Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Generation of extracellular morphogen gradients: the case for diffusion

Abstract

Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tissue architecture and boundary conditions.
Fig. 2: Morphogen transport models.
Fig. 3: Lipid-shielding mechanisms.
Fig. 4: Morphogen gradient regulation by extracellular interactors.
Fig. 5: Engineering diffusion-based GFP gradients in vitro and in vivo.

Similar content being viewed by others

References

  1. Morgan, T. H. Regeneration in Allolobophora foetida. Arch. Entwicklungsmechanik Org 5, 570–586 (1897).

    Google Scholar 

  2. Wolpert, L. Morgan’s Ambivalence: A History of Gradients and Regeneration (ed. Dinsmore, C. E.) 201–217 (Cambridge University Press, 1991).

  3. Child, C. M. Some considerations regarding so-called formative substances. Biol. Bull. 11, 165–181 (1906).

    Google Scholar 

  4. Child, C. M. Some considerations concerning the nature and origin of physiological gradients. Biol. Bull. 39, 147–187 (1920).

    CAS  Google Scholar 

  5. Dalcq, A. & Pasteels, J. L. Une conception nouvelle des bases physiologiques de la morphogénèse. Arch. Biol. 48, 669–710 (1937).

    Google Scholar 

  6. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    CAS  PubMed  Google Scholar 

  7. Lawrence, P. A. Gradients in the insect segment: the orientation of hairs in the milkweed bug Oncopeltus fasciatus. J. Exp. Biol. 44, 607–620 (1966).

    Google Scholar 

  8. Sander, K. Analyse des ooplasmatischen Reaktionssystems von Euscelis plebejus Fall (Cicadina) durch Isolieren und Kombinieren von Keimteilen I. Wilhelm. Roux. Arch. Entwickl. Mech. Org. 151, 430–497 (1959).

    PubMed  Google Scholar 

  9. Sander, K. Analyse des ooplasmatischen Reaktionssystems von Euscelis plebejus Fall (Cicadina) durch Isolieren und Kombinieren von Keimteilen II. Wilhelm. Roux. Arch. Entwickl. Mech. Org. 151, 660–707 (1960).

    PubMed  Google Scholar 

  10. Sander, K. in Advances in Insect Physiology Vol. 12 125–238 (Elsevier, 1976).

  11. Stumpf, H. F. Mechanism by which cells estimate their location within the body. Nature 212, 430–431 (1966).

    CAS  PubMed  Google Scholar 

  12. Stumpf, H. F. Orientation and differentiation of epidermal structures by a concentration gradient. Endocrinol. Exp. 5, 39–45 (1971).

    CAS  PubMed  Google Scholar 

  13. Wolpert, L. The French flag problem: a contribution to the discussion on pattern development and regeneration. in Towards a Theoretical Biology (ed. Waddington, C. H.) (Aldine Publishing Company, 1968).

  14. Sharpe, J. Wolpert’s French flag: what’s the problem? Development 146, 1–5 (2019).

    Google Scholar 

  15. Ashe, H. L. & Briscoe, J. The interpretation of morphogen gradients. Development 133, 385–394 (2006).

    CAS  PubMed  Google Scholar 

  16. Nahmad, M. & Lander, A. D. Spatiotemporal mechanisms of morphogen gradient interpretation. Curr. Opin. Genet. Dev. 21, 726–731 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rogers, K. W. & Schier, A. F. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27, 377–407 (2011).

    CAS  PubMed  Google Scholar 

  18. Crick, F. Diffusion in embryogenesis. Nature 225, 420–422 (1970).

    CAS  PubMed  Google Scholar 

  19. Terry, B. R., Matthews, E. K. & Haseloff, J. Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy. Biochem. Biophys. Res. Commun. 217, 21–27 (1995).

    CAS  PubMed  Google Scholar 

  20. Petrášek, Z. & Schwille, P. Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys. J. 94, 1437–1448 (2008).

    PubMed  Google Scholar 

  21. Kornberg, T. B. & Guha, A. Understanding morphogen gradients: a problem of dispersion and containment. Curr. Opin. Genet. Dev. https://doi.org/10.1016/j.gde.2007.05.010 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kerszberg, M. & Wolpert, L. Specifying positional information in the embryo: looking beyond morphogens. Cell 130, 205–209 (2007).

    CAS  PubMed  Google Scholar 

  23. Driever, W. & Nüsslein-Volhard, C. A gradient of bicoid protein in Drosophila embryos. Cell 54, 83–93 (1988).

    CAS  PubMed  Google Scholar 

  24. Driever, W. & Nüsslein-Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988).

    CAS  PubMed  Google Scholar 

  25. Schilling, T. F., Nie, Q. & Lander, A. D. Dynamics and precision in retinoic acid morphogen gradients. Curr. Opin. Genet. Dev. 22, 562–569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nusse, R. Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 130, 5297–5305 (2003).

    CAS  PubMed  Google Scholar 

  27. Zhu, Y., Qiu, Y., Chen, W., Nie, Q. & Lander, A. D. Scaling a dpp morphogen gradient through feedback control of receptors and co-receptors. Dev. Cell 53, 724–739.e14 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kicheva, A. et al. Kinetics of morphogen gradient formation. Science https://doi.org/10.1126/science.1135774 (2007). In this study, FRAP analysis in endocytosis-deficient tissue suggests that transcytosis could be required for Dpp transport (however, see also Belenkaya et al. (2004) and Zhou et al. (2012)).

    Article  PubMed  Google Scholar 

  29. Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. & Tank, D. W. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141–152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu, S. R. et al. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461, 533–536 (2009). In this article, in vivo FCS is used to show that an Fgf8 gradient forms by rapid diffusion and receptor-mediated degradation in the extracellular space of the zebrafish embryo.

    CAS  PubMed  Google Scholar 

  31. Wartlick, O., Kicheva, A. & Gonza, M. Morphogen gradient formation. Cold Spring Harb. Perspect Biol. https://doi.org/10.1101/cshperspect.a001255 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Čapek, D. & Müller, P. Positional information and tissue scaling during development and regeneration. Development 146, dev177709 (2019).

    PubMed  Google Scholar 

  33. Fuerer, C., Habib, S. J. & Nusse, R. A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev. Dyn. 239, 184–190 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    CAS  PubMed  Google Scholar 

  35. Peters, C., Wolf, A., Wagner, M., Kuhlmann, J. & Waldmann, H. The cholesterol membrane anchor of the Hedgehog protein confers stable membrane association to lipid-modified proteins. Proc. Natl Acad. Sci. USA 101, 8531–8536 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tukachinsky, H., Kuzmickas, R. P., Jao, C. Y., Liu, J. & Salic, A. Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand. Cell Rep. 2, 308–320 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Müller, P., Rogers, K. W., Yu, S. R., Brand, M. & Schier, A. F. Morphogen transport. Development 140, 1621–1638 (2013). This article provides an excellent review of morphogen transport mechanisms with a biologist-friendly description of the key physical principles.

    PubMed  PubMed Central  Google Scholar 

  38. Callejo, A. et al. Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the Drosophila wing disk epithelium. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1106881108 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Harmansa, S., Alborelli, I., Bieli, D., Caussinus, E. & Affolter, M. A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife https://doi.org/10.7554/eLife.22549 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Saitoh, M. et al. Basolateral BMP signaling in polarized epithelial cells. PLoS ONE 8, e62659 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Strigini, M. & Cohen, S. M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000).

    CAS  PubMed  Google Scholar 

  42. Li, P. et al. Morphogen gradient reconstitution reveals Hedgehog pathway design principles. Science 0645, 1–10 (2018). In this study, in vitro reconstitution of the SHH morphogen gradient reveals how different domains of the SHH receptor contribute to length scale and amplitude robustness of the signalling gradient.

    Google Scholar 

  43. Zhang, Z., Zwick, S., Loew, E., Grimley, J. S. & Ramanathan, S. Mouse embryo geometry drives formation of robust signaling gradients through receptor localization. Nat. Commun. 10, 4516 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    CAS  PubMed  Google Scholar 

  45. Entchev, E. V., Schwabedissen, A. & González-Gaitán, M. Gradient formation of the TGF-beta homolog Dpp. Cell 103, 981–991 (2000).

    CAS  PubMed  Google Scholar 

  46. Yamazaki, Y. et al. Godzilla-dependent transcytosis promotes Wingless signalling in Drosophila wing imaginal discs. Nat. Cell Biol. 18, 451–457 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, J., Klein, T. J. & Mlodzik, M. Subcellular localization of frizzled receptors, mediated by their cytoplasmic tails, regulates signaling pathway specificity. PLoS Biol. 2, 1004–1014 (2004).

    CAS  Google Scholar 

  48. Gui, J. et al. Scribbled optimizes BMP signaling through its receptor internalization to the Rab5 endosome and promote robust epithelial morphogenesis. PLOS Genet. 12, e1006424 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Gibson, M. C., Lehman, D. A. & Schubiger, G. Lumenal transmission of decapentaplegic in Drosophila imaginal discs. Dev. Cell 3, 451–460 (2002).

    CAS  PubMed  Google Scholar 

  50. Durdu, S. et al. Luminal signalling links cell communication to tissue architecture during organogenesis. Nature 515, 120–124 (2014).

    CAS  PubMed  Google Scholar 

  51. Ayers, K. L., Gallet, A., Staccini-Lavenant, L. & Thérond, P. P. The long-range activity of hedgehog is regulated in the apical extracellular space by the glypican dally and the hydrolase notum. Dev. Cell 18, 605–620 (2010).

    CAS  PubMed  Google Scholar 

  52. Lander, A. D., Nie, Q. & Wan, F. Y. M. Size-normalized robustness of Dpp gradient in drosophila wing. J. Mech. Mater. Struct. 6, 321–350 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sato, M. & Kornberg, T. B. FGF is an essential mitogen and chemoattractant for the air sacs of the Drosophila tracheal system. Dev. Cell 3, 195–207 (2002).

    CAS  PubMed  Google Scholar 

  54. Guha, A., Lin, L. & Kornberg, T. B. Regulation of Drosophila matrix metalloprotease Mmp2 is essential for wing imaginal disc:trachea association and air sac tubulogenesis. Dev. Biol. 335, 317–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma, M., Cao, X., Dai, J. & Pastor-Pareja, J. C. Basement membrane manipulation in Drosophila wing discs affects Dpp retention but not growth mechanoregulation. Dev. Cell 42, 97–106.e4 (2017). This article provides evidence that collagen IV, a basement membrane component, contributes to morphogen retention in a developing epithelium.

    CAS  PubMed  Google Scholar 

  56. Setiawan, L., Pan, X., Woods, A. L., O’Connor, M. B. & Hariharan, I. K. The BMP2/4 ortholog Dpp can function as an inter-organ signal that regulates developmental timing. Life Sci. Alliance 1, e201800216 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Stapornwongkul, K. S., de Gennes, M., Cocconi, L., Salbreux, G. & Vincent, J.-P. Patterning and growth control in vivo by an engineered GFP gradient. Science 370, 321–327 (2020). This study demonstrates that, in the presence of high-affinity signalling receptors and GPI-anchored low-affinity non-signalling receptors, a diffusion-based GFP gradient can perform the function of a natural morphogen.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dowd, C. J., Cooney, C. L. & Nugent, M. A. Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J. Biol. Chem. 274, 5236–5244 (1999).

    CAS  PubMed  Google Scholar 

  59. Lieleg, O., Baumgärtel, R. M. & Bausch, A. R. Selective filtering of particles by the extracellular matrix: an electrostatic bandpass. Biophys. J. 97, 1569–1577 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    CAS  PubMed  Google Scholar 

  61. Mörsdorf, D. & Müller, P. Tuning protein diffusivity with membrane tethers. Biochemistry https://doi.org/10.1021/acs.biochem.8b01150 (2018).

    Article  PubMed  Google Scholar 

  62. Dierick, H. A. & Bejsovec, A. Functional analysis of Wingless reveals a link between intercellular ligand transport and dorsal-cell-specific signaling. Development 125, 4729–4738 (1998).

    CAS  PubMed  Google Scholar 

  63. Moline, M. M., Southern, C. & Bejsovec, A. Directionality of Wingless protein transport influences epidermal patterning in the Drosophila embryo. Development 126, 4375–4384 (1999).

    CAS  PubMed  Google Scholar 

  64. González, F., Swales, L., Bejsovec, A., Skaer, H. & Arias, A. M. Secretion and movement of wingless protein in the epidermis of the Drosophila embryo. Mech. Dev. 35, 43–54 (1991).

    PubMed  Google Scholar 

  65. Kruse, K., Pantazis, P., Bollenbach, T., Jülicher, F. & González-Gaitán, M. Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131, 4843–4856 (2004).

    CAS  PubMed  Google Scholar 

  66. Chen, M. S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991).

    CAS  PubMed  Google Scholar 

  67. Van Der Bliek, A. M. & Meyerowrtz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).

    PubMed  Google Scholar 

  68. Belenkaya, T. Y. et al. Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119, 231–244 (2004). This study describes the essential role of glypicans in the spread of Dpp in wing imaginal discs of D. melanogaster. It also provides experimental evidence against planar transcytosis (however, see also Kicheva et al. (2007)).

    CAS  PubMed  Google Scholar 

  69. Schwank, G. et al. Formation of the long range Dpp morphogen gradient. PLoS Biol. 9, e1001111 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lander, A. D., Nie, Q. & Wan, F. Y. M. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002). This theoretical analysis of previous experimental data suggests that diffusion-based transport mechanisms can explain morphogen gradient formation in epithelia.

    CAS  PubMed  Google Scholar 

  71. Ramírez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599–607 (1999).

    PubMed  Google Scholar 

  72. Hsiung, F., Ramírez-Weber, F.-A., Iwaki, D. D. & Kornberg, T. B. Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature 437, 560–563 (2005).

    CAS  PubMed  Google Scholar 

  73. Bischoff, M. et al. Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat. Cell Biol. 15, 1269–1281 (2013). This article suggests that dynamic cytoneme turnover could generate a Hedgehog signalling gradient.

    CAS  PubMed  Google Scholar 

  74. Sanders, T. A., Llagostera, E. & Barna, M. Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 497, 628–632 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mattes, B. et al. Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates. eLife 7, 1–28 (2018).

    Google Scholar 

  76. Stanganello, E. et al. Filopodia-based Wnt transport during vertebrate tissue patterning. Nat. Commun. 6, 1–14 (2015).

    Google Scholar 

  77. Du, L., Sohr, A., Yan, G. & Roy, S. Feedback regulation of cytoneme-mediated transport shapes a tissue-specific FGF morphogen gradient. eLife 7, 1–35 (2018).

    Google Scholar 

  78. González-Méndez, L., Seijo-Barandiarán, I. & Guerrero, I. Cytoneme-mediated cell-cell contacts for hedgehog reception. eLife 6, 1–24 (2017).

    Google Scholar 

  79. Huang, H. & Kornberg, T. B. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium. eLife 4, 1–22 (2015).

    Google Scholar 

  80. Kornberg, T. B. & Roy, S. Communicating by touch - neurons are not alone. Trends Cell Biol. 24, 370–376 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. González-Méndez, L., Gradilla, A. C. & Guerrero, I. The cytoneme connection: direct long-distance signal transfer during development. Devlopment 146, 1–11 (2019).

    Google Scholar 

  82. Cohen, M., Georgiou, M., Stevenson, N. L., Miodownik, M. & Baum, B. Dynamic filopodia transmit intermittent delta-notch signaling to drive pattern refinement during lateral inhibition. Dev. Cell 19, 78–89 (2010).

    CAS  PubMed  Google Scholar 

  83. De Joussineau, C. et al. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559 (2003).

    PubMed  Google Scholar 

  84. Stanganello, E. & Scholpp, S. Role of cytonemes in Wnt transport. J. Cell Sci. 129, 665–672 (2016).

    CAS  PubMed  Google Scholar 

  85. Guerrero, I. & Kornberg, T. B. Hedgehog and its circuitous journey from producing to target cells. Semin. Cell Dev. Biol. 33, 52–62 (2014).

    CAS  PubMed  Google Scholar 

  86. Bressloff, P. C. & Kim, H. Bidirectional transport model of morphogen gradient formation via cytonemes. Phys. Biol. 15, 026010 (2018).

    PubMed  Google Scholar 

  87. Teimouri, H. & Kolomeisky, A. B. New model for understanding mechanisms of biological signaling: direct transport via cytonemes. J. Phys. Chem. Lett. 7, 180–185 (2016).

    CAS  PubMed  Google Scholar 

  88. Chen, W., Huang, H., Hatori, R. & Kornberg, T. B. Essential basal cytonemes take up Hedgehog in the Drosophila wing imaginal disc. Development 144, 3134–3144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Roy, S., Huang, H., Liu, S. & Kornberg, T. B. Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. Science 343, 1244624 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Zhang, Z. et al. Optogenetic manipulation of cellular communication using engineered myosin motors. Nat. Cell Biol. 23, 198–208 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ibañes, M., Kawakami, Y., Rasskin-Gutman, D. & Belmonte, J. C. I. Cell lineage transport: a mechanism for molecular gradient formation. Mol. Syst. Biol. 2, 1–12 (2006).

    Google Scholar 

  92. Chisholm, R. H., Hughes, B. D. & Landman, K. A. Building a morphogen gradient without diffusion in a growing tissue. PLoS ONE 5, 1–9 (2010).

    Google Scholar 

  93. Alexandre, C., Baena-Lopez, A. & Vincent, J.-P. Patterning and growth control by membrane-tethered Wingless. Nature 505, 180–185 (2014).

    CAS  PubMed  Google Scholar 

  94. Pfeiffer, S., Alexandre, C., Calleja, M. & Vincent, J. P. The progeny of wingless-expressing cells deliver the signal at a distance in Drosophila embryos. Curr. Biol. 10, 321–324 (2000).

    CAS  PubMed  Google Scholar 

  95. Dubrulle, J. & Pourquié, O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427, 419–422 (2004).

    CAS  PubMed  Google Scholar 

  96. Mulligan, K. A. et al. Secreted Wingless-interacting molecule (Swim) promotes long-range signaling by maintaining Wingless solubility. Proc. Natl Acad. Sci. USA 109, 370–377 (2012).

    CAS  PubMed  Google Scholar 

  97. Chang, Y. H. & Sun, Y. H. Carrier of Wingless (Cow), a secreted heparan sulfate proteoglycan, promotes extracellular transport of wingless. PLoS ONE https://doi.org/10.1371/journal.pone.0111573 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hsieh, J. C. et al. A new secreted protein that binds to Wnt proteins and inhibits their activites. Nature 398, 431–436 (1999).

    CAS  PubMed  Google Scholar 

  99. Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hoang, B., Moos, M. J., Vukicevic, S. & Luyten, F. P. Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J. Biol. Chem. 271, 26131–26137 (1996).

    CAS  PubMed  Google Scholar 

  101. Mihara, E. et al. Active and water-soluble form of lipidated wnt protein is maintained by a serum glycoprotein afamin/α-albumin. eLife 5, 1–19 (2016).

    Google Scholar 

  102. Creanga, A. et al. Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form. Genes Dev. 26, 1312–1325 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gorfinkiel, N., Sierra, J., Callejo, A., Ibañez, C. & Guerrero, I. The Drosophila ortholog of the human Wnt inhibitor factor shifted controls the diffusion of lipid-modified hedgehog. Dev. Cell 8, 241–253 (2005).

    CAS  PubMed  Google Scholar 

  104. McGough, I. J. et al. Glypicans shield the Wnt lipid moiety to enable signalling at a distance. Nature https://doi.org/10.1038/s41586-020-2498-z (2020). In this study, a combination of structural, biochemical and genetic evidence shows that a subset of glypicans have a lipid-binding pocket that can accommodate and shield the palmitoleate moiety of Wnt proteins.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schneider, F. et al. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Mol. Biol. Cell 28, 1507–1518 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Saha, S. et al. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin. Mol. Biol. Cell 26, 4033–4045 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Koles, K. et al. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J. Biol. Chem. 287, 16820–16834 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Korkut, C. et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139, 393–404 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liégeois, S., Benedetto, A., Garnier, J. M., Schwab, Y. & Labouesse, M. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 173, 949–961 (2006).

    PubMed  PubMed Central  Google Scholar 

  110. Tanaka, Y., Okada, Y. & Hirokawa, N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435, 172–177 (2005).

    CAS  PubMed  Google Scholar 

  111. Vyas, N. et al. Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties. Sci. Rep. 4, 1–12 (2014).

    Google Scholar 

  112. Matusek, T. et al. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516, 99–103 (2014).

    CAS  PubMed  Google Scholar 

  113. Gross, J. C., Chaudhary, V., Bartscherer, K. & Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012).

    CAS  PubMed  Google Scholar 

  114. Panáková, D., Sprong, H., Marois, E., Thiele, C. & Eaton, S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 58–65 (2005).

    PubMed  Google Scholar 

  115. Eugster, C., Panáková, D., Mahmoud, A. & Eaton, S. Lipoprotein-heparan sulfate interactions in the Hh pathway. Dev. Cell 13, 57–71 (2007).

    CAS  PubMed  Google Scholar 

  116. Kaiser, K. et al. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat. Commun. 10, 1–15 (2019).

    CAS  Google Scholar 

  117. Neumann, S. et al. Mammalian Wnt3a is released on lipoprotein particles. Traffic 10, 334–343 (2009).

    CAS  PubMed  Google Scholar 

  118. Chen, M. H., Li, Y. J., Kawakami, T., Xu, S. M. & Chuang, P. T. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev. 18, 641–659 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Goetz, J. A., Singh, S., Suber, L. M., Kull, F. J. & Robbins, D. J. A highly conserved amino-terminal region of Sonic Hedgehog is required for the formation of its freely diffusible multimeric form. J. Biol. Chem. 281, 4087–4093 (2006).

    CAS  PubMed  Google Scholar 

  120. Zeng, X. et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411, 716–720 (2001). This article provides evidence that SHH forms soluble, multimeric structures that mediate long-range signalling in the developing chick limb.

    CAS  PubMed  Google Scholar 

  121. Takada, R. et al. Assembly of protein complexes restricts diffusion of Wnt3a proteins. Commun. Biol. 1, 1–14 (2018).

    CAS  Google Scholar 

  122. Gradilla, A. C. et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat. Commun. 5, 5649 (2014).

    CAS  PubMed  Google Scholar 

  123. Piddini, E. & Vincent, J. P. Modulation of developmental signals by endocytosis: different means and many ends. Curr. Opin. Cell Biol. 15, 474–481 (2003).

    CAS  PubMed  Google Scholar 

  124. Eldar, A., Rosin, D., Shilo, B. Z. & Barkai, N. Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev. Cell https://doi.org/10.1016/S1534-5807(03)00292-2 (2003). This article puts forward theoretical arguments, and provides experimental validation, that positive feedback on receptor expression buffers against variations in morphogen production rate.

    Article  PubMed  Google Scholar 

  125. Kerszberg, M. & Wolpert, L. Mechanisms for positional signalling by morphogen transport: a theoretical study. J. Theor. Biol. 191, 103–114 (1998).

    CAS  PubMed  Google Scholar 

  126. Lecuit, T. & Cohen, S. M. Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development 125, 4901–4907 (1998).

    CAS  PubMed  Google Scholar 

  127. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing hedgehog. Cell 87, 553–563 (1996).

    CAS  PubMed  Google Scholar 

  128. Piddini, E., Marshall, F., Dubois, L., Hirst, E. & Vincent, J. P. Arrow (LRP6) and Frizzled2 cooperate to degrade Wingless in Drosophila imaginal discs. Development 132, 5479–5489 (2005).

    CAS  PubMed  Google Scholar 

  129. Cadigan, K. M., Fish, M. P., Rulifson, E. J. & Nusse, R. Wingless repression of Drosophila frizzled 2 expression shapes the wingless morphogen gradient in the wing. Cell 93, 767–777 (1998).

    CAS  PubMed  Google Scholar 

  130. Briscoe, J., Chen, Y., Jessell, T. M. & Struhl, G. A Hedgehog-insensitive form of Patched provides evidence for direct long-range morphogen activity of Sonic hedgehog in the neural tube. Mol. Cell 7, 1279–1291 (2001).

    CAS  PubMed  Google Scholar 

  131. Lander, A. D., Lo, W., Nie, Q. & Wan, F. Y. M. The measure of success: constraints, objectives, and tradeoffs in morphogen-mediated patterning. Cold Spring Harb. Perspect. Biol. 1, a002022 (2009).

    PubMed  PubMed Central  Google Scholar 

  132. Umulis, D. M., O’Connor, M. B. & Blair, S. S. The extracellular regulation of bone morphogenetic protein signaling. Development 136, 3715–3728 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cruciat, C. M. & Niehrs, C. Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol. 5, a015081 (2013).

    PubMed  PubMed Central  Google Scholar 

  134. Binari, R. C. et al. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124, 2623–2632 (1997).

    CAS  PubMed  Google Scholar 

  135. Häcker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565–3573 (1997).

    PubMed  Google Scholar 

  136. Merz, D. C., Alves, G., Kawano, T., Zheng, H. & Culotti, J. G. UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling. Dev. Biol. 256, 173–186 (2003).

    CAS  PubMed  Google Scholar 

  137. Rapraeger, A. C., Krufka, A. & Olwin, B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705–1708 (1991).

    CAS  PubMed  Google Scholar 

  138. Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P. & Ornitz, D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841–848 (1991).

    CAS  PubMed  Google Scholar 

  139. Haerry, T. E., Heslip, T. R., Marsh, J. L. & O’Connor, M. B. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124, 3055–3064 (1997).

    CAS  PubMed  Google Scholar 

  140. García-García, M. J. & Anderson, K. V. Essential role of glycosaminoglycans in Fgf signaling during mouse gastrulation. Cell 114, 727–737 (2003).

    PubMed  Google Scholar 

  141. Takei, Y. & Three Drosophila, E. X. T. genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131, 73–82 (2004).

    CAS  PubMed  Google Scholar 

  142. Itoh, K. & Sokol, S. Y. Heparan sulfate proteoglycans are required for mesoderm formation in Xenopus embryos. Development 120, 2703–2711 (1994).

    CAS  PubMed  Google Scholar 

  143. Dhoot, G. K. et al. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293, 1663–1666 (2001).

    CAS  PubMed  Google Scholar 

  144. The, I., Bellaiche, Y. & Perrimon, N. Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633–639 (1999).

    CAS  PubMed  Google Scholar 

  145. Alexander, C. M. et al. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat. Genet. 25, 329–332 (2000).

    CAS  PubMed  Google Scholar 

  146. Topczewski, J. et al. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell 1, 251–264 (2001).

    CAS  PubMed  Google Scholar 

  147. Sarrazin, S., Lamanna, W. C. & Esko, J. D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3, 1–33 (2011).

    Google Scholar 

  148. Tumova, S., Woods, A. & Couchman, J. R. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int. J. Biochem. Cell Biol. 32, 269–288 (2000).

    CAS  PubMed  Google Scholar 

  149. Nakato, H. & Li, J. P. Functions of heparan sulfate proteoglycans in development: insights from drosophila models. Int. Rev. Cell Mol. Biol. 325, 275–293 (2016).

    CAS  PubMed  Google Scholar 

  150. Awad, W. et al. Structural aspects of N-glycosylations and the C-terminal region in human glypican-1. J. Biol. Chem. 290, 22991–23008 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Cardin, A. D. & Weintraub, H. J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9, 21–32 (1989).

    CAS  PubMed  Google Scholar 

  152. Balasubramanian, R. & Zhang, X. Mechanisms of FGF gradient formation during embryogenesis. Semin. Cell Dev. Biol. 53, 94–100 (2016).

    CAS  PubMed  Google Scholar 

  153. Yan, D. & Lin, X. Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a002493 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Nybakken, K. & Perrimon, N. Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. Biochim. Biophys. Acta 1573, 280–291 (2002).

    CAS  PubMed  Google Scholar 

  155. Matsuo, I. & Kimura-Yoshida, C. Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130545 (2014).

    Google Scholar 

  156. Nugent, M. A. & Edelmant, E. R. Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperativity. Biochemistry 31, 8876–8883 (1992).

    CAS  PubMed  Google Scholar 

  157. Schlessinger, J. et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–750 (2000).

    CAS  PubMed  Google Scholar 

  158. Krufka, A., Guimond, S. & Rapraeger, A. C. Two hierarchies of FGF-2 signaling in heparin: mitogenic stimulation and high-affinity binding/receptor transphosphorylation. Biochemistry 35, 11131–11141 (1996).

    CAS  PubMed  Google Scholar 

  159. Kuo, W.-J., Digman, M. A. & Lander, A. D. Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization. Mol. Biol. Cell 21, 4028–4041 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Fujise, M. et al. Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 130, 1515–1522 (2003).

    CAS  PubMed  Google Scholar 

  161. Schlessinger, J., Lax, I. & Lemmon, M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83, 357–360 (1995).

    CAS  PubMed  Google Scholar 

  162. Shimokawa, K. et al. Cell surface heparan sulfate chains regulate local reception of FGF signaling in the mouse embryo. Dev. Cell 21, 257–272 (2011).

    CAS  PubMed  Google Scholar 

  163. Akiyama, T. et al. Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface. Dev. Biol. 313, 408–419 (2008).

    CAS  PubMed  Google Scholar 

  164. Han, C., Yan, D., Belenkaya, T. Y. & Lin, X. Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc. Development 132, 667–679 (2005).

    CAS  PubMed  Google Scholar 

  165. Yan, D., Wu, Y., Feng, Y., Lin, S. C. & Lin, X. The core protein of glypican dally-like determines its biphasic activity in wingless morphogen signaling. Dev. Cell 17, 470–481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Baeg, G. H., Lin, X., Khare, N., Baumgartner, S. & Perrimon, N. Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 87–94 (2001).

    CAS  PubMed  Google Scholar 

  167. Baeg, G. H., Selva, E. M., Goodman, R. M., Dasgupta, R. & Perrimon, N. The Wingless morphogen gradient is established by the cooperative action of Frizzled and heparan sulfate proteoglycan receptors. Dev. Biol. 276, 89–100 (2004).

    CAS  PubMed  Google Scholar 

  168. Kreuger, J., Perez, L., Giraldez, A. J. & Cohen, S. M. Opposing activities of Dally-like glypican at high and low levels of wingless morphogen activity. Dev. Cell 7, 503–512 (2004).

    CAS  PubMed  Google Scholar 

  169. Capurro, M. I. et al. Glypican-3 inhibits hedgehog signaling during development by competing with patched for hedgehog binding. Dev. Cell 14, 700–711 (2008).

    CAS  PubMed  Google Scholar 

  170. Song, H. H., Shi, W., Xiang, Y. Y. & Filmus, J. The loss of glypican-3 induces alterations in Wnt signaling. J. Biol. Chem. 280, 2116–2125 (2005).

    CAS  PubMed  Google Scholar 

  171. Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C. & Garcia, K. C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Duchesne, L. et al. Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate. PLoS Biol. 10, 16 (2012).

    Google Scholar 

  173. Ohkawara, B., Iemura, S. I., Ten Dijke, P. & Ueno, N. Action range of BMP is defined by its N-terminal basic amino acid core. Curr. Biol. 12, 205–209 (2002).

    CAS  PubMed  Google Scholar 

  174. Hu, Q., Ueno, N. & Behringer, R. R. Restriction of BMP4 activity domains in the developing neural tube of the mouse embryo. EMBO Rep. 5, 734–739 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Han, C. H., Belenkaya, T. Y., Wang, B. & Lin, X. Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynamin-independent process. Development 131, 601–611 (2004).

    CAS  PubMed  Google Scholar 

  176. Bornemann, D. J., Duncan, J. E., Staatz, W., Selleck, S. & Warrior, R. Abrogation of heparan sulface synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131, 1927–1938 (2004).

    CAS  PubMed  Google Scholar 

  177. Kooyman, D. L. et al. In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science 269, 89–92 (1995).

    CAS  PubMed  Google Scholar 

  178. Müller, G. A. The release of glycosylphosphatidylinositol-anchored proteins from the cell surface. Arch. Biochem. Biophys. 656, 1–18 (2018).

    PubMed  Google Scholar 

  179. Greco, V., Hannus, M. & Eaton, S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106, 633–645 (2001).

    CAS  PubMed  Google Scholar 

  180. Fujise, M., Izumi, S., Selleck, S. B. & Nakato, H. Regulation of dally, an integral membrane proteoglycan, and its function during adult sensory organ formation of Drosophila. Dev. Biol. 235, 433–448 (2001).

    CAS  PubMed  Google Scholar 

  181. Gallet, A., Staccini-Lavenant, L. & Thérond, P. P. Cellular trafficking of the glypican dally-like is required for full-strength hedgehog signaling and wingless transcytosis. Dev. Cell 14, 712–725 (2008).

    CAS  PubMed  Google Scholar 

  182. Crickmore, M. A. & Mann, R. S. Hox control of morphogen mobility and organ development through regulation of glypican expression. Development 134, 327–334 (2007).

    CAS  PubMed  Google Scholar 

  183. Baena-Lopez, L. A., Rodríguez, I. & Baonza, A. The tumor suppressor genes dachsous and fat modulate different signalling pathways by regulating dally and dally-like. Proc. Natl Acad. Sci. USA 105, 9645–9650 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Ferreira, A. & Milan, M. Dally proteoglycan mediates the autonomous and nonautonomous effects on tissue growth caused by activation of the PI3K and TOR pathways. PLoS Biol. 13, 1–28 (2015).

    Google Scholar 

  185. Ebrahimkhani, M. R. & Ebisuya, M. Synthetic developmental biology: build and control multicellular systems. Curr. Opin. Chem. Biol. 52, 9–15 (2019).

    CAS  PubMed  Google Scholar 

  186. Toda, S. et al. Engineering synthetic morphogen systems that can program multicellular patterning. Science 370, 327–331 (2020). In this article, the authors show that locally produced GFP and mCherry can activate a gradient of synthetic Notch receptor (synNotch) activity to pattern a field of cells in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    CAS  PubMed  Google Scholar 

  188. Greber, D. & Fussenegger, M. An engineered mammalian band-pass network. Nucleic Acids Res. 38, e174 (2010).

    PubMed  PubMed Central  Google Scholar 

  189. Schaerli, Y. et al. A unified design space of synthetic stripe-forming networks. Nat. Commun. 5, 4905 (2014).

    CAS  PubMed  Google Scholar 

  190. Sohka, T. et al. An externally tunable bacterial band-pass filter. Proc. Natl Acad. Sci. USA 106, 10135–10140 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164, 780–791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhou, S. et al. Free extracellular diffusion creates the Dpp morphogen gradient of the drosophila wing disc. Curr. Biol. 22, 668–675 (2012). This article provides a critical assessment of the conclusions that can be drawn from FRAP analysis, complemented with FCS data, suggesting that Dpp spreads by diffusion in wing imaginal discs.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Roth, S., Stein, D. & Nüsslein-Volhard, C. A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59, 1189–1202 (1989).

    CAS  PubMed  Google Scholar 

  194. Gritli-Linde, A., Lewis, P., McMahon, A. P. & Linde, A. The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of Hedgehog signaling peptides. Dev. Biol. 236, 364–386 (2001).

    CAS  PubMed  Google Scholar 

  195. Christian, J. L. Morphogen gradients in development: from form to function. Wiley Interdiscip Rev. Dev. Biol. 1, 3–15 (2012).

    CAS  PubMed  Google Scholar 

  196. Williams, P. H., Hagemann, A. I. H., González-Gaitán, M. & Smith, J. C. Visualizing long-range movement of the morphogen Xnr2 in the Xenopus embryo. Curr. Opin. Cell Biol. 41, 1916–1923 (2004).

    Google Scholar 

  197. Müller, P. et al. Differential diffusivity of nodal and lefty underlies a reaction-diffusion patterning system. Science 336, 721–724 (2012).

    PubMed  PubMed Central  Google Scholar 

  198. Chamberlain, C. E., Jeong, J., Guo, C., Allen, B. L. & McMahon, A. P. Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning. Development 135, 1097–1106 (2008).

    CAS  PubMed  Google Scholar 

  199. Pani, A. M. & Goldstein, B. Direct visualization of a native Wnt in vivo reveals that a long-range Wnt gradient forms by extracellular dispersal. eLife 7, e38325 (2018).

    PubMed  PubMed Central  Google Scholar 

  200. Zinski, J. et al. Systems biology derived source-sink mechanism of bmp gradient formation. eLife 6, 1–32 (2017).

    Google Scholar 

  201. Eroshkin, F. M. et al. Noggin4 is a long-range inhibitor of Wnt8 signalling that regulates head development in Xenopus laevis. Sci. Rep. 6, 1–14 (2016).

    Google Scholar 

  202. Prelich, G. Gene overexpression: uses, mechanisms, and interpretation. Genetics 190, 841–854 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    CAS  PubMed  Google Scholar 

  204. Keppler, A. et al. Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 32, 437–444 (2004).

    CAS  PubMed  Google Scholar 

  205. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    CAS  PubMed  Google Scholar 

  206. Corrêa, I. R. Live-cell reporters for fluorescence imaging. Curr. Opin. Chem. Biol. 20, 36–45 (2014).

    PubMed  Google Scholar 

  207. Sosnik, J. et al. Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain. eLife 5, 1–14 (2016).

    Google Scholar 

  208. Shimozono, S., Iimura, T., Kitaguchi, T., Higashijima, S.-I. & Miyawaki, A. Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496, 363–366 (2013).

    CAS  PubMed  Google Scholar 

  209. Yang, D., Singh, A., Wu, H. & Kroe-Barrett, R. Comparison of biosensor platforms in the evaluation of high affinity antibody-antigen binding kinetics. Anal. Biochem. 508, 78–96 (2016).

    CAS  PubMed  Google Scholar 

  210. Kairys, V., Baranauskiene, L., Kazlauskiene, M., Matulis, D. & Kazlauskas, E. Binding affinity in drug design: experimental and computational techniques. Expert Opin. Drug Disc. 14, 755–768 (2019).

    CAS  Google Scholar 

  211. Sadaie, W., Harada, Y., Matsuda, M. & Aoki, K. Quantitative in vivo fluorescence cross-correlation analyses highlight the importance of competitive effects in the regulation of protein-protein interactions. Mol. Cell. Biol. 34, 3272–3290 (2014).

    PubMed  PubMed Central  Google Scholar 

  212. Sudhaharan, T. et al. Determination of in vivo dissociation constant, KD, of Cdc42-effector complexes in live mammalian cells using single wavelength fluorescence cross-correlation spectroscopy. J. Biol. Chem. 284, 13602–13609 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Dietz, M. S., Fricke, F., Krüger, C. L., Niemann, H. H. & Heilemann, M. Receptor-ligand interactions: binding affinities studied by single-molecule and super-resolution microscopy on intact cells. ChemPhysChem 15, 671–676 (2014).

    CAS  PubMed  Google Scholar 

  214. Van Den Brink, S. C. et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141, 4231–4242 (2014). This study demonstrates that the collective behaviour of mouse embryonic stem cells in culture recapitulates symmetry breaking, axial organization, germ layer specification and axis elongation.

    PubMed  PubMed Central  Google Scholar 

  215. Moris, N. et al. An in vitro model of early anteroposterior organization during human development. Nature 582, 410–415 (2020).

    CAS  PubMed  Google Scholar 

  216. Turner, D. A. et al. Anteroposterior polarity and elongation in the absence of extraembryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids. Development 44, 3894–3906 (2017).

    Google Scholar 

  217. Thisse, B. & Thisse, C. Formation of the vertebrate embryo: moving beyond the Spemann organizer. Semin. Cell Dev. Biol. 42, 94–102 (2015).

    PubMed  Google Scholar 

  218. van den Brink, S. C. et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature https://doi.org/10.1038/s41586-020-2024-3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Veenvliet, J. et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 370, eaba4937 (2020).

    CAS  PubMed  Google Scholar 

  220. Aulehla, A. & Pourquié, O. Signaling gradients during paraxial mesoderm development. Cold Spring Harb. Perspect. Biol. 2, a000869 (2010).

    PubMed  PubMed Central  Google Scholar 

  221. Fulton, T. et al. Axis specification in zebrafish is robust to cell mixing and reveals a regulation of pattern formation by morphogenesis. Curr. Biol. https://doi.org/10.1016/j.cub.2020.05.048 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Chen, Y. & Schier, A. F. The zebrafish nodal signal Squint functions as a morphogen. Nature 411, 607–610 (2001).

    CAS  PubMed  Google Scholar 

  223. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237, 37–72 (1952).

    Google Scholar 

  224. Eldar, A. et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–308 (2002).

    CAS  PubMed  Google Scholar 

  225. Jiang, J., Kosman, D., Ip, Y. T. & Levine, M. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 5, 1881–1891 (1991).

    CAS  PubMed  Google Scholar 

  226. Kavka, A. I. & Green, J. B. A. Evidence for dual mechanisms of mesoderm establishment in Xenopus embryos. Dev. Dyn. 219, 77–83 (2000).

    CAS  PubMed  Google Scholar 

  227. Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999).

    CAS  PubMed  Google Scholar 

  228. Friml, J. et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661–673 (2002).

    CAS  PubMed  Google Scholar 

  229. Skopelitis, D. S., Benkovics, A. H., Husbands, A. Y. & Timmermans, M. C. P. Boundary formation through a direct threshold-based readout of mobile small RNA gradients. Dev. Cell 43, 265–273.e6 (2017).

    CAS  PubMed  Google Scholar 

  230. Chitwood, D. H. et al. Pattern formation via small RNA mobility. Genes Dev. 23, 549–554 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Carlsbecker, A. et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316–321 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Miyashima, S., Koi, S., Hashimoto, T. & Nakajima, K. Non-cell-autonomous microRNA 165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138, 2303–2313 (2011).

    CAS  PubMed  Google Scholar 

  233. Niederreither, K., Vermot, J., Schuhbaur, B., Chambon, P. & Dollé, P. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 127, 75–85 (2000).

    CAS  PubMed  Google Scholar 

  234. White, R. J., Nie, Q., Lander, A. D. & Schilling, T. F. Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol. 5, 2522–2533 (2007).

    CAS  Google Scholar 

  235. Begemann, G., Schilling, T. F., Rauch, G. J., Geisler, R. & Ingham, P. W. The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 128, 3081–3094 (2001).

    CAS  PubMed  Google Scholar 

  236. Kolm, P. J., Apekin, V. & Sive, H. Xenopus hindbrain patterning requires retinoid signaling. Dev. Biol. 192, 1–16 (1997).

    CAS  PubMed  Google Scholar 

  237. Gale, E., Zile, M. & Maden, M. Hindbrain respecification in the retinoid-deficient quail. Mech. Dev. 89, 43–54 (1999).

    CAS  PubMed  Google Scholar 

  238. Dupé, V. & Lumsden, A. Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128, 2199–2208 (2001).

    PubMed  Google Scholar 

  239. Peri, F., Technau, M. & Roth, S. Mechanisms of Gurken-dependent pipe regulation and the robustness of dorsoventral patterning in Drosophila. Development 129, 2965–2975 (2002).

    CAS  PubMed  Google Scholar 

  240. James, K. E., Dorman, J. B. & Berg, C. A. Mosaic analyses reveal the function of Drosophila Ras in embryonic dorsoventral patterning and dorsal follicle cell morphogenesis. Development 129, 2209–2222 (2002).

    CAS  PubMed  Google Scholar 

  241. Van Zon, J. S., Kienle, S., Huelsz-Prince, G., Barkoulas, M. & Van Oudenaarden, A. Cells change their sensitivity to an EGF morphogen gradient to control EGF-induced gene expression. Nat. Commun. 6, 7053 (2015).

    PubMed  Google Scholar 

  242. Katz, W. S., Hill, R. J., Clandinin, T. R. & Sternberg, P. W. Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. Cell 82, 297–307 (1995).

    CAS  PubMed  Google Scholar 

  243. Cox, W. G. & Hemmati-Brivanlou, A. Caudalization of neural fate by tissue recombination and bFGF. Development 121, 4349–4358 (1995).

    CAS  PubMed  Google Scholar 

  244. Kengaku, M. & Okamoto, H. bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121, 3121–3130 (1995).

    CAS  PubMed  Google Scholar 

  245. Pownall, M. E., Tucker, A. S., Slack, J. M. W. & Isaacs, H. V. eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development 122, 3881–3892 (1996).

    CAS  PubMed  Google Scholar 

  246. Christen, B. & Slack, J. M. W. Spatial response to fibroblast growth factor signalling in Xenopus embryos. Development 126, 119–125 (1999).

    CAS  PubMed  Google Scholar 

  247. Mariani, F. V., Ahn, C. P. & Martin, G. R. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 453, 401–405 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Sun, X., Mariani, F. V. & Martin, G. R. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418, 501–508 (2002).

    CAS  PubMed  Google Scholar 

  249. Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecute FGF8. Science 294, 1071–1074 (2001).

    CAS  PubMed  Google Scholar 

  250. Toyoda, R. et al. FGF8 acts as a classic diffusible morphogen to pattern the neocortex. Development 137, 3439–3448 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Dyer, C. et al. A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain. Development 141, 63–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Christen, B. & Slack, J. M. W. FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev. Biol. 192, 455–466 (1997).

    CAS  PubMed  Google Scholar 

  253. Fletcher, R. B., Baker, J. C. & Harland, R. M. FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133, 1703–1714 (2006).

    CAS  PubMed  Google Scholar 

  254. Eagleson, G. W. & Dempewolf, R. D. The role of the anterior neural ridge and Fgf-8 in early forebrain patterning and regionalization in Xenopus laevis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 132, 179–189 (2002).

    PubMed  Google Scholar 

  255. Vogel, A., Rodriguez, C. & Izpisúa-Belmonte, J. C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).

    CAS  PubMed  Google Scholar 

  256. Dasen, J. S., Liu, J. P. & Jessell, T. M. Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature 425, 926–933 (2003).

    CAS  PubMed  Google Scholar 

  257. Brennan, J. et al. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411, 965–969 (2001).

    CAS  PubMed  Google Scholar 

  258. Vincent, S. D., Dunn, N. R., Hayashi, S., Norris, D. P. & Robertson, E. J. Cell fate decisions within the mouse organizer are governed by graded nodal signals. Genes Dev. 17, 1646–1662 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Dougan, S. T., Warga, R. M., Kene, D. A., Schier, A. F. & Talbot, W. S. The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130, 1837–1851 (2003).

    CAS  PubMed  Google Scholar 

  260. Feldman, B. et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181–185 (1998).

    CAS  PubMed  Google Scholar 

  261. Harvey, S. A. & Smith, J. C. Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biol. 7, e1000101 (2009).

    PubMed  PubMed Central  Google Scholar 

  262. Thisse, B., Wright, C. V. E. & Thisse, C. Activin- and nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403, 425–428 (2000).

    CAS  PubMed  Google Scholar 

  263. Agius, E., Oelgeschläger, M., Wessely, O., Kemp, C. & De Robertis, E. M. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127, 1173–1183 (2000).

    CAS  PubMed  Google Scholar 

  264. Gritsman, K., Talbot, W. S. & Schier, A. F. Nodal signaling patterns the organizer. Development 127, 921–932 (2000).

    CAS  PubMed  Google Scholar 

  265. Little, S. C. & Mullins, M. C. Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat. Cell Biol. 11, 637–643 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Tucker, J. A., Mintzer, K. A. & Mullins, M. C. The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Cell 14, 108–119 (2008).

    CAS  Google Scholar 

  267. Dale, L., Howes, G., Price, B. M. J. & Smith, J. C. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585 (1992).

    CAS  PubMed  Google Scholar 

  268. Plouhinec, J. L., Zakin, L., Moriyama, Y. & De Robertis, E. M. Chordin forms a self-organizing morphogen gradient in the extracellular space between ectoderm and mesoderm in the Xenopus embryo. Proc. Natl Acad. Sci. USA 110, 20372–20379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Ashe, H. L., Mannervik, M. & Levine, M. Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 127, 3305–3312 (2000).

    CAS  PubMed  Google Scholar 

  270. Shimmi, O., Umulis, D., Othmer, H. & O’Connor, M. B. Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120, 873–886 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    CAS  PubMed  Google Scholar 

  272. Harfe, B. D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517–528 (2004).

    CAS  PubMed  Google Scholar 

  273. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    CAS  PubMed  Google Scholar 

  274. Towers, M., Mahood, R., Yin, Y. & Tickle, C. Integration of growth and specification in chick wing digit-patterning. Nature 452, 882–886 (2008).

    CAS  PubMed  Google Scholar 

  275. Strigini, M. & Cohen, S. M. A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124, 4697–4705 (1997).

    CAS  PubMed  Google Scholar 

  276. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a wingless morphogen gradient. Cell 87, 833–844 (1996).

    CAS  PubMed  Google Scholar 

  277. Takada, S. et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8, 174–189 (1994).

    CAS  PubMed  Google Scholar 

  278. Kiecker, C. & Niehrs, C. A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128, 4189–4201 (2001).

    CAS  PubMed  Google Scholar 

  279. Erter, C. E., Wilm, T. P., Basler, N., Wright, C. V. E. & Solnica-Krezel, L. Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128, 3571–3583 (2001).

    CAS  PubMed  Google Scholar 

  280. Rhinn, M., Lun, K., Luz, M., Werner, M. & Brand, M. Positioning of the midbrain-hindbrain boundary organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. Development 132, 1261–1272 (2005).

    CAS  PubMed  Google Scholar 

  281. Lekven, A. C., Thorpe, C. J., Waxman, J. S. & Moon, R. T. Zebrafish wnt8 encodes two Wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev. Cell 1, 103–114 (2001).

    CAS  PubMed  Google Scholar 

  282. Itoh, K. & Sokol, S. Y. Graded amounts of Xenopus dishevelled specify discrete anteroposterior cell fates in prospective ectoderm. Mech. Dev. 61, 113–125 (1997).

    CAS  PubMed  Google Scholar 

  283. Nordström, U., Jessell, T. M. & Edlund, T. Progressive induction of caudal neural character by graded Wnt signaling. Nat. Neurosci. 5, 525–532 (2002).

    PubMed  Google Scholar 

  284. Macháň, R. & Wohland, T. Recent applications of fluorescence correlation spectroscopy in live systems. FEBS Lett. 588, 3571–3584 (2014).

    PubMed  Google Scholar 

  285. Fried, P. et al. A model of the spatio-temporal dynamics of drosophila eye disc development. PLoS Comput. Biol. 12, 1–23 (2016).

    Google Scholar 

  286. Bläßle, A. et al. Quantitative diffusion measurements using the open-source software PyFRAP. Nat. Commun. 9, 1–14 (2018).

    Google Scholar 

  287. Pomreinke, A. P. et al. Dynamics of BMP signaling and distribution during zebrafish dorsal-ventral patterning. eLife 6, 1–30 (2017).

    Google Scholar 

  288. Wang, Y., Wang, X., Wohland, T. & Sampath, K. Extracellular interactions and ligand degradation shape the nodal morphogen gradient. eLife https://doi.org/10.7554/eLife.13879 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Mii, Y. et al. Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos. Preprint at bioRxiv https://doi.org/10.1101/2020.02.20.957860 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are particularly indebted to the reviewers, who provided exceptionally insightful feedback. Work in the laboratory of J.-P.V. is supported by a Wellcome Trust Investigator Award (206341/Z/17/Z), as well as the Francis Crick Institute, which receives its core funding from Cancer Research UK (no. FC001204), the UK Medical Research Council (no. FC001204) and the Wellcome Trust (no. FC001204). K.S.S. was a recipient of a PhD. studentship from the Wellcome Trust (109054/ Z/15/Z). The authors acknowledge the significant insight they gained from discussions with L. Cocconi, M. DeGennes and G. Salbreux.

Author information

Authors and Affiliations

Authors

Contributions

K.S.S. researched data for the article. K.S.S. and J.-P.V. made substantial contributions to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jean-Paul Vincent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks A. Lander and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

French flag model

A model in which different concentration thresholds of a single signalling molecule can instruct distinct cell fates and therefore enable a concentration gradient of such a signalling molecule to pattern an underlying tissue.

Syncytial

Refers to a multinucleated cell.

Pleiotropic

Refers to genes or proteins that can cause multiple phenotypes.

Optogenetic

Refers to experimental methods involving the use of light-sensitive proteins to control cellular processes by light.

Exosomes

Extracellular membranous vesicles that originate from inward budding events of the endosomal membrane.

Micelles

Spherical aggregates of amphiphilic molecules that have a hydrophobic core and a hydrophilic shell.

Glypicans

Heparan sulfate proteoglycans that are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI).

Stokes radius

The radius of a hypothetical hard sphere with the same diffusion properties as the solute.

Tortuosity

The increased path length that molecules have to cover when diffusing from one point to another through the convoluted geometry of the extracellular matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stapornwongkul, K.S., Vincent, JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 22, 393–411 (2021). https://doi.org/10.1038/s41576-021-00342-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-021-00342-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing