Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Maternal H3K27me3-dependent autosomal and X chromosome imprinting

Abstract

Genomic imprinting and X-chromosome inactivation (XCI) are classic epigenetic phenomena that involve transcriptional silencing of one parental allele. Germline-derived differential DNA methylation is the best-studied epigenetic mark that initiates imprinting, but evidence indicates that other mechanisms exist. Recent studies have revealed that maternal trimethylation of H3 on lysine 27 (H3K27me3) mediates autosomal maternal allele-specific gene silencing and has an important role in imprinted XCI through repression of maternal Xist. Furthermore, loss of H3K27me3-mediated imprinting contributes to the developmental defects observed in cloned embryos. This novel maternal H3K27me3-mediated non-canonical imprinting mechanism further emphasizes the important role of parental chromatin in development and could provide the basis for improving the efficiency of embryo cloning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Germline inherited DNA methylation governs canonical imprinting.
Fig. 2: Oocyte inherited H3K27me3 initiates non-canonical imprinting.
Fig. 3: Maternal H3K27me3 controls imprinted XCI by repressing maternal Xist.
Fig. 4: Defects in genomic imprinting and imprinted XCI occur in SCNT reprogramming.

Similar content being viewed by others

References

  1. Bartolomei, M. S. & Ferguson-Smith, A. C. Mammalian genomic imprinting. Cold Spring Harb. Perspect. Biol. 3, a002592 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, J. T. & Bartolomei, M. S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308–1323 (2013).

    CAS  PubMed  Google Scholar 

  3. Monk, D., Mackay, D. J. G., Eggermann, T., Maher, E. R. & Riccio, A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 20, 235–248 (2019).

    CAS  PubMed  Google Scholar 

  4. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    CAS  PubMed  Google Scholar 

  5. Surani, M. A., Barton, S. C. & Norris, M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550 (1984).

    CAS  PubMed  Google Scholar 

  6. Bartolomei, M. S., Zemel, S. & Tilghman, S. M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    CAS  PubMed  Google Scholar 

  7. Barlow, D. P., Stoger, R., Herrmann, B. G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    CAS  PubMed  Google Scholar 

  8. Ferguson-Smith, A. C., Cattanach, B. M., Barton, S. C., Beechey, C. V. & Surani, M. A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351, 667–670 (1991).

    CAS  PubMed  Google Scholar 

  9. DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    CAS  PubMed  Google Scholar 

  10. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    CAS  PubMed  Google Scholar 

  11. Barlow, D. P. & Bartolomei, M. S. Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6, a018382 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Sanli, I. & Feil, R. Chromatin mechanisms in the developmental control of imprinted gene expression. Int. J. Biochem. Cell Biol. 67, 139–147 (2015).

    CAS  PubMed  Google Scholar 

  13. John, R. M. & Lefebvre, L. Developmental regulation of somatic imprints. Differentiation 81, 270–280 (2011).

    CAS  PubMed  Google Scholar 

  14. Okae, H. et al. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum. Mol. Genet. 21, 548–558 (2012).

    CAS  PubMed  Google Scholar 

  15. Okae, H. et al. RNA sequencing-based identification of aberrant imprinting in cloned mice. Hum. Mol. Genet. 23, 992–1001 (2014).

    CAS  PubMed  Google Scholar 

  16. Borensztein, M. et al. Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat. Struct. Mol. Biol. 24, 226–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiba, H. et al. De novo DNA methylation independent establishment of maternal imprint on X chromosome in mouse oocytes. Genesis 46, 768–74 (2008). Together with reference 14, this study demonstrates the presence of germline DNA methylation-independent autosomal and X-chromosomal imprinting.

    CAS  PubMed  Google Scholar 

  18. Eckersley-Maslin, M. A., Alda-Catalinas, C. & Reik, W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat. Rev. Mol. Cell Biol. 19, 436–450 (2018).

    CAS  PubMed  Google Scholar 

  19. Inoue, A., Jiang, L., Lu, F. & Zhang, Y. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev. 31, 1927–1932 (2017). This study demonstrates that maternal Xist is repressed by oocyte H3K27me3, thus causing imprinted XCI.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424 (2017). This study demonstrates that maternal H3K27me3 can serve as a primary imprinting mark.

    CAS  PubMed  Google Scholar 

  21. Bonthuis, P. J. et al. Noncanonical genomic imprinting effects in offspring. Cell Rep. 12, 979–991 (2015).

    CAS  PubMed  Google Scholar 

  22. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575 (2011).

    CAS  PubMed  Google Scholar 

  23. Tucci, V., Isles, A. R., Kelsey, G., Ferguson-Smith, A. C. & Erice Imprinting Group. Genomic imprinting and physiological processes in mammals. Cell 176, 952–965 (2019).

    CAS  PubMed  Google Scholar 

  24. Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    PubMed  Google Scholar 

  25. Kaneda, M. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900–903 (2004).

    CAS  PubMed  Google Scholar 

  26. Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).

    CAS  PubMed  Google Scholar 

  27. Jain, D. et al. rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline. PLOS Genet. 13, e1006964 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Watanabe, T. et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332, 848–852 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chotalia, M. et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev. 23, 105–117 (2009). This study demonstrates that transcription through a maternally methylated DMR is required for de novo DNA methylation during oogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stewart, K. R. et al. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev. 29, 2449–2462 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Veselovska, L. et al. Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol. 16, 209 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Smith, E. Y., Futtner, C. R., Chamberlain, S. J., Johnstone, K. A. & Resnick, J. L. Transcription is required to establish maternal imprinting at the Prader–Willi syndrome and Angelman syndrome locus. PLOS Genet. 7, e1002422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, Q. et al. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat. Genet. 51, 844–856 (2019). This study demonstrates the critical role of histone methyltransferase SETD2 in regulating the oocyte epigenome, including the establishment of maternal imprints.

    CAS  PubMed  Google Scholar 

  34. Ciccone, D. N. et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461, 415–418 (2009).

    CAS  PubMed  Google Scholar 

  35. Chen, Z. & Zhang, Y. Role of mammalian DNA methyltransferases in development. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-103019-102815 (2019).

    Article  PubMed  Google Scholar 

  36. Smith, Z. D. et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, X. et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Developmental Cell 15, 547–557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Takahashi, N. et al. ZNF445 is a primary regulator of genomic imprinting. Genes Dev. 33, 49–54 (2019). Together with reference 37, this study demonstrates that the KRAB-containing zinc finger proteins ZFP57 and ZFP445 maintain allelic DNA methylation specifically at ICRs during the global wave of DNA demethylation in early embryos.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Messerschmidt, D. M. et al. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335, 1499–1502 (2012).

    CAS  PubMed  Google Scholar 

  41. Lee, C. C. et al. The role of N-α-acetyltransferase 10 protein in DNA methylation and genomic imprinting. Mol. Cell 68, 89–103.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Proudhon, C. et al. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol. Cell 47, 909–920 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hanna, C. W. & Kelsey, G. The specification of imprints in mammals. Heredity 113, 176–183 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534 (2017).

    CAS  PubMed  Google Scholar 

  45. Yamaguchi, S. et al. Tet1 controls meiosis by regulating meiotic gene expression. Nature 492, 443–447 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamaguchi, S., Shen, L., Liu, Y., Sendler, D. & Zhang, Y. Role of Tet1 in erasure of genomic imprinting. Nature 504, 460–464 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. SanMiguel, J. M., Abramowitz, L. K. & Bartolomei, M. S. Imprinted gene dysregulation in a Tet1 null mouse model is stochastic and variable in the germline and offspring. Development 145, dev160622 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Dawlaty, M. M. et al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Developmental Cell 24, 310–323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bartolomei, M. S., Webber, A. L., Brunkow, M. E. & Tilghman, S. M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7, 1663–1673 (1993).

    CAS  PubMed  Google Scholar 

  50. Ferguson-Smith, A. C., Sasaki, H., Cattanach, B. M. & Surani, M. A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362, 751–755 (1993).

    CAS  PubMed  Google Scholar 

  51. Thorvaldsen, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12, 3693–3702 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).

    CAS  PubMed  Google Scholar 

  53. Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).

    CAS  PubMed  Google Scholar 

  54. Engel, N., Thorvaldsen, J. L. & Bartolomei, M. S. CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum. Mol. Genet. 15, 2945–2954 (2006).

    CAS  PubMed  Google Scholar 

  55. Lleres, D. et al. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biol. 20, 272 (2019). This study investigates how allele-specific TAD formation is involved in imprinted gene activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee, M. P. et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith–Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl Acad. Sci. USA 96, 5203–5208 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Smilinich, N. J. et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith–Wiedemann syndrome. Proc. Natl Acad. Sci. USA 96, 8064–8069 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Terranova, R. et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Developmental Cell 15, 668–679 (2008).

    CAS  PubMed  Google Scholar 

  59. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    CAS  PubMed  Google Scholar 

  60. Wagschal, A. et al. G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol. Cell. Biol. 28, 1104–1113 (2008).

    CAS  PubMed  Google Scholar 

  61. Umlauf, D. et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat. Genet. 36, 1296–1300 (2004).

    CAS  PubMed  Google Scholar 

  62. Lewis, A. et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat. Genet. 36, 1291–1295 (2004).

    CAS  PubMed  Google Scholar 

  63. Fitzpatrick, G. V., Soloway, P. D. & Higgins, M. J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32, 426–431 (2002).

    CAS  PubMed  Google Scholar 

  64. Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20, 1268–1282 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Schertzer, M. D. et al. lncRNA-induced spread of polycomb controlled by genome architecture, RNA abundance, and CpG island DNA. Mol. Cell 75, 523–537.e10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu, F. et al. Establishing chromatin regulatory landscape during mouse preimplantation development. Cell 165, 1375–1388 (2016). This study describes a low-input DNase I sequencing method and demonstrates that ICRs exhibit allelic chromatin accessibility bias before onset of allelic expression in mouse early embryos.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zheng, H. et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63, 1066–1079 (2016).

    CAS  PubMed  Google Scholar 

  68. Mager, J., Montgomery, N. D., de Villena, F. P. & Magnuson, T. Genome imprinting regulated by the mouse polycomb group protein Eed. Nat. Genet. 33, 502–507 (2003).

    CAS  PubMed  Google Scholar 

  69. Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562 (2016). Together with reference 67, this study profiles H3K27me3 in mouse development and reveals non-canonical H3K27me3 domains that are unique for oocyte and early embryos.

    CAS  PubMed  Google Scholar 

  70. Chen, Z., Yin, Q., Inoue, A., Zhang, C. & Zhang, Y. Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells. Sci. Adv. 5, eaay7246 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hanna, C. W. et al. Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues. Genome Biol. 20, 225 (2019). Together with reference 70, this study demonstrates that maintenance of non-canonical imprinting in extra-embryonic cells involves a switch from allelic H3K27me3 to allelic DNA methylation.

    PubMed  PubMed Central  Google Scholar 

  72. Inoue, A., Chen, Z., Yin, Q. & Zhang, Y. Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev. 32, 1525–1536 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Posfai, E. et al. Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. 26, 920–932 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Prokopuk, L. et al. Loss of maternal EED results in postnatal overgrowth. Clin. Epigenetics 10, 95 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Du, Z. et al. Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos. Mol. Cell 77, 825–839 (2019).

    PubMed  Google Scholar 

  76. He, J., Kallin, E. M., Tsukada, Y. & Zhang, Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat. Struct. Mol. Biol. 15, 1169–1175 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. He, J., Nguyen, A. T. & Zhang, Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 117, 3869–3880 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    CAS  PubMed  Google Scholar 

  79. Farcas, A. M. et al. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).

    PubMed  PubMed Central  Google Scholar 

  80. He, J. et al. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat. Cell Biol. 15, 373–384 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Boulard, M., Edwards, J. R. & Bestor, T. H. FBXL10 protects Polycomb-bound genes from hypermethylation. Nat. Genet. 47, 479–485 (2015).

    CAS  PubMed  Google Scholar 

  82. Tada, T. et al. Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development 127, 3101–3105 (2000).

    CAS  PubMed  Google Scholar 

  83. Nesterova, T. B., Barton, S. C., Surani, M. A. & Brockdorff, N. Loss of Xist imprinting in diploid parthenogenetic preimplantation embryos. Dev. Biol. 235, 343–350 (2001).

    CAS  PubMed  Google Scholar 

  84. Huynh, K. D. & Lee, J. T. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426, 857–862 (2003).

    CAS  PubMed  Google Scholar 

  85. Okamoto, I. et al. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438, 369–373 (2005).

    CAS  PubMed  Google Scholar 

  86. Harris, C. et al. Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. eLife 8, e44258 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fukuda, A. et al. The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice. Nat. Commun. 5, 5464 (2014).

    CAS  PubMed  Google Scholar 

  88. Wang, C. et al. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat. Cell Biol. 20, 620–631 (2018).

    CAS  PubMed  Google Scholar 

  89. Mak, W. et al. Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666–669 (2004).

    CAS  PubMed  Google Scholar 

  90. Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2004).

    CAS  PubMed  Google Scholar 

  91. Borensztein, M. et al. Contribution of epigenetic landscapes and transcription factors to X-chromosome reactivation in the inner cell mass. Nat. Commun. 8, 1297 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Payer, B. et al. Tsix RNA and the germline factor, PRDM14, link X reactivation and stem cell reprogramming. Mol. Cell 52, 805–818 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Navarro, P. et al. Molecular coupling of Tsix regulation and pluripotency. Nature 468, 457–460 (2010).

    CAS  PubMed  Google Scholar 

  94. Navarro, P. et al. Molecular coupling of Xist regulation and pluripotency. Science 321, 1693–1695 (2008).

    CAS  PubMed  Google Scholar 

  95. Yamaji, M. et al. PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12, 368–382 (2013).

    CAS  PubMed  Google Scholar 

  96. Williams, L. H., Kalantry, S., Starmer, J. & Magnuson, T. Transcription precedes loss of Xist coating and depletion of H3K27me3 during X-chromosome reprogramming in the mouse inner cell mass. Development 138, 2049–2057 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet. 21, 400–404 (1999).

    CAS  PubMed  Google Scholar 

  98. Lee, J. T. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103, 17–27 (2000).

    CAS  PubMed  Google Scholar 

  99. Sado, T., Wang, Z., Sasaki, H. & Li, E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128, 1275–1286 (2001).

    CAS  PubMed  Google Scholar 

  100. Debrand, E., Chureau, C., Arnaud, D., Avner, P. & Heard, E. Functional analysis of the DXPas34 locus, a 3′ regulator of Xist expression. Mol. Cell. Biol. 19, 8513–8525 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ohhata, T., Senner, C. E., Hemberger, M. & Wutz, A. Lineage-specific function of the noncoding Tsix RNA for Xist repression and Xi reactivation in mice. Genes Dev. 25, 1702–1715 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sado, T. et al. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol. 225, 294–303 (2000).

    CAS  PubMed  Google Scholar 

  103. Sado, T., Okano, M., Li, E. & Sasaki, H. De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation. Development 131, 975–982 (2004).

    CAS  PubMed  Google Scholar 

  104. Okamoto, I., Tan, S. & Takagi, N. X-chromosome inactivation in XX androgenetic mouse embryos surviving implantation. Development 127, 4137–4145 (2000).

    CAS  PubMed  Google Scholar 

  105. Andergassen, D. et al. Mapping the mouse allelome reveals tissue-specific regulation of allelic expression. eLife 6, e25125 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Peters, J. The role of genomic imprinting in biology and disease: an expanding view. Nat. Rev. Genet. 15, 517–530 (2014).

    CAS  PubMed  Google Scholar 

  107. Greenberg, M. V. et al. Transient transcription in the early embryo sets an epigenetic state that programs postnatal growth. Nat. Genet. 49, 110–118 (2017). This study demonstrates the important biological functions of a transient germline DMR.

    CAS  PubMed  Google Scholar 

  108. Duffie, R. et al. The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals. Genes Dev. 28, 463–478 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Matoba, S. et al. Paternal knockout of Slc38a4/SNAT4 causes placental hypoplasia associated with intrauterine growth restriction in mice. Proc. Natl Acad. Sci. USA 116, 21047–21053 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Miri, K. et al. The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta development. Development 140, 4480–4489 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sachs, M. et al. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J. Cell Biol. 150, 1375–1384 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Klymenko, T. et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev. 20, 1110–1122 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Inoue, K. et al. The rodent-specific microRNA cluster within the Sfmbt2 gene is imprinted and essential for placental development. Cell Rep. 19, 949–956 (2017).

    CAS  PubMed  Google Scholar 

  114. Itoh, M. et al. Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol. Cell. Biol. 20, 3695–3704 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Matoba, S. et al. Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development. Cell Stem Cell 23, 343–354.e5 (2018). This study demonstrates that loss of non-canonical imprinting contributes to placenta defects observed in cloned embryos.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Matoba, S. & Zhang, Y. Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 23, 471–485 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    CAS  PubMed  Google Scholar 

  118. Inoue, K. et al. Faithful expression of imprinted genes in cloned mice. Science 295, 297 (2002).

    CAS  PubMed  Google Scholar 

  119. Rhon-Calderon, E. A., Vrooman, L. A., Riesche, L. & Bartolomei, M. S. The effects of assisted reproductive technologies on genomic imprinting in the placenta. Placenta 84, 37–43 (2019).

    PubMed  Google Scholar 

  120. de Waal, E. et al. In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies. Biol. Reprod. 90, 22 (2014).

    PubMed  Google Scholar 

  121. Hirose, M. et al. Aberrant imprinting in mouse trophoblast stem cells established from somatic cell nuclear transfer-derived embryos. Epigenetics 13, 693–703 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Inoue, K. et al. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330, 496–499 (2010). This study demonstrates that aberrant imprinted XCI is a major barrier in SCNT and that impeding Xist expression can greatly improve cloning efficiency.

    CAS  PubMed  Google Scholar 

  123. Matoba, S. et al. RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc. Natl Acad. Sci. USA 108, 20621–20626 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Monk, D. et al. Limited evolutionary conservation of imprinting in the human placenta. Proc. Natl Acad. Sci. USA 103, 6623–6628 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Frost, J. M. & Moore, G. E. The importance of imprinting in the human placenta. PLoS Genet. 6, e1001015 (2010).

    PubMed  PubMed Central  Google Scholar 

  126. Xia, W. et al. Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353–360 (2019).

    CAS  PubMed  Google Scholar 

  127. Zhang, W. et al. Maternal-biased H3K27me3 correlates with paternal-specific gene expression in the human morula. Genes Dev. 33, 382–387 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Leng, L. et al. Single-cell transcriptome analysis of uniparental embryos reveals parent-of-origin effects on human preimplantation development. Cell Stem Cell 25, 697–712.e6 (2019).

    CAS  PubMed  Google Scholar 

  129. van den Berg, I. M. et al. X chromosome inactivation is initiated in human preimplantation embryos. Am. J. Hum. Genet. 84, 771–779 (2009).

    PubMed  PubMed Central  Google Scholar 

  130. Okamoto, I. et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472, 370–374 (2011).

    CAS  PubMed  Google Scholar 

  131. Petropoulos, S. et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 167, 285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Moreira de Mello, J. C., Fernandes, G. R., Vibranovski, M. D. & Pereira, L. V. Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci. Rep. 7, 10794 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Patrat, C., Ouimette, J. F. & Rougeulle, C. X chromosome inactivation in human development. Development 147, dev183095 (2020).

    CAS  PubMed  Google Scholar 

  134. Batista, R. A. & Kohler, C. Genomic imprinting in plants—revisiting existing models. Genes Dev. 34, 24–36 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Klosinska, M., Picard, C. L. & Gehring, M. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nat. Plants 2, 16145 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Moreno-Romero, J., Del Toro-De Leon, G., Yadav, V. K., Santos-Gonzalez, J. & Kohler, C. Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm. Genome Biol. 20, 41 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Schuettengruber, B., Bourbon, H. M., Di Croce, L. & Cavalli, G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171, 34–57 (2017).

    CAS  PubMed  Google Scholar 

  138. Calabrese, J. M., Starmer, J., Schertzer, M. D., Yee, D. & Magnuson, T. A survey of imprinted gene expression in mouse trophoblast stem cells. G3 5, 751–759 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Engreitz, J. M. et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539, 452–455 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Bogutz, A. B. et al. Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nat. Commun. 10, 5674 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Horii, T. et al. Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome. Genome Biol. 21, 77 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wei, Y. et al. DNA methylation analysis and editing in single mammalian oocytes. Proc. Natl Acad. Sci. USA 116, 9883–9892 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zenk, F. et al. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science 357, 212–216 (2017).

    CAS  PubMed  Google Scholar 

  144. Rainger, J. et al. Loss of the BMP antagonist, SMOC-1, causes ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice. PLoS Genet. 7, e1002114 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. McCarrey, J. R. et al. X-chromosome inactivation during spermatogenesis is regulated by an Xist/Tsix-independent mechanism in the mouse. Genesis 34, 257–266 (2002).

    CAS  PubMed  Google Scholar 

  146. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    CAS  PubMed  Google Scholar 

  147. Takagi, N. & Sasaki, M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642 (1975).

    CAS  PubMed  Google Scholar 

  148. Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    CAS  PubMed  Google Scholar 

  149. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    CAS  PubMed  Google Scholar 

  150. Dossin, F. et al. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature 578, 455–460 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Almeida, M. et al. PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356, 1081–1084 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Pintacuda, G. et al. hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish Polycomb-mediated chromosomal silencing. Mol. Cell 68, 955–969.e10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Colognori, D., Sunwoo, H., Kriz, A. J., Wang, C. Y. & Lee, J. T. Xist deletional analysis reveals an interdependency between Xist RNA and polycomb complexes for spreading along the inactive X. Mol. Cell 74, 101–117.e10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Zylicz, J. J. et al. The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182–197.e23 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Galupa, R. & Heard, E. X-chromosome inactivation: a crossroads between chromosome architecture and gene regulation. Annu. Rev. Genet. 52, 535–566 (2018).

    CAS  PubMed  Google Scholar 

  156. Jegu, T., Aeby, E. & Lee, J. T. The X chromosome in space. Nat. Rev. Genet. 18, 377–389 (2017).

    CAS  PubMed  Google Scholar 

  157. Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Developmental Cell 7, 663–676 (2004).

    PubMed  Google Scholar 

  159. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    CAS  PubMed  Google Scholar 

  160. Wang, L. et al. Hierarchical recruitment of Polycomb group silencing complexes. Mol. Cell 14, 637–646 (2004).

    CAS  PubMed  Google Scholar 

  161. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  PubMed  Google Scholar 

  162. Tavares, L. et al. RYBP–PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664–678 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Morey, L., Aloia, L., Cozzuto, L., Benitah, S. A. & Di Croce, L. RYBP and Cbx7 define specific biological functions of Polycomb complexes in mouse embryonic stem cells. Cell Rep. 3, 60–69 (2013).

    CAS  PubMed  Google Scholar 

  164. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111, 185–196 (2002).

    CAS  PubMed  Google Scholar 

  165. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    CAS  PubMed  Google Scholar 

  167. Li, H. et al. Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549, 287–291 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Cooper, S. et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat. Commun. 7, 13661 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Fursova, N. A. et al. Synergy between variant PRC1 complexes defines Polycomb-mediated gene repression. Mol. Cell 74, 1020–1036.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. O’Carroll, D. et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol. 21, 4330–4336 (2001).

    PubMed  PubMed Central  Google Scholar 

  171. Akasaka, T. et al. Mice doubly deficient for the polycomb group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development 128, 1587–1597 (2001).

    CAS  PubMed  Google Scholar 

  172. Moussa, H. F. et al. Canonical PRC1 controls sequence-independent propagation of Polycomb-mediated gene silencing. Nat. Commun. 10, 1931 (2019).

    PubMed  PubMed Central  Google Scholar 

  173. Blackledge, N. P., Rose, N. R. & Klose, R. J. Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat. Rev. Mol. Cell Biol. 16, 643–649 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kuroda, M. I., Kang, H., De, S. & Kassis, J. A. Dynamic competition of polycomb and trithorax in transcriptional programming. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-120219-103641 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Liefeld for critical reading of the manuscript. This work was supported by Howard Hughes Medical Institute (HHMI) and NIH (R01HD092465). Y.Z. is an Investigator from the HHMI.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks G, Kelsey, W. Xie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pronuclear transfer

A technique that involves moving one or both pronuclei (which are formed from the sperm and oocyte genomes shortly after fertilization) from a fertilized one-cell embryo to a different recipient embryo.

DNA methylation

An epigenetic modification in which a methyl group is added to the fifth carbon of a cytosine in a DNA molecule. DNA methylation at gene promoters is generally associated with transcriptional silencing.

Somatic DMRs

Also known as secondary differentially methylated regions (DMRs), somatic DMRs are regions of the genome containing allele-specific DNA methylation that is established after fertilization.

Primordial germ cells

Precursors of the gametes that are specified from the somatic lineage during gastrulation.

4C-seq

A sequencing-based method that allows unbiased detection of all genomic regions that interact with a genomic region of interest.

Topologically associated domain

(TAD). A major form of chromatin organization that represents genomic regions with high frequencies of self-interacting events.

CpG islands

Genomic regions with a high density of CpG dinucleotides. In mammalian genomes, CpG islands usually extend from 200 bp to a few kilobase pairs.

DNase I hypersensitivity sites

(DHSs). Chromatin regions that are less condensed and more sensitive to DNase I enzyme-mediated cleavage than other regions.

Protamines

Basic proteins that replace histones in mature sperm cells and are involved in sperm DNA condensation.

Epiblast

One of the two lineages that are derived from the inner cell mass (ICM) of the blastocyst. The epiblast contributes to all three primary germ layers. The primitive endoderm, the other lineage derived from the ICM, contributes to the yolk sac.

Parthenogenetic activation

A procedure that mimics sperm stimuli to trigger egg activation to initiate embryo development without the contribution of the paternal genome.

Meiotic sex chromosome inactivation

The process of silencing X and Y chromosomes during the meiotic phase of spermatogenesis.

CHG methylation

DNA methylation typically occurs in a CpG context. In CHG methylation, H correspond to A, T or C, but not G.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhang, Y. Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nat Rev Genet 21, 555–571 (2020). https://doi.org/10.1038/s41576-020-0245-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-0245-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing