Abstract
Animal hosts have initiated myriad symbiotic associations with microorganisms and often have maintained these symbioses for millions of years, spanning drastic changes in ecological conditions and lifestyles. The establishment and persistence of these relationships require genetic innovations on the parts of both symbionts and hosts. The nature of symbiont innovations depends on their genetic population structure, categorized here as open, closed or mixed. These categories reflect modes of inter-host transmission that result in distinct genomic features, or genomic syndromes, in symbionts. Although less studied, hosts also innovate in order to preserve and control symbiotic partnerships. New capabilities to sequence host-associated microbial communities and to experimentally manipulate both hosts and symbionts are providing unprecedented insights into how genetic innovations arise under different symbiont population structures and how these innovations function to support symbiotic relationships.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).
Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).
Wernegreen, J. J. Ancient bacterial endosymbionts of insects: genomes as sources of insight and springboards for inquiry. Exp. Cell Res. 358, 427–432 (2017).
Shigenobu, S. & Wilson, A. C. C. Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont. Cell. Mol. Life Sci. 68, 1297–1309 (2011).
Bongrand, C. et al. Using colonization assays and comparative genomics to discover symbiosis behaviors and factors in Vibrio fischeri. mBio 11, e03407-19 (2020).
McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495 (2019).
Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).
Jäckle, O. et al. Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula. Proc. Natl Acad. Sci. USA 116, 8505–8514 (2019). The intracellular symbiont of Paracatenula flatworms possesses a highly reduced genome (1.34 Mb) and represents the oldest documented animal symbiosis (500 My); this article shows that it provisions its host through outer membrane vesicle secretion.
Masson, F. & Lemaitre, B. Growing ungrowable bacteria: overview and perspectives on insect symbiont culturability. Microbiol. Mol. Biol. Rev. 84, e00089-20 (2020).
Elston, K. M., Leonard, S. P., Geng, P., Bialik, S. B. & Barrick, J. E. Engineering insects from the endosymbiont out. Trends Microbiol. https://doi.org/10.1016/j.tim.2021.05.004 (2021).
Kirchberger, P. C., Schmidt, M. & Ochman, H. The ingenuity of bacterial genomes. Annu. Rev. Microbiol. 74, 815–834 (2020).
Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl Acad. Sci. USA 112, 10169–10176 (2015).
Husnik, F. & Keeling, P. J. The fate of obligate endosymbionts: reduction, integration, or extinction. Curr. Opin. Genet. Dev. 58-59, 1–8 (2019).
Sudakaran, S., Kost, C. & Kaltenpoth, M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 25, 375–390 (2017).
Husnik, F. & McCutcheon, J. P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 16, 67–79 (2018).
Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. Biol. Sci. 282, 20142957 (2015).
Bright, M. & Bulgheresi, S. A complex journey: transmission of microbial symbionts. Nat. Rev. Microbiol. 8, 218–230 (2010).
McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26 (2011).
Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).
Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019). This study used a novel metagenomics-based approach to study the evolution of 40 bacterial species in the human gut and found signatures of within-host adaptation occurring over short timescales (6–12 months).
Bobay, L.-M. & Raymann, K. Population genetics of host-associated microbiomes. Curr. Mol. Biol. Rep. 5, 128–139 (2019).
Van Rossum, T., Ferretti, P., Maistrenko, O. M. & Bork, P. Diversity within species: interpreting strains in microbiomes. Nat. Rev. Microbiol. 18, 491–506 (2020).
Kikuchi, Y., Ohbayashi, T., Jang, S. & Mergaert, P. Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. ISME J. 14, 1627–1638 (2020).
de Oliveira, B. F. R., Freitas-Silva, J., Sánchez-Robinet, C. & Laport, M. S. Transmission of the sponge microbiome: moving towards a unified model. Environ. Microbiol. Rep. 12, 619–638 (2020).
Ansorge, R. et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat. Microbiol. 4, 2487–2497 (2019).
Picazo, D. R. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).
Moran, N. A. & Bennett, G. M. The tiniest tiny genomes. Annu. Rev. Microbiol. 68, 195–215 (2014).
Gruber-Vodicka, H. R. et al. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. Proc. Natl Acad. Sci. USA 108, 12078–12083 (2011).
Baker, L. J. et al. Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. eLife 8, e47606 (2019).
Koga, R., Meng, X.-Y., Tsuchida, T. & Fukatsu, T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc. Natl Acad. Sci. USA 109, E1230–E1237 (2012).
Salem, H., Bauer, E., Kirsch, R., Berasategui, A. & Cripps, M. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).
Mondal, S. I. et al. Reduced genome of the gut symbiotic bacterium “Candidatus Benitsuchiphilus tojoi” provides insight into its possible roles in ecology and adaptation of the host insect’. Front. Microbiol. 11, 840 (2020).
Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).
Koga, R. et al. Host’s guardian protein counters degenerative symbiont evolution. Proc. Natl Acad. Sci. USA 118, e2103957118 (2021).
Kehr, J.-C. & Dittmann, E. Protective tunicate endosymbiont with extreme genome reduction. Environ. Microbiol. 17, 3430–3432 (2015).
Russell, S. L. et al. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. PLoS Genet. 16, e1008935 (2020). This study sequenced chemosynthetic symbionts from a variety of bivalve hosts in which transmission modes ranged from strictly horizontal to almost entirely vertical. Results revealed corresponding variation in the extent of genome erosion and rates of homologous recombination.
George, E. E. et al. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr. Biol. 30, 925–933 (2020).
Vavre, F., Fleury, F., Lepetit, D., Fouillet, P. & Boulétreau, M. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol. Biol. Evol. 16, 1711–1723 (1999).
Russell, J. A., Latorre, A., Sabater-Muñoz, B., Moya, A. & Moran, N. A. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol. Ecol. 12, 1061–1075 (2003).
Gerth, M. et al. Rapid molecular evolution of Spiroplasma symbionts of Drosophila. Microb. Genom. 7, 000503 (2021).
Frost, C. L. et al. The hypercomplex genome of an insect reproductive parasite highlights the importance of lateral gene transfer in symbiont biology. mBio 11, e02590-19 (2020).
Chong, R. A., Park, H. & Moran, N. A. Genome evolution of the obligate endosymbiont Buchnera aphidicola. Mol. Biol. Evol. 36, 1481–1489 (2019).
Chevignon, G., Boyd, B. M., Brandt, J. W., Oliver, K. M. & Strand, M. R. Culture-facilitated comparative genomics of the facultative symbiont Hamiltonella defensa. Genome Biol. Evol. 10, 786–802 (2018).
Russell, S. L., Corbett-Detig, R. B. & Cavanaugh, C. M. Mixed transmission modes and dynamic genome evolution in an obligate animal–bacterial symbiosis. ISME J. 11, 1359–1371 (2017).
Asselin, A. K., Villegas-Ospina, S., Hoffmann, A. A., Brownlie, J. C. & Johnson, K. N. Contrasting patterns of virus protection and functional incompatibility genes in two conspecific Wolbachia strains from Drosophila pandora. Appl. Environ. Microbiol. 85, e02290-18 (2019).
Martinez, J. et al. Symbiont strain is the main determinant of variation in Wolbachia-mediated protection against viruses across Drosophila species. Mol. Ecol. 26, 4072–4084 (2017).
Newton, I. L. G. & Rice, D. W. The Jekyll and Hyde symbiont: could Wolbachia be a nutritional mutualist? J. Bacteriol. 202, e00589-19 (2020).
Tokuda, G. et al. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc. Natl Acad. Sci. USA 115, E11996–E12004 (2018).
Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).
Bongrand, C. & Ruby, E. G. Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME J. 13, 698–706 (2019). The squid light organ symbiosis involves only a single bacterial species, but this study, based on experimental colonization of hosts with combinations of isolates, reveals distinct bacterial strategies for competing and persisting within hosts.
Pietschke, C. et al. Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts. Proc. Natl Acad. Sci. USA 114, E8488–E8497 (2017).
Lo, W.-S., Huang, Y.-Y. & Kuo, C.-H. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol. Rev. 40, 855–874 (2016).
Waterworth, S. C. et al. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio 11, e02430-19 (2020). While most highly reduced symbiont genomes show no evidence of gene acquisition, this study revealed an exception: the extracellular symbiont of the beetle Lagria villosa acquired beneficial genes through HGT, even while undergoing massive genome reduction.
Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).
Blaser, M. J. Missing Microbes: How the Overuse of Antibiotics is Fueling our Modern Plagues, Vol. 20 (Macmillan, 2014).
Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: How systematic depletion of key symbionts erodes immunity. Trends Microbiol. 28, 1010–1021 (2020).
Moeller, A. H. et al. Cospeciation of gut microbiota with hominids. Science 353, 380–382 (2016).
Moeller, A. H., Suzuki, T. A., Phifer-Rixey, M. & Nachman, M. W. Transmission modes of the mammalian gut microbiota. Science 362, 453–457 (2018).
Bourguignon, T. et al. Rampant host switching shaped the termite gut microbiome. Curr. Biol. 28, 649–654.e2 (2018).
Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).
Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154.e4 (2018).
Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, e1600513 (2017).
Ohbayashi, T. et al. Insect’s intestinal organ for symbiont sorting. Proc. Natl Acad. Sci. USA 112, E5179–E5188 (2015).
Itoh, H. et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc. Natl Acad. Sci. USA 116, 22673–22682 (2019).
Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000).
Moriano-Gutierrez, S. et al. Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc. Natl Acad. Sci. USA 116, 7990–7999 (2019).
Thompson, C. M., Tischler, A. H., Tarnowski, D. A., Mandel, M. J. & Visick, K. L. Nitric oxide inhibits biofilm formation by Vibrio fischeri via the nitric oxide sensor HnoX. Mol. Microbiol. 111, 187–203 (2019).
Essock-Burns, T., Bongrand, C., Goldman, W. E., Ruby, E. G. & McFall-Ngai, M. J. Interactions of symbiotic partners drive the development of a complex biogeography in the squid-Vibrio symbiosis. mBio 11, e00853–20 (2020).
Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).
Robinson, C. D. et al. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biol. 16, e2006893 (2018).
Lebov, J. F., Schlomann, B. H., Robinson, C. D. & Bohannan, B. J. M. Phenotypic parallelism during experimental adaptation of a free-living bacterium to the zebrafish gut. mBio 11, e01519-20 (2020).
Erturk-Hasdemir, D. et al. Symbionts exploit complex signaling to educate the immune system. Proc. Natl Acad. Sci. USA 116, 26157–26166 (2019).
Wexler, A. G. et al. Human gut Bacteroides capture vitamin B12 via cell surface-exposed lipoproteins. eLife 7, e37138 (2018).
Putnam, E. E. & Goodman, A. L. B vitamin acquisition by gut commensal bacteria. PLoS Pathog. 16, e1008208 (2020).
Coyne, M. J. & Comstock, L. E. Type VI secretion systems and the gut microbiota. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.PSIB-0009-2018 (2019).
Steele, M. I., Kwong, W. K., Whiteley, M. & Moran, N. A. Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. mBio 8, e01630-17 (2017).
Speare, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl Acad. Sci. USA 115, E8528–E8537 (2018).
Baquero, F., Lanza, V. F., Baquero, M.-R., Del Campo, R. & Bravo-Vázquez, D. A. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front. Microbiol. 10, 2261 (2019).
Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019). Using experimental evolution of a target E. coli strain introduced to hosts with resident microbiomes, this study found that bacteriophage-mediated HGT is a strong force mediating the evolution of E. coli in the mouse gut.
Ramiro, R. S., Durão, P., Bank, C. & Gordo, I. Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biol. 18, e3000617 (2020).
Brockhurst, M. A. et al. The ecology and evolution of pangenomes. Curr. Biol. 29, R1094–R1103 (2019).
Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).
Vatanen, T. et al. Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nat. Microbiol. 4, 470–479 (2019).
Ludvigsen, J., Porcellato, D. & L’Abée-Lund, T. M. Geographically widespread honeybee-gut symbiont subgroups show locally distinct antibiotic-resistant patterns. Mol. Ecol. 26, 6590–6607 (2017).
Zheng, H. et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. mBio 7, e01326–16 (2016).
Jahn, M. T. et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 26, 542–550.e5 (2019).
Wexler, A. G. et al. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc. Natl Acad. Sci. USA 113, 3639–3644 (2016).
Ross, B. D. et al. Human gut bacteria contain acquired interbacterial defence systems. Nature 575, 224–228 (2019).
Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252 (2010).
Fehlner-Peach, H. et al. Distinct polysaccharide utilization profiles of human intestinal Prevotella copri isolates. Cell Host Microbe 26, 680–690.e5 (2019).
Zheng, H. et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl Acad. Sci. USA 116, 25909–25916 (2019).
Hehemann, J.-H., Kelly, A. G., Pudlo, N. A., Martens, E. C. & Boraston, A. B. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl Acad. Sci. USA 109, 19786–19791 (2012).
Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat. Commun. 11, 4379 (2020).
Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).
Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).
Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, 300036–300012 (2012).
Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. 30, 3580–3590.e7 (2020).
Salem, H. et al. Symbiont digestive range reflects host plant breadth in herbivorous beetles. Curr. Biol. 30, 2875–2886.e4 (2020). Genome sequences for 13 strains of Stammera, the extracellular symbiont of leaf beetles, revealed that strains differ in metabolic capabilities, potentially shaping the host ecological range.
Hansen, A. K. & Moran, N. A. Altered tRNA characteristics and 3′ maturation in bacterial symbionts with reduced genomes. Nucleic Acids Res. 40, 7870–7884 (2012).
Van Leuven, J. T., Mao, M., Xing, D. D., Bennett, G. M. & McCutcheon, J. P. Cicada endosymbionts have tRNAs that are correctly processed despite having genomes that do not encode all of the tRNA processing machinery. mBio 10, e01950-18 (2019).
Melnikov, S. V., van den Elzen, A., Stevens, D. L., Thoreen, C. C. & Söll, D. Loss of protein synthesis quality control in host-restricted organisms. Proc. Natl Acad. Sci. USA 115, E11505–E11512 (2018). This study shows that most host-restricted, small genome symbionts possess aminoacyl-tRNA synthetases with degraded editing sites, suggesting error-prone translation and demonstrating that even retained genes in eroded genomes have compromised functionality.
Bourguignon, T. et al. Increased mutation rate is linked to genome reduction in prokaryotes. Curr. Biol. 30, 3848–3855.e4 (2020).
Bennett, G. M. & Mao, M. Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages. Environ. Microbiol. 20, 4461–4472 (2018).
Nakabachi, A. & Okamura, K. Diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus psyllid, kills various human cancer cells. PLoS One 14, e0218190 (2019).
Nakabachi, A., Piel, J., Malenovský, I. & Hirose, Y. Comparative genomics underlines multiple roles of Profftella, an obligate symbiont of psyllids: providing toxins, vitamins, and carotenoids. Genome Biol. Evol. 12, 1975–1987 (2020).
Reis, F. et al. Bacterial symbionts support larval sap feeding and adult folivory in (semi-) aquatic reed beetles. Nat. Commun. 11, 2964 (2020).
Luan, J., Sun, X., Fei, Z. & Douglas, A. E. Maternal inheritance of a single somatic animal cell displayed by the bacteriocyte in the whitefly Bemisia tabaci. Curr. Biol. 28, 459–465.e3 (2018).
Rio, R. V. M. et al. Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: Glossinidae) obligate symbiont Wigglesworthia. mBio 3, e00240–11 (2012).
Maire, J. et al. Spatial and morphological reorganization of endosymbiosis during metamorphosis accommodates adult metabolic requirements in a weevil. Proc. Natl Acad. Sci. USA 117, 19347–19358 (2020).
Campbell, M. A. et al. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl Acad. Sci. USA 112, 10192–10199 (2015).
Campbell, M. A., Łukasik, P., Simon, C. & McCutcheon, J. P. Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas. Curr. Biol. 27, 3568–3575.e3 (2017).
Price, D. R. G. & Wilson, A. C. C. A substrate ambiguous enzyme facilitates genome reduction in an intracellular symbiont. BMC Biol. 12, 110 (2014).
Zhang, B., Leonard, S. P., Li, Y. & Moran, N. A. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proc. Natl Acad. Sci. USA 116, 24712–24718 (2019).
Fan, Y. & Wernegreen, J. J. Can’t take the heat: high temperature depletes bacterial endosymbionts of ants. Microb. Ecol. 66, 727–733 (2013).
Kupper, M., Gupta, S. K., Feldhaar, H. & Gross, R. Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiol. Lett. 353, 1–10 (2014).
Fares, M. A., Ruiz-González, M. X., Moya, A., Elena, S. F. & Barrio, E. GroEL buffers against deleterious mutations. Nature 417, 398 (2002).
Poliakov, A. et al. Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis. Mol. Cell. Proteom. 10, M110.007039 (2011).
Husnik, F. et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153, 1567–1578 (2013).
Bublitz, D. C. et al. Peptidoglycan production by an insect-bacterial mosaic. Cell 179, 703–712 (2019).
Nikoh, N. & Nakabachi, A. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol. 7, 12 (2009).
Mao, M., Yang, X. & Bennett, G. M. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc. Natl Acad. Sci. USA 115, E11691–E11700 (2018).
Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl Acad. Sci. USA 115, E5970–E5979 (2018).
Manzano-Marín, A., Szabó, G., Simon, J., Horn, M. & Latorre, A. Happens in the best of subfamilies: establishment and repeated replacements of co-obligate secondary endosymbionts within Lachninae aphids. Environ. Microbiol. 19, 393–408 (2017).
Duron, O. et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr. Biol. 28, 1896–1902.e5 (2018).
Mao, M. & Bennett, G. M. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J. 14, 1384–1395 (2020).
Feng, H., Edwards, N. & Anderson, C. M. H. Trading amino acids at the aphid–Buchnera symbiotic interface. Proc. Natl Acad. Sci. USA 116, 16003–16011 (2019).
Lu, H.-L., Chang, C.-C. & Wilson, A. C. C. Amino acid transporters implicated in endocytosis of Buchnera during symbiont transmission in the pea aphid. Evodevo 7, 24 (2016).
Gerardo, N. M. et al. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. 11, R21 (2010).
Gerardo, N. M., Hoang, K. L. & Stoy, K. S. Evolution of animal immunity in the light of beneficial symbioses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190601 (2020).
Chung, S. H., Jing, X., Luo, Y. & Douglas, A. E. Targeting symbiosis-related insect genes by RNAi in the pea aphid-Buchnera symbiosis. Insect Biochem. Mol. Biol. 95, 55–63 (2018).
Maire, J. et al. Weevil pgrp-lb prevents endosymbiont TCT dissemination and chronic host systemic immune activation. Proc. Natl Acad. Sci. USA 116, 5623–5632 (2019). This study shows that hosts can evolve to limit their own immune response to beneficial symbionts: cereal weevils use a bacteriocyte-specific isoform of peptidoglycan recognition protein to cleave peptidoglycan monomers of Sodalis symbionts, preventing the costly activation of their immune system by their symbiont’s peptidoglycan.
Kobiałka, M., Michalik, A., Walczak, M., Junkiert, L. & Szklarzewicz, T. Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma 253, 903–912 (2016).
Husnik, F. & McCutcheon, J. P. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc. Natl Acad. Sci. USA 113, E5416–E5424 (2016).
Michalik, A., Jankowska, W., Kot, M., Gołas, A. & Szklarzewicz, T. Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi? Arthropod Struct. Dev. 43, 579–587 (2014).
Scholz, M. et al. Large scale genome reconstructions illuminate Wolbachia evolution. Nat. Commun. 11, 5235 (2020).
Sanaei, E., Charlat, S. & Engelstädter, J. Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol. Rev. Camb. Philos. Soc. 96, 433–453 (2020).
Herren, J. K., Paredes, J. C., Schüpfer, F. & Lemaitre, B. Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery. mBio 4, e00532-12 (2013).
Perreau, J. et al. Vertical transmission at the pathogen-symbiont interface: Serratia symbiotica and aphids. mBio 12, e00359-21 (2021).
Koga, R., Bennett, G. M., Cryan, J. R. & Moran, N. A. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environ. Microbiol. 15, 2073–2081 (2013).
Medina Munoz, M., Spencer, N., Enomoto, S., Dale, C. & Rio, R. V. M. Quorum sensing sets the stage for the establishment and vertical transmission of Sodalis praecaptivus in tsetse flies. PLoS Genet. 16, e1008992 (2020). Experiments using gene knockouts and artificial inoculations of hosts showed that the culturable proto-symbiont Sodalis praecaptivus can use quorum sensing to quickly attenuate its virulence and achieve vertical transmission in a novel host.
Hurst, G. D. D. & Frost, C. L. Reproductive parasitism: maternally inherited symbionts in a biparental world. Cold Spring Harb. Perspect. Biol. 7, a017699 (2015).
Harumoto, T., Fukatsu, T. & Lemaitre, B. Common and unique strategies of male killing evolved in two distinct Drosophila symbionts. Proc. R. Soc. B 285, 20172167 (2018).
Harumoto, T. & Lemaitre, B. Male-killing toxin in a bacterial symbiont of Drosophila. Nature 557, 252–255 (2018). This study determined that male-killing by a Spiroplasma symbiont of Drosophila is caused by a toxin that targets dosage compensation machinery on the male X chromosome.
Shropshire, J. D., Rosenberg, R. & Bordenstein, S. R. The impacts of cytoplasmic incompatibility factor (cifA and cifB) genetic variation on phenotypes. Genetics 217, iyaa007 (2020). This study illustrates the power of using a model host species (Drosophila melanogaster) in studies of unculturable symbionts, in this case, Wolbachia. To explore cytoplasmic incompatibility phenotypes imposed by prophage genes, transgenic Drosophila melanogaster were engineered to express versions of cifA and cifB from related fly species, resulting in specific incompatibility outcomes for particular combinations.
LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).
Martinez, J., Klasson, L., Welch, J. J. & Jiggins, F. M. Life and death of selfish genes: comparative genomics reveals the dynamic evolution of cytoplasmic incompatibility. Mol. Biol. Evol. 38, 2–15 (2020).
Hill, T., Unckless, R. L. & Perlmutter, J. I. Rapid evolution and horizontal gene transfer in the genome of a male-killing Wolbachia. bioRxiv https://doi.org/10.1101/2020.11.16.385294 (2020).
Ballinger, M. J., Gawryluk, R. M. R. & Perlman, S. J. Toxin and genome evolution in a Drosophila defensive symbiosis. Genome Biol. Evol. 11, 253–262 (2019).
Oliver, K. M., Degnan, P. H., Hunter, M. S. & Moran, N. A. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325, 992–994 (2009).
Brandt, J. W., Chevignon, G., Oliver, K. M. & Strand, M. R. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc. Biol. Sci. 284, 20171925 (2017).
Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).
Degnan, P. H., Yu, Y., Sisneros, N., Wing, R. A. & Moran, N. A. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc. Natl Acad. Sci. USA 106, 9063–9068 (2009).
Rouïl, J., Jousselin, E., Coeur d’acier, A., Cruaud, C. & Manzano-Marín, A. The protector within: comparative genomics of APSE phages across aphids reveals rampant recombination and diverse toxin arsenals. Genome Biol. Evol. 12, 878–889 (2020).
Verster, K. I. et al. Horizontal transfer of bacterial cytolethal distending toxin B genes to insects. Mol. Biol. Evol. 36, 2105–2110 (2019).
Perlmutter, J. I. et al. The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog. 15, e1007936 (2019).
Ren, F.-R. et al. Pantothenate mediates the coordination of whitefly and symbiont fitness. ISME J. 15, 1655–1667 (2021).
Ren, F.-R. et al. Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits. ISME J. 14, 2542–2553 (2020).
Manzano-Marín, A. et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 14, 259–273 (2020).
Bomar, L., Maltz, M., Colston, S. & Graf, J. Directed culturing of microorganisms using metatranscriptomics. mBio 2, e00012-11 (2011).
Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).
Patel, V. et al. Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic ‘X-type’ symbiont of aphids. Genome Biol. Evol. 11, 3510–3522 (2019).
Kendra, C. G., Keller, C. M., Bruna, R. E. & Pontes, M. H. Conjugal DNA transfer in Sodalis glossinidius, a maternally inherited symbiont of tsetse flies. mSphere 5, e00864-20 (2020).
Keller, C. M., Kendra, C. G., Bruna, R. E., Craft, D. & Pontes, M. H. DNA transduction in Sodalis species: implications for the genetic modification of uncultured endosymbionts of insects. mSphere 6, e01331–20 (2021).
Favia, G. et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc. Natl Acad. Sci. USA 104, 9047–9051 (2007).
Nadal-Jimenez, P. et al. Genetic manipulation allows in vivo tracking of the life cycle of the son-killer symbiont, Arsenophonus nasoniae, and reveals patterns of host invasion, tropism and pathology. Environ. Microbiol. 21, 3172–3182 (2019).
Rubin, B. E. et al. Targeted genome editing of bacteria within microbial communities. bioRxiv https://doi.org/10.1101/2020.07.17.209189 (2020).
Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).
Wiles, T. J. et al. Modernized tools for streamlined genetic manipulation and comparative study of wild and diverse Proteobacterial lineages. mBio 9, e01877-18 (2018).
Leonard, S. P. et al. Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synth. Biol. 7, 1279–1290 (2018).
Visick, K. L., Hodge-Hanson, K. M., Tischler, A. H., Bennett, A. K. & Mastrodomenico, V. Tools for rapid genetic engineering of Vibrio fischeri. Appl. Environ. Microbiol. 84, e00850-18 (2018).
McLean, A. H. C. et al. Multiple phenotypes conferred by a single insect symbiont are independent. Proc. Biol. Sci. 287, 20200562 (2020).
Moran, N. A. & Yun, Y. Experimental replacement of an obligate insect symbiont. Proc. Natl Acad. Sci. USA 112, 2093–2096 (2015).
Gong, J.-T. et al. Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection. Curr. Biol. 30, 4837–4845.e5 (2020).
Ross, P. A., Turelli, M. & Hoffmann, A. A. Evolutionary ecology of Wolbachia releases for disease control. Annu. Rev. Genet. 53, 93–116 (2019).
Crawford, J. E. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38, 482–492 (2020).
Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017).
Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).
Praveschotinunt, P. et al. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat. Commun. 10, 5580 (2019).
Wang, S. et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357, 1399–1402 (2017).
Leonard, S. P. et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science 367, 573–576 (2020).
Belcaid, M. et al. Symbiotic organs shaped by distinct modes of genome evolution in cephalopods. Proc. Natl Acad. Sci. USA 116, 3030–3035 (2019).
Douglas, A. E. Housing microbial symbionts: evolutionary origins and diversification of symbiotic organs in animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190603 (2020).
Li, Y., Park, H., Smith, T. E. & Moran, N. A. Gene family evolution in the pea aphid based on chromosome-level genome assembly. Mol. Biol. Evol. 36, 2143–2156 (2019).
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
Acknowledgements
We thank H. Ochman for critical comments. Funding came from NIH R35GM131738 to NAM and a University of Texas Austin Provost’s Graduate Excellence fellowship to J.P.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Genetics thanks T. Fukatsu, M. McFall-Ngai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Symbiont transmission mode
-
The route by which symbionts are acquired each generation, ranging from strictly vertical (parent-to-offspring) to strictly horizontal (between non-parent–offspring pairs of hosts or between hosts and non-host sources). Mixed-mode transmission combines vertical and horizontal modes.
- Genetic recombination
-
The exchange of genetic material between organisms. Recombination can be roughly classified as homologous recombination, which involves the exchange of related sequences, and non-homologous recombination, in which unrelated sequences are inserted into the genome as in the case of horizontal gene transfer.
- Purifying selection
-
The removal of deleterious alleles by natural selection. Also referred to as negative selection. This is the most common form of selection, as mutations are more often deleterious than beneficial.
- dN/dS
-
The ratio of non-synonymous substitutions (that is, those that change the amino acid sequence) per non-synonymous site (dN) to the number of synonymous substitutions (that is, those that do not change the amino acid sequence) per synonymous site (dS), used to determine the mode and strength of selection that has acted on genetic sequences.
- Bacteriocytes
-
Host cells that are specialized for housing bacterial symbionts.
- Heterologous expression
-
Expression of a gene in an alternative, genetically tractable host.
- Trophallaxis
-
The exchange of food through an oral-to-oral or faecal-to-oral transmission route, commonly performed by members of the same community.
- Axenic culture
-
The culture of a single microbial strain, in the absence of additional strains or hosts, in laboratory culture media.
Rights and permissions
About this article
Cite this article
Perreau, J., Moran, N.A. Genetic innovations in animal–microbe symbioses. Nat Rev Genet 23, 23–39 (2022). https://doi.org/10.1038/s41576-021-00395-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41576-021-00395-z
This article is cited by
-
Segregation of endosymbionts in complex symbiotic system of cicadas providing novel insights into microbial symbioses and evolutionary dynamics of symbiotic organs in sap-feeding insects
Frontiers in Zoology (2024)
-
Genomic and induction evidence for bacteriophage contributions to sargassum-bacteria symbioses
Microbiome (2024)
-
Mesozoic evolution of cicadas and their origins of vocalization and root feeding
Nature Communications (2024)
-
The genus Sodalis as a resource for understanding the multifaceted evolution of bacterial symbiosis in insects
Symbiosis (2024)
-
Obligate mutualistic heritable symbiosis in sap-feeding insects: an intricate relationship in nature
Symbiosis (2024)