Abstract
Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal–fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).
Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).
Long, H. K., Prescott, S. L. & Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167, 1170–1187 (2016).
Wells, J. N. & Feschotte, C. A field guide to eukaryotic transposable elements. Annu. Rev. Genet. 54, 539-561 (2020). This article is a comprehensive introduction to features and distribution of major TE groups across eukaryote genomes in the context of their biology and evolution.
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0 (2013–2015).
Chuong, E. B., Rumi, M. A., Soares, M. J. & Baker, J. C. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet. 45, 325–329 (2013). This study establishes that genome-wide species-specific gene regulatory networks in mouse TSCs rely on ERV-derived sequences, using the example of RLTR13D5 elements that provide binding sites for essential placental transcription factors.
Lynch, V. J. et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10, 551–561 (2015).
Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154–1159 (2011). Using transcriptional profiling across mammalian endometrial cells, this work demonstrates that genes expressed in human endometrium gained endometrial expression through eutherian-specific MER20 elements that provide binding sites for transcription factors important for hormone responsiveness and pregnancy.
Trizzino, M. et al. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 27, 1623–1633 (2017).
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).
Bourque, G. et al. Ten things you should know about transposable elements. Genome Biol. 19, 199 (2018). This article is a useful primer by leaders in the field on the importance of mammalian TEs for genome evolution and function that introduces their properties and interactions with host cells.
Kazazian, H. H. Jr. & Moran, J. V. Mobile DNA in health and disease. N. Engl. J. Med. 377, 361–370 (2017).
Deniz, O., Frost, J. M. & Branco, M. R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 20, 417–431 (2019).
Cosby, R. L., Chang, N. C. & Feschotte, C. Host–transposon interactions: conflict, cooperation, and cooption. Genes Dev. 33, 1098–1116 (2019). This study uncovers ~100 fusion proteins combining DNA transposase and host-derived domains in tetrapod genomes, suggesting that novel mammalian transcriptional regulators can arise via this process, which is confirmed for the bat fusion protein KRABINER.
Bruno, M., Mahgoub, M. & Macfarlan, T. S. The arms race between KRAB-zinc finger proteins and endogenous retroelements and its impact on mammals. Annu. Rev. Genet. 53, 393–416 (2019).
Imbeault, M., Helleboid, P. Y. & Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550–554 (2017). By identifying KRAB-ZFP genes in extant vertebrate genomes, performing extensive phylogenetic analysis of these KRAB-ZFPs that allowed dating their evolutionary origin and determining the binding sites of the majority of human KRAB-ZFPs, this study reveals the extent to which the KRAB-ZFP gene family interacts with TEs across vertebrate evolution.
Thomas, J. H. & Schneider, S. Coevolution of retroelements and tandem zinc finger genes. Genome Res. 21, 1800–1812 (2011). This work presents compelling evidence that infiltration with LTR retroelements drives the divergence of tandem zinc finger proteins (which include many KRAB-ZFPs) in vertebrate genomes by showing that the number of tandem zinc finger genes and LTR retroviral elements correlate.
Ecco, G., Imbeault, M. & Trono, D. KRAB zinc finger proteins. Development 144, 2719–2729 (2017).
Sheng, G. & Foley, A. C. Diversification and conservation of the extraembryonic tissues in mediating nutrient uptake during amniote development. Ann. N. Y. Acad. Sci. 1271, 97–103 (2012).
Rodriguez-Terrones, D. & Torres-Padilla, M. E. Nimble and ready to mingle: transposon outbursts of early development. Trends Genet. 34, 806–820 (2018).
Rowe, H. M. & Trono, D. Dynamic control of endogenous retroviruses during development. Virology 411, 273–287 (2011).
Loebel, D. A., Tsoi, B., Wong, N., O’Rourke, M. P. & Tam, P. P. Restricted expression of ETn-related sequences during post-implantation mouse development. Gene Expr. Patterns 4, 467–471 (2004).
Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).
Boroviak, T. et al. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development 145, dev167833 (2018).
Wolf, G. et al. KRAB-zinc finger protein gene expansion in response to active retrotransposons in the murine lineage. eLife 9, e56337 (2020).
Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).
Liu, D. et al. Single-cell RNA-sequencing reveals the existence of naive and primed pluripotency in pre-implantation rhesus monkey embryos. Genome Res. 28, 1481–1493 (2018).
Johnson, W. E. & Coffin, J. M. Constructing primate phylogenies from ancient retrovirus sequences. Proc. Natl Acad. Sci. USA 96, 10254–10260 (1999).
Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).
Goke, J. et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16, 135–141 (2015).
Colombo, A. R., Triche, T. Jr. & Ramsingh, G. Transposable element expression in acute myeloid leukemia transcriptome and prognosis. Sci. Rep. 8, 16449 (2018).
Kong, Y. et al. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nat. Commun. 10, 5228 (2019).
Tam, O. H., Ostrow, L. W. & Gale Hammell, M. Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease. Mob. DNA 10, 32 (2019).
Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA 7, 24 (2016).
Pasquesi, G. I. M. et al. Vertebrate lineages exhibit diverse patterns of transposable element regulation and expression across tissues. Genome Biol. Evol. 12, 506–521 (2020).
Goerner-Potvin, P. & Bourque, G. Computational tools to unmask transposable elements. Nat. Rev. Genet. 19, 688–704 (2018).
Todd, C. D., Deniz, O., Taylor, D. & Branco, M. R. Functional evaluation of transposable elements as enhancers in mouse embryonic and trophoblast stem cells. eLife 8, e44344 (2019). This study uses individual genetic deletions of candidate ERV-derived regulatory elements in mouse embryonic and TSCs, and a broader CRISPR interference screen that results in minimal changes in the expression of nearby genes, to demonstrate that many TE-derived enhancers do not influence nearby gene expression.
Fuentes, D. R., Swigut, T. & Wysocka, J. Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. eLife 7, e35989 (2018). This paper uses an elegant novel CRISPR activation/interference screen in human EC cells to reveal significant contributions of hundreds of ape-specific LH5HS elements to the regulation of nearby genes.
McDole, K. et al. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell Level. Cell 175, 859–876.e33 (2018).
Pijuan-Sala, B., Guibentif, C. & Gottgens, B. Single-cell transcriptional profiling: a window into embryonic cell-type specification. Nat. Rev. Mol. Cell Biol. 19, 399–412 (2018).
Frank, J. A. & Feschotte, C. Co-option of endogenous viral sequences for host cell function. Curr. Opin. Virol. 25, 81–89 (2017).
Hancks, D. C. & Kazazian, H. H. Jr. Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).
Payer, L. M. & Burns, K. H. Transposable elements in human genetic disease. Nat. Rev. Genet. 20, 760–772 (2019).
Gilbert, N., Lutz-Prigge, S. & Moran, J. V. Genomic deletions created upon LINE-1 retrotransposition. Cell 110, 315–325 (2002).
Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010). This work first identifies the critical role of the KRAB zinc finger co-repressor KAP1 in repressing IAP elements and many other TEs in mouse embryos and ESCs.
Helleboid, P. Y. et al. The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification. EMBO J. 38, e101220 (2019).
Stoll, G. A. et al. Structure of KAP1 tripartite motif identifies molecular interfaces required for retroelement silencing. Proc. Natl Acad. Sci. USA 116, 15042–15051 (2019).
Dodge, J. E., Kang, Y. K., Beppu, H., Lei, H. & Li, E. Histone H3-K9 methyltransferase ESET is essential for early development. Mol. Cell Biol. 24, 2478–2486 (2004).
Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. 3rd SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).
Quenneville, S. et al. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2, 766–773 (2012).
Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20, 116–117 (1998). This paper first describes the role of DNA methylation via the maintenance DNA methyltransferase DNMT1 in the repression of TEs (IAP elements) in mouse embryos.
Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).
Jönsson, M. E. et al. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat. Commun. 10, 3182 (2019).
Bestor, T. H., Edwards, J. R. & Boulard, M. Notes on the role of dynamic DNA methylation in mammalian development. Proc. Natl Acad. Sci. USA 112, 6796–6799 (2015).
Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).
Rosic, S. et al. Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat. Genet. 50, 452–459 (2018).
Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361–372 (2011).
Boulard, M., Rucli, S., Edwards, J. R. & Bestor, T. H. Methylation-directed glycosylation of chromatin factors represses retrotransposon promoters. Proc. Natl Acad. Sci. USA 117, 14292–14298 (2020).
Liu, H., Chang, L. H., Sun, Y., Lu, X. & Stubbs, L. Deep vertebrate roots for mammalian zinc finger transcription factor subfamilies. Genome Biol. Evol. 6, 510–525 (2014).
Shi, H. et al. ZFP57 regulation of transposable elements and gene expression within and beyond imprinted domains. Epigenetics Chromatin 12, 49 (2019).
Garcia-Garcia, M. J., Shibata, M. & Anderson, K. V. Chato, a KRAB zinc-finger protein, regulates convergent extension in the mouse embryo. Development 135, 3053–3062 (2008).
Li, X. et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15, 547–557 (2008). This study first identifies the KRAB-ZFP ZFP57 as essential for maintaining the mono-allelic expression of many imprinted genes in mice.
Casademunt, E. et al. The zinc finger protein NRIF interacts with the neurotrophin receptor p75(NTR) and participates in programmed cell death. EMBO J. 18, 6050–6061 (1999).
Eszter Posfai, J. P. S. Defining totipotency using criteria of increasing stringency. biorxiv https://doi.org/10.1101/2020.03.02.972893 (2020).
Torres-Padilla, M. E. On transposons and totipotency. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190339 (2020). This review highlights and critically assesses the diverse roles of species-specific TEs in totipotency (part of a great collection of research and review articles on TEs based on the Royal Society discussion meeting ‘Crossroads between Transposons and Gene Rregulation’ held in May 2019).
De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 49, 941–945 (2017).
Leidenroth, A. et al. Evolution of DUX gene macrosatellites in placental mammals. Chromosoma 121, 489–497 (2012).
De Iaco, A., Verp, S., Offner, S., Grun, D. & Trono, D. DUX is a non-essential synchronizer of zygotic genome activation. Development 147, dev177725 (2020).
Jachowicz, J. W. et al. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 49, 1502–1510 (2017). Using TALE-based transcriptional silencing to modulate L1 transcription, this study finds that modulating L1 in zygotes (but not at the late two-cell stage) affects genome-wide chromatin accessibility and reduces progression to the blastocyst stage, suggesting an important role of L1 in mammalian pre-implantation development.
Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934 (2017).
Andrew Modzelewski, W. S. A species-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for preimplantation development. biorxiv https://doi.org/10.1101/2021.03.24.436683 (2021).
Percharde, M. et al. A LINE1–nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405.e19 (2018).
Stojic, L. et al. Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. Nucleic Acids Res. 46, 5950–5966 (2018).
Bassett, A. R. et al. Considerations when investigating lncRNA function in vivo. eLife 3, e03058 (2014).
Korotkevich, E. et al. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40, 235–247.e7 (2017).
Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009).
Posfai, E. et al. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. eLife 6, e22906 (2017).
Nelson, A. C., Mould, A. W., Bikoff, E. K. & Robertson, E. J. Mapping the chromatin landscape and Blimp1 transcriptional targets that regulate trophoblast differentiation. Sci. Rep. 7, 6793 (2017).
Sun, M. A. et al. Deciphering the evolution of the transcriptional and regulatory landscape in human placenta. bioRxiv https://doi.org/10.1101/2020.09.11.289686 (2020).
Furukawa, S., Kuroda, Y. & Sugiyama, A. A comparison of the histological structure of the placenta in experimental animals. J. Toxicol. Pathol. 27, 11–18 (2014).
Haig, D. Retroviruses and the placenta. Curr. Biol. 22, R609–R613 (2012). This review suggests that retroviruses evolved placental expression to facilitate retroviral transmission from mother to offspring and from offspring to mother, and that retroviruses and host defence systems contributed to the remarkable diversity among mammalian placentae.
Chazaud, C., Yamanaka, Y., Pawson, T. & Rossant, J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2–MAPK pathway. Dev. Cell 10, 615–624 (2006).
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).
Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).
Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).
Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).
Marnetto, D. et al. Evolutionary rewiring of human regulatory networks by waves of genome expansion. Am. J. Hum. Genet. 102, 207–218 (2018).
Hermant, C. & Torres-Padilla, M. E. TFs for TEs: the transcription factor repertoire of mammalian transposable elements. Genes Dev. 35, 22–39 (2021).
Ganesh, S. & Svoboda, P. Retrotransposon-associated long non-coding RNAs in mice and men. Pflug. Arch. 468, 1049–1060 (2016).
Koyanagi-Aoi, M. et al. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc. Natl Acad. Sci. USA 110, 20569–20574 (2013).
Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).
Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).
Takahashi, K. et al. The pluripotent stem cell-specific transcript ESRG is dispensable for human pluripotency. PLoS Genet. 17, e1009587 (2021).
Black, S. G. et al. Viral particles of endogenous betaretroviruses are released in the sheep uterus and infect the conceptus trophectoderm in a transspecies embryo transfer model. J. Virol. 84, 9078–9085 (2010).
Lewis, S. H., Reynolds-Kohler, C., Fox, H. E. & Nelson, J. A. HIV-1 in trophoblastic and villous Hofbauer cells, and haematological precursors in eight-week fetuses. Lancet 335, 565–568 (1990).
Bianchi, D. W. The inadvertent discovery of human fetal cell microchimerism. Clin. Chem. 64, 1400–1401 (2018).
Haig, D. Transposable elements: self-seekers of the germline, team-players of the soma. Bioessays 38, 1158–1166 (2016).
Smith, Z. D. et al. Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature 549, 543–547 (2017).
Corsinotti, A. et al. Global and stage specific patterns of Krüppel-associated-box zinc finger protein gene expression in murine early embryonic cells. PLoS ONE 8, e56721 (2013).
Rowe, H. M. et al. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res. 23, 452–461 (2013).
Pontis, J. et al. Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24, 724–735.e5 (2019). Based on the stage-specific repression of SVA-derived neuronal enhancers by hominoid-specific KRAB-ZFPs, this study suggests that KRAB-ZFPs may allow the tissue-specific expression of TE-derived regulatory elements, which may facilitate their co-option by repressing immediate early, potentially toxic effects of TEs early in development.
Roussigne, M. et al. The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem. Sci. 28, 66–69 (2003).
Clouaire, T. et al. The THAP domain of THAP1 is a large C2CH module with zinc-dependent sequence-specific DNA-binding activity. Proc. Natl Acad. Sci. USA 102, 6907–6912 (2005).
Parker, J. B., Yin, H., Vinckevicius, A. & Chakravarti, D. Host cell factor-1 recruitment to E2F-bound and cell-cycle-control genes is mediated by THAP11 and ZNF143. Cell Rep. 9, 967–982 (2014).
Parker, J. B., Palchaudhuri, S., Yin, H., Wei, J. & Chakravarti, D. A transcriptional regulatory role of the THAP11–HCF-1 complex in colon cancer cell function. Mol. Cell Biol. 32, 1654–1670 (2012).
Campagne, S., Saurel, O., Gervais, V. & Milon, A. Structural determinants of specific DNA-recognition by the THAP zinc finger. Nucleic Acids Res. 38, 3466–3476 (2010).
Bessière, D. et al. Structure-function analysis of the THAP zinc finger of THAP1, a large C2CH DNA-binding module linked to Rb/E2F pathways. J. Biol. Chem. 283, 4352–4363 (2008).
Dejosez, M. et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 133, 1162–1174 (2008).
Durruthy-Durruthy, J. et al. Spatiotemporal reconstruction of the human blastocyst by single-cell gene-expression analysis informs induction of naive pluripotency. Dev. Cell 38, 100–115 (2016).
Dejosez, M. et al. Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes Dev. 24, 1479–1484 (2010).
Michaud, J. et al. HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy. Genome Res. 23, 907–916 (2013).
Mazars, R. et al. The THAP-zinc finger protein THAP1 associates with coactivator HCF-1 and O-GlcNAc transferase: a link between DYT6 and DYT3 dystonias. J. Biol. Chem. 285, 13364–13371 (2010).
Cosby, R. L. et al. Recurrent evolution of vertebrate transcription factors by transposase capture. Science 371, eabc6405 (2021).
Arnold, S. J. & Robertson, E. J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91–103 (2009).
Bardot, E. S. & Hadjantonakis, A. K. Mouse gastrulation: coordination of tissue patterning, specification and diversification of cell fate. Mech. Dev. 163, 103617 (2020).
Svoboda, P. et al. RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev. Biol. 269, 276–285 (2004).
Piko, L., Hammons, M. D. & Taylor, K. D. Amounts, synthesis, and some properties of intracisternal A particle-related RNA in early mouse embryos. Proc. Natl Acad. Sci. USA 81, 488–492 (1984).
Poznanski, A. A. & Calarco, P. G. The expression of intracisternal A particle genes in the preimplantation mouse embryo. Dev. Biol. 143, 271–281 (1991).
Auclair, G., Guibert, S., Bender, A. & Weber, M. Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol. 15, 545 (2014).
Chapman, V., Forrester, L., Sanford, J., Hastie, N. & Rossant, J. Cell lineage-specific undermethylation of mouse repetitive DNA. Nature 307, 284–286 (1984).
Brulet, P., Kaghad, M., Xu, Y. S., Croissant, O. & Jacob, F. Early differential tissue expression of transposon-like repetitive DNA sequences of the mouse. Proc. Natl Acad. Sci. USA 80, 5641–5645 (1983).
Maksakova, I. A. & Mager, D. L. Transcriptional regulation of early transposon elements, an active family of mouse long terminal repeat retrotransposons. J. Virol. 79, 13865–13874 (2005).
O’Donnell, K. A., An, W., Schrum, C. T., Wheelan, S. J. & Boeke, J. D. Controlled insertional mutagenesis using a LINE-1 (ORFeus) gene-trap mouse model. Proc. Natl Acad. Sci. USA 110, E2706–E2713 (2013).
Wallace, N. A., Belancio, V. P. & Deininger, P. L. L1 mobile element expression causes multiple types of toxicity. Gene 419, 75–81 (2008).
Cammas, F. et al. Mice lacking the transcriptional corepressor TIF1β are defective in early postimplantation development. Development 127, 2955–2963 (2000).
Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931 (2010).
Dai, H. Q. et al. TET-mediated DNA demethylation controls gastrulation by regulating Lefty–Nodal signalling. Nature 538, 528–532 (2016).
Harten, S. K. et al. The first mouse mutants of D14Abb1e (Fam208a) show that it is critical for early development. Mamm. Genome 25, 293–303 (2014).
Soehn, A. S. et al. Periphilin is strongly expressed in the murine nervous system and is indispensable for murine development. Genesis 47, 697–707 (2009).
Zhu, Y., Wang, G. Z., Cingöz, O. & Goff, S. P. NP220 mediates silencing of unintegrated retroviral DNA. Nature 564, 278–282 (2018).
Robbez-Masson, L. et al. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes. Genome Res. 28, 836–845 (2018).
Rossant, J., Sanford, J. P., Chapman, V. M. & Andrews, G. K. Undermethylation of structural gene sequences in extraembryonic lineages of the mouse. Dev. Biol. 117, 567–573 (1986).
Yuan, P. et al. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev. 23, 2507–2520 (2009).
Hemberger, M. Epigenetic landscape required for placental development. Cell Mol. Life Sci. 64, 2422–2436 (2007).
Hemberger, M. Genetic–epigenetic intersection in trophoblast differentiation: implications for extraembryonic tissue function. Epigenetics 5, 24–29 (2010).
Yang, X. et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302 (2007).
Tanaka, S. et al. Placentomegaly in cloned mouse concepti caused by expansion of the spongiotrophoblast layer. Biol. Reprod. 65, 1813–1821 (2001).
Ng, R. K. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol. 10, 1280–1290 (2008).
Liu, S. et al. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev. 28, 2041–2055 (2014).
Shibata, M., Blauvelt, K. E., Liem, K. F. Jr. & Garcia-Garcia, M. J. TRIM28 is required by the mouse KRAB domain protein ZFP568 to control convergent extension and morphogenesis of extra-embryonic tissues. Development 138, 5333–5343 (2011). This study, carefully characterizing conditional and knockout mouse embryos for Trim28, reveals that the essential role of ZFP568 during mouse gastrulation is partially phenocopied in conditional Trim28 mutants, also establishing that KAP1 (encoded by Trim28) has crucial extra-embryonic roles.
Shibata, M. & Garcia-Garcia, M. J. The mouse KRAB zinc-finger protein CHATO is required in embryonic-derived tissues to control yolk sac and placenta morphogenesis. Dev. Biol. 349, 331–341 (2011).
Yang, P. et al. A placental growth factor is silenced in mouse embryos by the zinc finger protein ZFP568. Science 356, 757–759 (2017).
DeChiara, T. M., Efstratiadis, A. & Robertson, E. J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80 (1990).
Sun, F. L., Dean, W. L., Kelsey, G., Allen, N. D. & Reik, W. Transactivation of Igf2 in a mouse model of Beckwith–Wiedemann syndrome. Nature 389, 809–815 (1997).
Patel, A. et al. DNA conformation induces adaptable binding by tandem zinc finger proteins. Cell 173, 221–233.e12 (2018).
Chien, H. C. et al. Targeted disruption in mice of a neural stem cell-maintaining, KRAB-Zn finger-encoding gene that has rapidly evolved in the human lineage. PLoS ONE 7, e47481 (2012).
Ben-Haim, N. et al. The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev. Cell 11, 313–323 (2006).
Robertson, E. J. Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin. Cell Dev. Biol. 32, 73–79 (2014).
Beddington, R. S. & Robertson, E. J. Axis development and early asymmetry in mammals. Cell 96, 195–209 (1999).
Hemberger, M., Hanna, C. W. & Dean, W. Mechanisms of early placental development in mouse and humans. Nat. Rev. Genet. 21, 27–43 (2020).
Dupressoir, A. et al. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc. Natl Acad. Sci. USA 106, 12127–12132 (2009). Following the initial identification of syncytins in humans and mice in 2000 and 2005, this study first shows that loss of the endogenous retroviral env gene Syncytin-A in mice disables syncytiotrophoblast fusion, leading to embryonic lethality due to inability to establish the maternal–fetal interface.
Dupressoir, A. et al. A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc. Natl Acad. Sci. USA 108, E1164–E1173 (2011).
Lavialle, C. et al. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120507 (2013).
Cornelis, G. et al. Retroviral envelope syncytin capture in an ancestrally diverged mammalian clade for placentation in the primitive Afrotherian tenrecs. Proc. Natl Acad. Sci. USA 111, E4332–E4341 (2014).
Herve, C. A., Forrest, G., Lower, R., Griffiths, D. J. & Venables, P. J. Conservation and loss of the ERV3 open reading frame in primates. Genomics 83, 940–943 (2004).
de Parseval, N. et al. Comprehensive search for intra- and inter-specific sequence polymorphisms among coding envelope genes of retroviral origin found in the human genome: genes and pseudogenes. BMC Genomics 6, 117 (2005).
Mallet, F. et al. The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc. Natl Acad. Sci. USA 101, 1731–1736 (2004).
de Parseval, N. & Heidmann, T. Physiological knockout of the envelope gene of the single-copy ERV-3 human endogenous retrovirus in a fraction of the Caucasian population. J. Virol. 72, 3442–3445 (1998).
Kim, H. S. et al. Human endogenous retrovirus (HERV)-R family in primates: chromosomal location, gene expression, and evolution. Gene 370, 34–42 (2006).
Mangeney, M. et al. Placental syncytins: genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc. Natl Acad. Sci. USA 104, 20534–20539 (2007).
Sugimoto, J. et al. Suppressyn localization and dynamic expression patterns in primary human tissues support a physiologic role in human placentation. Sci. Rep. 9, 19502 (2019).
Frank, J. A. Antiviral activity of a human placental protein of retroviral origin. biorxiv https://doi.org/10.1101/2020.08.23.263665 (2020).
Sugimoto, J., Sugimoto, M., Bernstein, H., Jinno, Y. & Schust, D. A novel human endogenous retroviral protein inhibits cell–cell fusion. Sci. Rep. 3, 1462 (2013).
Buchrieser, J. et al. IFITM proteins inhibit placental syncytiotrophoblast formation and promote fetal demise. Science 365, 176–180 (2019).
Ono, R. et al. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat. Genet. 38, 101–106 (2006). This study first demonstrates that the PEG10 gene was co-opted from gag and pol proteins derived from ERVs to perform an essential placental function in mice.
Kaneko-Ishino, T. & Ishino, F. Mammalian-specific genomic functions: newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 91, 511–538 (2015).
Youngson, N. A., Kocialkowski, S., Peel, N. & Ferguson-Smith, A. C. A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J. Mol. Evol. 61, 481–490 (2005).
Henke, C. et al. Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon-derived family during mouse placentogenesis. Retrovirology 12, 9 (2015).
Abed, M. et al. The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. PLoS ONE 14, e0214110 (2019).
Koppes, E., Himes, K. P. & Chaillet, J. R. Partial loss of genomic imprinting reveals important roles for Kcnq1 and Peg10 imprinted domains in placental development. PLoS ONE 10, e0135202 (2015).
Suzuki, S. et al. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 3, e55 (2007).
Ono, R. et al. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics 73, 232–237 (2001).
Hantak, M. P., Einstein, J., Kearns, R. B. & Shepherd, J. D. Intercellular communication in the nervous system goes viral. Trends Neurosci. 44, 248–259 (2021).
Kitazawa, M., Tamura, M., Kaneko-Ishino, T. & Ishino, F. Severe damage to the placental fetal capillary network causes mid- to late fetal lethality and reduction in placental size in Peg11/Rtl1 KO mice. Genes. Cell 22, 174–188 (2017).
Sekita, Y. et al. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat. Genet. 40, 243–248 (2008).
Edwards, C. A. et al. The evolution of the DLK1–DIO3 imprinted domain in mammals. PLoS Biol. 6, e135 (2008).
Haig, D. Maternal–fetal conflict, genomic imprinting and mammalian vulnerabilities to cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140178 (2015).
Haig, D. Going retro: transposable elements, embryonic stem cells, and the mammalian placenta (retrospective on DOI 10.1002/bies.201300059). Bioessays 37, 1154 (2015).
McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).
Surani, M. A., Barton, S. C. & Norris, M. L. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 45, 127–136 (1986).
Kono, T. et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 428, 860–864 (2004).
Reik, W. & Lewis, A. Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat. Rev. Genet. 6, 403–410 (2005).
Hanna, C. W. et al. Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues. Genome Biol. 20, 225 (2019).
Andergassen, D., Smith, Z. D., Rinn, J. L. & Meissner, A. Diverse mechanisms for epigenetic imprinting in mammals. bioRxiv https://doi.org/10.1101/2021.04.30.442087f (2021).
Pask, A. J. et al. Analysis of the platypus genome suggests a transposon origin for mammalian imprinting. Genome Biol. 10, R1 (2009).
Juan, A. M. & Bartolomei, M. S. Evolving imprinting control regions: KRAB zinc fingers hold the key. Genes Dev. 33, 1–3 (2019).
Takahashi, N. et al. ZNF445 is a primary regulator of genomic imprinting. Genes Dev. 33, 49–54 (2019). This study establishes that the essential KRAB-ZFP ZFP57 pairs with ZNF445 to maintain all but one (Peg10) ICRs in mice.
Alexander, K. A., Wang, X., Shibata, M., Clark, A. G. & García-García, M. J. TRIM28 controls genomic imprinting through distinct mechanisms during and after early genome-wide reprogramming. Cell Rep. 13, 1194–1205 (2015).
Mugford, J. W., Yee, D. & Magnuson, T. Failure of extra-embryonic progenitor maintenance in the absence of dosage compensation. Development 139, 2130–2138 (2012).
Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 11, 156–166 (1997).
Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961). In this paper, Mary Lyon — who discovered the epigenetic process of X-chromosome inactivation — suggests that LINE elements, which are enriched on mammalian X chromosomes, are important for this process.
Lyon, M. F. X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet. 80, 133–137 (1998).
Woods, L. et al. Decidualisation and placentation defects are a major cause of age-related reproductive decline. Nat. Commun. 8, 352 (2017).
Erkenbrack, E. M. et al. The mammalian decidual cell evolved from a cellular stress response. PLoS Biol. 16, e2005594 (2018).
Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M. & Rudensky, A. Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150, 29–38 (2012). This article demonstrates using sophisticated allogenic and syngeneic mouse models that the lack of the eutherian-specific MIR element-derived Foxp3 enhancer plays an essential role in mitigating maternal–fetal conflict, thereby providing a compelling example that a single TE-derived regulatory sequence can be essential for mammalian development.
Ferreira, L. M. et al. A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface. Proc. Natl Acad. Sci. USA 113, 5364–5369 (2016).
Emera, D. et al. Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. Mol. Biol. Evol. 29, 239–247 (2012).
Emera, D. & Wagner, G. P. Transformation of a transposon into a derived prolactin promoter with function during human pregnancy. Proc. Natl Acad. Sci. USA 109, 11246–11251 (2012).
McLean, M. et al. A placental clock controlling the length of human pregnancy. Nat. Med. 1, 460–463 (1995).
Dunn-Fletcher, C. E. et al. Anthropoid primate-specific retroviral element THE1B controls expression of CRH in placenta and alters gestation length. PLoS Biol. 16, e2006337 (2018).
van de Lagemaat, L. N., Landry, J. R., Mager, D. L. & Medstrand, P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536 (2003).
Nishihara, H. et al. Coordinately co-opted multiple transposable elements constitute an enhancer for wnt5a expression in the mammalian secondary palate. PLoS Genet. 12, e1006380 (2016).
Nishihara, H., Smit, A. F. & Okada, N. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 16, 864–874 (2006).
Hirakawa, M., Nishihara, H., Kanehisa, M. & Okada, N. Characterization and evolutionary landscape of AmnSINE1 in amniota genomes. Gene 441, 100–110 (2009).
Griffith, O. W. & Wagner, G. P. The placenta as a model for understanding the origin and evolution of vertebrate organs. Nat. Ecol. Evol. 1, 72 (2017).
Sundaram, V. & Wysocka, J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190347 (2020).
Dunlap, K. A. et al. Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc. Natl Acad. Sci. USA 103, 14390–14395 (2006). This study shows that knock down of the sheep env-derived enJSRVs leads to failure to differentiate binucleate trophoblast giant cells and lethality, providing compelling evidence that ERVs in mammals other than mice have co-opted TEs for essential developmental functions.
Perez-Garcia, V. et al. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature 555, 463–468 (2018).
D’Souza, A. W. & Wagner, G. P. Malignant cancer and invasive placentation: a case for positive pleiotropy between endometrial and malignancy phenotypes. Evol. Med. Public Health 2014, 136–145 (2014).
Kshitiz et al. Evolution of placental invasion and cancer metastasis are causally linked. Nat. Ecol. Evol. 3, 1743–1753 (2019).
Treger, R. S. et al. The lupus susceptibility locus Sgp3 encodes the suppressor of endogenous retrovirus expression SNERV. Immunity 50, 334–347.e9 (2019).
Natri, H., Garcia, A. R., Buetow, K. H., Trumble, B. C. & Wilson, M. A. The pregnancy pickle: evolved immune compensation due to pregnancy underlies sex differences in human diseases. Trends Genet. 35, 478–488 (2019).
Greenbaum, S. & Greenbaum, G. Evolution of immune sexual dimorphism in response to placental invasiveness: a response to Natri et al. Trends Genet. 36, 3–5 (2019).
Roth, O. et al. Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes. Proc. Natl Acad. Sci. USA 117, 9431–9439 (2020).
Cornelis, G. et al. An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard. Proc. Natl Acad. Sci. USA 114, E10991–E11000 (2017).
Gehring, M. & Satyaki, P. R. Endosperm and imprinting, inextricably linked. Plant. Physiol. 173, 143–154 (2017).
Pignatta, D., Novitzky, K., Satyaki, P. R. V. & Gehring, M. A variably imprinted epiallele impacts seed development. PLoS Genet. 14, e1007469 (2018).
Turco, M. Y. et al. Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature 564, 263–267 (2018).
Turco, M. Y. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19, 568–577 (2017).
Mirna Marinic, V. J. L. Derivation of endometrial gland organoids from term post-partum placenta. biorxiv https://doi.org/10.1101/753780v1 (2019).
Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).
Yoney, A. et al. WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids. eLife 7, e38279 (2018).
Hayashi, K. et al. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338, 971–975 (2012).
Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. & Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532 (2011).
Yamashiro, C. et al. Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362, 356–360 (2018).
Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63.e6 (2018).
Haider, S. et al. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep. 11, 537–551 (2018).
Marinic, M., Rana, S. & Lynch, V. J. Derivation of endometrial gland organoids from term placenta. Placenta 101, 75–79 (2020).
Wolf, D. & Goff, S. P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458, 1201–1204 (2009).
Loebel, D. A., O’Rourke, M. P., Steiner, K. A., Banyer, J. & Tam, P. P. Isolation of differentially expressed genes from wild-type and Twist mutant mouse limb buds. Genesis 33, 103–113 (2002).
Chen, Z. F. & Behringer, R. R. Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev. 9, 686–699 (1995).
Gray, P. A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306, 2255–2257 (2004).
Lu, X. et al. Twist1 is involved in trophoblast syncytialization by regulating GCM1. Placenta 39, 45–54 (2016).
Kruger, I. et al. Sp1/Sp3 compound heterozygous mice are not viable: impaired erythropoiesis and severe placental defects. Dev. Dyn. 236, 2235–2244 (2007).
Sawyer, M. H., Nachlas, N. E. Jr. & Panem, S. C-type viral antigen expression in human placenta. Nature 275, 62–64 (1978).
Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cell 11, 805–814 (2006).
Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).
Mochizuki, K. et al. SETDB1 is essential for mouse primordial germ cell fate determination by ensuring BMP signaling. Development 145, dev164160 (2018).
Zhu, D. et al. Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat. Commun. 5, 3174 (2014).
Herzog, M. et al. TIF1β association with HP1 is essential for post-gastrulation development, but not for Sertoli cell functions during spermatogenesis. Dev. Biol. 350, 548–558 (2011).
McClintock, C. B. The origin and behavior of mutable loci in maize. Proc. Natl Acad. Sci. USA 36, 344–355 (1950).
Comfort, N. C. From controlling elements to transposons: Barbara McClintock and the Nobel Prize. Trends Biochem. Sci. 26, 454–457 (2001). This paper is a brief historical perspective on Barbara McClintock’s discovery of TEs in maize.
Feschotte, C. & Pritham, E. J. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368 (2007).
Zimmerly, S. & Semper, C. Evolution of group II introns. Mob. DNA 6, 7 (2015).
Koonin, E. V. Viruses and mobile elements as drivers of evolutionary transitions. Philos. Trans. R Soc. Lond. B Biol. Sci. 371,, 20150442 (2016).
Novikova, O. & Belfort, M. Mobile group II introns as ancestral eukaryotic elements. Trends Genet. 33, 773–783 (2017).
Kramerov, D. A. & Vassetzky, N. S. Short retroposons in eukaryotic genomes. Int. Rev. Cytol. 247, 165–221 (2005).
Malik, H. S., Burke, W. D. & Eickbush, T. H. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16, 793–805 (1999).
Krupovic, M., Dolja, V. V. & Koonin, E. V. Origin of viruses: primordial replicators recruiting capsids from hosts. Nat. Rev. Microbiol. 17, 449–458 (2019).
Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41–48 (2003).
Muñoz-Lopez, M., et al. LINE-1 retrotransposition impacts the genome of human pre-implantation embryos and extraembryonic tissues. biorxiv https://www.biorxiv.org/content/10.1101/522623v1 (2019).
Gagnier, L., Belancio, V. P. & Mager, D. L. Mouse germ line mutations due to retrotransposon insertions. Mob. DNA 10, 15 (2019).
Richardson, S. R. et al. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res. 27, 1395–1405 (2017).
Nellaker, C. et al. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol. 13, R45 (2012).
Gilbert, C. & Feschotte, C. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr. Opin. Genet. Dev. 49, 15–24 (2018).
Tarlinton, R. E., Meers, J. & Young, P. R. Retroviral invasion of the koala genome. Nature 442, 79–81 (2006).
Birtle, Z. & Ponting, C. P. Meisetz and the birth of the KRAB motif. Bioinformatics 22, 2841–2845 (2006). This study traces the origin of the KRAB motif that characterizes KRAB zinc finger genes to sea urchins and presents evidence that a KRAB motif progenitor was present in the last common ancestor of animals, plants and fungi.
Najafabadi, H. S. et al. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat. Biotechnol. 33, 555–562 (2015).
Jumpei Ito, I. K. et al. Endogenous retroviruses drive KRAB zinc-finger family protein expression for tumor suppression. biorxiv https://doi.org/10.1101/2020.02.02.931501 (2020).
Ivanov, D., Stone, J. R., Maki, J. L., Collins, T. & Wagner, G. Mammalian SCAN domain dimer is a domain-swapped homolog of the HIV capsid C-terminal domain. Mol. Cell 17, 137–143 (2005).
Williams, A. J., Blacklow, S. C. & Collins, T. The zinc finger-associated SCAN box is a conserved oligomerization domain. Mol. Cell Biol. 19, 8526–8535 (1999).
Al Chiblak, M., Steinbeck, F., Thiesen, H. J. & Lorenz, P. DUF3669, a “domain of unknown function” within ZNF746 and ZNF777, oligomerizes and contributes to transcriptional repression. BMC Mol. Cell Biol. 20, 60 (2019).
Emerson, R. O. & Thomas, J. H. Gypsy and the birth of the SCAN domain. J. Virol. 85, 12043–12052 (2011).
Jorgensen, P. Yolk. Curr. Biol. 18, R103–R104 (2008).
Arendt, D. & Nubler-Jung, K. Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs. Mech. Dev. 81, 3–22 (1999).
Griffith, O. W. et al. Embryo implantation evolved from an ancestral inflammatory attachment reaction. Proc. Natl Acad. Sci. USA 114, E6566–E6575 (2017).
Ross, C. & Boroviak, T. E. Origin and function of the yolk sac in primate embryogenesis. Nat. Commun. 11, 3760 (2020).
Pereira, P. N. et al. Amnion formation in the mouse embryo: the single amniochorionic fold model. BMC Dev. Biol. 11, 48 (2011).
Renfree, M. B. Review: Marsupials: placental mammals with a difference. Placenta 31 (Suppl.), S21–S26 (2010).
Rodriguez, T. A., Srinivas, S., Clements, M. P., Smith, J. C. & Beddington, R. S. Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development 132, 2513–2520 (2005).
Waldrip, W. R., Bikoff, E. K., Hoodless, P. A., Wrana, J. L. & Robertson, E. J. Smad2 signaling in extraembryonic tissues determines anterior–posterior polarity of the early mouse embryo. Cell 92, 797–808 (1998).
Lawson, K. A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999).
Martin, J. F. & Wagner, G. P. The origin of platelets enabled the evolution of eutherian placentation. Biol. Lett. 15, 20190374 (2019).
Roberts, R. M., Green, J. A. & Schulz, L. C. The evolution of the placenta. Reproduction 152, R179–189 (2016).
Acknowledgements
The Macfarlan laboratory is funded by the National Institutes of Health (NIH) (DIR 1ZIAHD008933) with additional funding through the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) human placenta project. The authors thank L. Robertson, P. Kurbel, C. Simon, M. Almeida and J. Frank, and members of the Macfarlan laboratory as well as the NICHD Genetics and Epigenetics of Development Group, for discussions and critical comments on the manuscript. Special thanks to K. Pfeifer, P. Rocha, J. Thompson, A. Ivanoff, R. Cosby and M. Gauchier as well as the reviewers for their critical feedback. They apologize to those authors not cited due to space constraints.
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Genetics thanks M. Branco, J. Rossant and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Dfam TE Classification: https://www.dfam.org/classification/
Dfam TE database: https://www.dfam.org/home
Endoderm Explorer (GUI mouse scRNA-seq): https://endoderm-explorer.com/
gnomAD human sequencing data (including pLi): https://gnomad.broadinstitute.org/
Gypsy TE Database (GyDB): http://gydb.org/index.php/Main_Page
Human Gastrulation (GUI human scRNA-seq): http://human-gastrula.net/
Maternal–Fetal interface (GUI human scRNA-seq): https://maternal-fetal-interface.cellgeni.sanger.ac.uk/
Mouse Genome Informatics (MGI): http://www.informatics.jax.org/
Mouse gastrulation (GUI mouse scRNA-seq): https://marionilab.cruk.cam.ac.uk/MouseGastrulation2018/
Pfam protein domain database: https://pfam.xfam.org/
RepeatMasker Genomic Datasets: http://repeatmasker.org/genomicDatasets/RMGenomicDatasets.html
TEToolkit: https://github.com/mhammell-laboratory/TEtranscriptsTEhub (collaborative platform and reference site): https://tehub.org/
Supplementary information
Glossary
- Transposable elements
-
(TEs). Mobile DNA segments present in virtually all domains of life whose remains make up nearly 50% of most mammalian genomes.
- Transpose
-
Pertaining to transposition, which is the process by which transposable elements (TEs) change their genomic position, leading to the description of TEs as ‘jumping genes’.
- Krüppel-associated box zinc finger proteins
-
(KRAB-ZFPs). KRAB domain containing C2H2-type zinc finger proteins that predominantly act as transcriptional repressors of transposable elements (TEs).
- C2H2-type zinc finger
-
One of the most common domains found in the transcription factors of higher eukaryotes consisting of two cysteines and two histidines that coordinate the binding of a zinc ion, most frequently found in an array of repeated fingers encoded by a single exon.
- Purifying selection
-
Preservation of a nucleotide or amino acid sequence by selective removal of mutations that reduce fitness (for example, visible by an excess of synonymous mutations, which conserve protein structure, relative to non-synonymous mutations).
- Long terminal repeat
-
(LTR). A direct repeat that marks the boundaries of LTR retrotransposons that contain regulatory elements and polyadenylation signals that regulate and enable viral transcription. Initially identical LTRs can recombine, giving rise to so-called solo LTRs.
- Endogenous retroviruses
-
(ERVs). Proviral remnants of ancient retroviral infections of the germ line. ERVs encode viral proteins such as envelopes (env), polymerases (pol) and structural proteins (gag) that, in some cases, allow them to exit as viral particles.
- Germ line
-
Cells in an organism that pass on genetic material to the progeny. The germ line comprises egg and sperm cells (germ cells) and their precursors (primordial germ cells).
- Amniotes
-
A clade of tetrapod vertebrates that comprises reptiles, birds and mammals that evolved ~320 million years ago and relies on internal fertilization and novel extra-embryonic tissues to develop on land.
- Extra-embryonic tissues
-
Fetus-derived tissues that support embryonic development but (for the most part) do not give rise to embryonic structures.
- Placenta
-
A temporary, shared organ of embryonic, extra-embryonic and (in eutheria) also maternal origin that allows development inside the mother by mediating nutrient and waste exchange.
- Eutheria
-
Mammals that develop a placenta from three tissues: the maternal decidua as well as the fetal allantois and chorion.
- Therian
-
Live-born mammals that include marsupials and eutheria.
- Invasive placenta
-
A placenta is invasive when it makes direct contact with maternal blood. This is the case in both mouse and humans, as trophectoderm-derived trophoblast giant cells replace maternal endothelial cells to line maternal blood vessels.
- Long interspersed elements
-
(LINEs). Autonomous non-LTR retrotransposons that comprise the largest transposable element (TE) class in human and mice (~22% of total genomic content).
- Short interspersed elements
-
(SINEs). Non-autonomous non-LTR retrotransposons that rely on the long interspersed element (LINE) machinery to mobilize and are abundant in mammalian genomes (~7.5% mouse, ~13.5% human).
- SVA
-
(SINE variable-number tandem-repeat Alu). Hominid-specific chimeric non-autonomous (long interspersed element 1 (L1)-dependent) retroelements with variable copy number (~2,700 copies in humans, with some of them active) that are a composite of short interspersed element (SINE)-R, variable-number tandem-repeat and Alu elements.
- Implantation
-
The process by which eutherian embryos attach to the uterine wall to establish a sustained maternal–fetal interface that maintains pregnancy. Implantation induces an inflammatory response and can be followed by invasion.
- Gastrulation
-
The embryonic process, lasting for ~72 h from days 6 to 8 in mouse development, that specifies somatic cell fates and a subset of extra-embryonic cell types as well as the germ line, after which twins can no longer form.
- Co-option
-
A process by which natural selection repurposes transposable elements (TEs) for host functions.
- Long interspersed element 1
-
(L1; also known as LINE-1). An active mammalian LINE family in mouse and human (representing 17–20% of their genomes).
- DNA methylation
-
Covalent chemical modification in the form of methylation of cytosines at the fifth position (5-methyl-cytosine (5mC)) that in mammals occurs genome wide predominantly at CpG dinucleotides.
- DUF3669
-
A domain of unknown function found in a few ancient Krüppel-associated box zinc finger proteins (KRAB-ZFPs) that may aid in KRAB-ZFP oligomerization.
- SCAN
-
A gag capsid protein-derived domain found in selected ancient Krüppel-associated box zinc finger proteins (KRAB-ZFPs) that mediates protein interactions.
- Zinc fingerprint amino acids
-
Amino acids at positions −1, +2, +3, and +6 of the C2H2 α-helix that are responsible for direct interactions with specific DNA bases, thus determining the specificity of the zinc fingers.
- Zygotic genome activation
-
(ZGA). The process during which transcription from maternal and paternal genomes in the embryo takes over from maternal control. It occurs at the two-cell or four-cell stage in mice and humans, respectively.
- MuERV-L
-
A murine-specific family of long terminal repeat (LTR) retrotransposons that are highly transcribed at zygotic genome activation (ZGA), present in ~1,500 copies. These elements are related to the endogenous retrovirus L (ERV-L) family of retrotransposons found throughout eutherian mammals that include human ERV-L (HERV-L) elements found in ~2,000 copies.
- Long non-coding RNAs
-
(lncRNAs). RNA molecules >200 nucleotides long that do not encode proteins.
- Trophectoderm
-
A mammalian-specific extra-embryonic cell lineage that gives rise to invasive trophoblast giant cells that mediate implantation in eutheria and to the chorion that contributes to all mammalian placentae.
- Blastocyst
-
A thin-walled hollow embryonic structure containing a eutherian-specific inner cell mass, the future embryo and — dependent on its maturation — one or two extra-embryonic cell lineages.
- Trophoblast stem cells
-
(TSCs). Undifferentiated extra-embryonic stem cells isolated from the trophectoderm in the blastocyst or TSCs shortly after implantation that can functionally contribute to placental development when reintroduced into blastocysts.
- Enhancers
-
Non-coding short (typically 100–1,000 bp in length) DNA sequences that act to drive transcription independent of their relative distance, location or orientation to their cognate promoter. Putative enhancers bear histone modifications such as acetylated histone H3 lysine 27 (H3K27ac) and methylated H3 lysine 4 (H3K4me1).
- Embryonic stem cells
-
(ESCs). Pluripotent stem cells derived from the inner cell mass of the blastocyst that can functionally contribute to the germ line and somatic tissues when reintroduced into blastocysts.
- Trophoblast giant cells
-
Heterogeneous, large, polyploid trophectoderm-derived cells that mediate implantation and decidualization but also line maternal blood vessels and produce hormones in the placenta.
- RLTR13
-
Mouse-specific endogenous retroviruses (ERVs) of the ERV-K family (K standing for the lysine tRNA primer used during reverse transcription) with many subfamilies, for example RLTR13D5 (~685 copies) or RLTR13D6 (~790 copies).
- Amnion
-
Extra-embryonic tissue in amniotes that fills with fluid to form a sac that protects the embryo and provides a watery environment for developing on land.
- Allantois
-
An extra-embryonic mesoderm-derived vascularized sac-like structure that allows gas exchange and disposes of liquid waste. It forms part of the eutherian placenta and becomes the umbilical cord.
- Chorion
-
An extra-embryonic tissue that exchanges gases with the environment and originated in amniotes.
- Yolk sac
-
The oldest extra-embryonic tissue in amniotes that originally absorbed nutrients deposited in yolk but has — despite the lack of yolk in eutherian mammals — remained essential for embryonic development, for example for embryonic patterning and blood development.
- Extravillous trophoblast cells
-
Invasive, differentiated human trophoblast cells (equivalent to mouse trophoblast giant cells) that invade deeply into the uterine stroma, where they line and remodel maternal spiral arteries to supply the placenta with maternal blood.
- Extra-embryonic endoderm
-
The precursor tissue of parts of the mammalian yolk sacs and substantial parts of the developing mammalian gut tube and associated endodermal organs. Extra-embryonic endoderm is also important for embryonic patterning and the specification of embryonic cell types, for example the future brain.
- Pluripotency
-
The ability to functionally contribute to all somatic cells and the germ line of an organism that is maintained after implantation until specific cell types and the germ line are specified through gastrulation.
- ERV-K
-
A subfamily of endogenous retroviruses (ERVs) that uses a lysine (K) tRNA that binds to the viral primer binding site to prime reverse transcription. ERV-K elements in mice contain many mobile elements (for example, intracisternal A-type particle (IAP), early transposon (ETn)).
- Embryonic carcinoma cells
-
(EC cells). Malignant pluripotent cells derived from germ cell tumours called teratocarcinomas. Their culture preceded and paved the way for establishing embryonic stem cells (ESCs).
- CRISPR activation/interference
-
Sequence-specific activation or repression of gene expression on the transcriptional level by exploiting the bacterial genetic immune system clustered regularly interspaced short palindromic repeats (CRISPR) pathway with nuclease-dead Cas9 (dCas9) fused to an activation or repression domain.
- LTR5HS
-
Long terminal repeat (LTR) of one of the youngest families of human endogenous retrovirus-K (HERV-K) elements present in ~700 copies in the human genome.
- Epigenetic reprogramming
-
Erasure and remodelling of epigenetic marks, such as DNA methylation and histone modifications, particularly during early development and in the germ line.
- Intracisternal A-type particles
-
(IAPs). A rodent-specific and still actively retrotransposing class of transposable elements (TEs). They are among the most mutagenic long terminal repeat (LTR) retrotransposons in mammals and are present at ~1,000 full-length copies per haploid genome in mice.
- Early transposon
-
(ETn). A type of non-autonomous mouse-specific long terminal repeat (LTR) retrotransposon that is mobilized by related MusD elements. They are called ‘early transposons’ because they are undetectable in differentiated cell lines. They still actively retrotranspose.
- P element
-
A eukaryotic DNA transposon discovered as one of the first transposable elements (TEs) in Drosophila melanogaster.
- Host–transposase fusions
-
(HTFs). Fusion proteins combining DNA transposase and host-derived domains that often originate via alternative splicing.
- Somatic cell nuclear transfer
-
Transfer of a nucleus of an adult somatic cell to an enucleated egg cell. Pioneered in frogs, nuclear transfer can be used to clone animals as it leads to epigenetic reprogramming towards pluripotency.
- Genetic drift
-
Random sampling from parental genomes in the next generation that generates changes in the frequency of existing genetic traits in a population.
- Maternal–fetal interface
-
Sites where the genetically distinct mother and fetus come into indirect contact. It can refer both to the contact of mother and fetus in the functional placenta and to the implantation site.
- Chorioallantoic fusion
-
Fusion between the allantois and the chorion at day 8–9 of mouse development that subsequently allows the vasculature of the allantois to grow into chorion-derived villi to form the labyrinth layer of the placenta.
- Syncytiotrophoblast
-
Multinucleated layers (two in mice, one in humans) in the placenta that are in indirect contact with maternal blood and act as a transport surface.
- env
-
Retroviral gene encoding a cell surface protein that mediates viral–host cell fusion.
- gag
-
Retroviral genes encoding structural proteins of retroviruses that contribute to capsid formation and are essential for infectivity.
- pol
-
Retroviral genes encoding proteins with enzymatic activities required for viral replication (for example, reverse transcriptase), integration and protein cleavage.
- sushi-ichi
-
Long terminal repeat (LTR) retrotransposons of the Ty3/Gypsy class that encode chromodomain integrases, a primer binding site, two open reading frames for gag and pol genes and a polypurine tract.
- Labyrinth
-
The innermost layer of the mouse placenta that is the main site of nutrient and gas exchange and consists of the syncytiotrophoblast and the vascular network.
- Spongiotrophoblast
-
The hormone-secreting, trophectoderm-derived middle layer of the mouse placenta sandwiched between the outer secondary trophoblast giant cells and the inner labyrinth layer with poorly understood, yet essential, functions in pregnancy.
- Genomic imprinting
-
The parent of origin-specific expression of genes that is established during germ-line development and depends on differential DNA methylation of so-called imprinting control regions (ICRs). Canonical imprints solely depend on DNA methylation, whereas non-canonical imprints (prevalent in the placenta) initially depend on maternally inherited repressive histone marks that are replaced by DNA methylation after implantation.
- Gynogenetic
-
Pertaining to gynogenesis, which is development whereby the embryo contains only maternal chromosomes. Biparental, that is diploid, gynogenetic embryos are produced by transplanting pronuclei between one-cell stage embryos to yield two female pronuclei.
- Androgenetic
-
Pertaining to androgenesis, which is development whereby the embryo contains only paternal chromosomes (see gynogenetic).
- Parthenogenetically
-
Pertaining to parthenogenesis, which is reproduction without fertilization (‘virgin birth’). Parthenogenesis is common in invertebrates and plants.
- Mammalian apparent LTR retrotransposons
-
(MaLRs). Non-autonomous mouse-specific endogenous retroviruses (ERVs) that are the most common retroviral elements in the mouse, making up 4.8% of the genome, and are related to mouse and human ERV-L and human long terminal repeat (LTR) transposon-like human element 1 (THE1; an LTR-containing retrotransposon) elements.
- AmnSINE1
-
A short interspersed nuclear element (SINE) family that amplified in the common amniote ancestor ~320 million years ago that has been conserved in ~200–700 copies in mouse and human genomes.
- X-chromosome inactivation
-
The mammalian-specific process of almost complete silencing of one of the two X chromosomes to equalize the sex chromosome dose in female theria.
- Decidualization
-
Changes of the maternal endometrium in preparation for, and during, mammalian pregnancy. It occurs during menstruation in humans, but is induced by pregnancy in mice (where it can also be triggered by uterine injection with mineral oil drops).
- Peripheral regulatory T cells
-
(pTreg cells). A FOXP3-expressing, specialized immunosuppressive T cell lineage generated extrathymically (peripheral). Regulatory T cells are also generated in the thymus (tTreg cells). Regulatory T cells have essential functions in preventing fatal autoimmunity and inflammation and additional roles in metabolism and tissue repair.
- Mammalian-wide interspersed repeats
-
(MIRs). A widespread subfamily of short interspersed nuclear elements (SINEs) that is often conserved in mammals.
- Allogeneic
-
Genetically dissimilar, and hence immunologically incompatible (within a species); for example, major histocompatibility complex (MHC)-mismatched mouse strains. The opposite of syngeneic, which means genetically similar or identical.
- Medium reiteration frequency interspersed repeats
-
(MERs). A loose grouping of diverse types of DNA transposons and retrotransposons. For example, whereas MER20 is a non-autonomous eutherian-specific subfamily of hobo Activator Tam3 (hAT) Charlie DNA transposons (~4,800 mouse and ~16,000 human copies), MER77 (~400 copies in mouse and 1,200 copies in human) and MER39 (~2600 human copies) are endogenous retroviruses (ERVs).
- Parturition
-
The act or process of giving birth.
- LTR transposon-like human element 1B
-
(THE1B). A long terminal repeat (LTR)-containing retrotransposon that colonized anthropoid primates ~50 million years ago and is present in ~20,000 copies in the human genome.
- Epistatic
-
Pertaining to epistasis, which is the genetic phenomenon whereby the effect of a mutation depends on the presence or absence of other mutations.
- MT2B2
-
A mouse-specific long terminal repeat (LTR) of a class 3 endogenous retrovirus (ERV) present in ~15,000 copies.
Rights and permissions
About this article
Cite this article
Senft, A.D., Macfarlan, T.S. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 22, 691–711 (2021). https://doi.org/10.1038/s41576-021-00385-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41576-021-00385-1
This article is cited by
-
Themes and variations on piRNA-guided transposon control
Mobile DNA (2023)
-
Transposable elements as tissue-specific enhancers in cancers of endodermal lineage
Nature Communications (2023)
-
Selective binding of retrotransposons by ZFP352 facilitates the timely dissolution of totipotency network
Nature Communications (2023)
-
Crosstalk between RNA m6A and DNA methylation regulates transposable element chromatin activation and cell fate in human pluripotent stem cells
Nature Genetics (2023)
-
Repetitive DNA sequence detection and its role in the human genome
Communications Biology (2023)