822 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Porter, J. J., Heil, C. S. & Lueck, J. D. Therapeutic promise of engineered nonsense suppressor tRNAs. Wiley Interdiscip. Rev. RNA 12, e1641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lin, S. et al. Mettl1/Wdr4-mediated m7G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol. Cell 71, 244–255.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jovine, L., Djordjevic, S. & Rhodes, D. The crystal structure of yeast phenylalanine tRNA at 2.0 Å resolution: cleavage by Mg2+ in 15-year old crystals. J. Mol. Biol. 301, 401–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Shaheen, R. et al. Mutation in WDR4 impairs tRNA m7G46 methylation and causes a distinct form of microcephalic primordial dwarfism. Genome Biol. 16, 210 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Trimouille, A. et al. Further delineation of the phenotype caused by biallelic variants in the WDR4 gene. Clin. Genet. 93, 374–377 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Braun, D. A. et al. Mutations in WDR4 as a new cause of Galloway–Mowat syndrome. Am. J. Med. Genet. A 176, 2460–2465 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Alexandrov, A., Grayhack, E. J. & Phizicky, E. M. tRNA m7G methyltransferase Trm8p/Trm82p: evidence linking activity to a growth phenotype and implicating Trm82p in maintaining levels of active Trm8p. RNA 11, 821–830 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006). This report describes the existence of a quality control mechanism that degrades hypomodified tRNAs in yeast (namely, the rapid tRNA decay pathway).

    Article  CAS  PubMed  Google Scholar 

  131. de Zoysa, T. & Phizicky, E. M. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences. PLoS Genet. 16, e1008893 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.A.O. is supported by the Pew Latin American Fellows Program in the Biomedical Sciences from Pew Charitable Trusts and by a fellowship from the Damon Runyon Cancer Research Foundation (DRG-2378–19). R.I.G. is supported by an Outstanding Investigator Award (R35CA232115) from the National Cancer Institute (NCI) of the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Richard I. Gregory.

Ethics declarations

Competing interests

R.I.G. is a co-founder and scientific advisory board member of 28/7 Therapeutics and Theonys Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Valérie de Crécy-Lagard, Jeff Coller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orellana, E.A., Siegal, E. & Gregory, R.I. tRNA dysregulation and disease. Nat Rev Genet 23, 651–664 (2022). https://doi.org/10.1038/s41576-022-00501-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00501-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer