Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long-read human genome sequencing and its applications

Abstract

Over the past decade, long-read, single-molecule DNA sequencing technologies have emerged as powerful players in genomics. With the ability to generate reads tens to thousands of kilobases in length with an accuracy approaching that of short-read sequencing technologies, these platforms have proven their ability to resolve some of the most challenging regions of the human genome, detect previously inaccessible structural variants and generate some of the first telomere-to-telomere assemblies of whole chromosomes. Long-read sequencing technologies will soon permit the routine assembly of diploid genomes, which will revolutionize genomics by revealing the full spectrum of human genetic variation, resolving some of the missing heritability and leading to the discovery of novel mechanisms of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of short-read sequencing technologies.
Fig. 2: Overview of long-read sequencing technologies.
Fig. 3: PacBio and ONT long-read data types.
Fig. 4: Long-read data improve genome assembly.
Fig. 5: Long-read data provide insights into the biological relevance of structural variation and human evolution and diversity.
Fig. 6: Long-read platforms can be used to sequence RNA and detect nucleic acid modifications.

Similar content being viewed by others

References

  1. van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet. 34, 666–681 (2018).

    PubMed  Google Scholar 

  2. Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–353 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sudmant, P. H. et al. Global diversity, population stratification, and selection of human copy-number variation. Science 349, aab3761 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Simonson, T. S. et al. Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72–75 (2010).

    CAS  PubMed  Google Scholar 

  8. Sudmant, P. H. et al. Diversity of human copy number variation and multicopy genes. Science 330, 641–646 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019). This study compares multiple sequence and mapping technologies for the genomes of three parent–child trios and quantifies the amount of missing genetic variation. A method, Phased-SV, is developed that partitions long-read data on the basis of phased single-nucleotide polymorphisms, which resolves the sequence of both structural haplotypes.

    PubMed  PubMed Central  Google Scholar 

  10. 1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Google Scholar 

  11. Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J. & Eichler, E. E. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11, 1005–1017 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hodgkinson, A., Chen, Y. & Eyre-Walker, A. The large-scale distribution of somatic mutations in cancer genomes. Hum. Mutat. 33, 136–143 (2012).

    CAS  PubMed  Google Scholar 

  13. Hills, M., Jeyapalan, J. N., Foxon, J. L. & Royle, N. J. Mutation mechanisms that underlie turnover of a human telomere-adjacent segmental duplication containing an unstable minisatellite. Genomics 89, 480–489 (2007).

    CAS  PubMed  Google Scholar 

  14. Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10, 551–564 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng, G. X. Y. et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 34, 303–311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, F. et al. Haplotype phasing of whole human genomes using bead-based barcode partitioning in a single tube. Nat. Biotechnol. 35, 852–857 (2017).

    CAS  PubMed  Google Scholar 

  17. Wang, O. et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res. 29, 798–808 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, R. et al. Illumina synthetic long read sequencing allows recovery of missing sequences even in the “finished” C. elegans genome. Sci. Rep. 5, 10814 (2015).

    Google Scholar 

  19. Peters, B. A. et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487, 190–195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghurye, J. et al. Integrating Hi-C links with assembly graphs for chromosome-scale assembly. PLoS Comput. Biol. 15, e1007273 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Garg, S. et al. Efficient chromosome-scale haplotype-resolved assembly of human genomes. Preprint at bioRxiv https://doi.org/10.1101/810341 (2019).

    Article  Google Scholar 

  23. Harewood, L. et al. Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biol. 18, 125 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Chu, J., Mohamadi, H., Warren, R. L., Yang, C. & Birol, I. Innovations and challenges in detecting long read overlaps: an evaluation of the state-of-the-art. Bioinformatics 33, 1261–1270 (2017).

    CAS  PubMed  Google Scholar 

  25. Jung, H., Winefield, C., Bombarely, A., Prentis, P. & Waterhouse, P. Tools and strategies for long-read sequencing and de novo assembly of plant genomes. Trends Plant Sci. 24, 700–724 (2019).

    CAS  PubMed  Google Scholar 

  26. Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 19, 329–346 (2018).

    CAS  PubMed  Google Scholar 

  27. Chaisson, M. J. P., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 16, 627–640 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pollard, M. O., Gurdasani, D., Mentzer, A. J., Porter, T. & Sandhu, M. S. Long reads: their purpose and place. Hum. Mol. Genet. 27, R234–R241 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mantere, T., Kersten, S. & Hoischen, A. Long-read sequencing emerging in medical genetics. Front. Genet. 10, 426 (2019).

  30. Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape genomes. Science 360, eaar6343 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Audano, P. A. et al. Characterizing the major structural variant alleles of the human genome. Cell 176, 663–675.e19 (2019). This article provides a large catalogue of sequence-resolved structural variants based on long-read sequence analysis of a diverse panel of 15 genomes and identifies instances where the human reference has a minor allele for a structural variant. It also develops a machine learning-based approach for genotyping sequence-resolved structural variants in Illumina whole-genome shotgun sequence data, which led to the discovery of expression quantitative trait loci and new lead variants for genome-wide association studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Huddleston, J. et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 27, 677–685 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015). This article describes one of the first methods for sequencing and assembling structural variation from long-read sequence data. It shows that most of these variants are novel, and thus a large amount of human genetic variation is missed with short-read sequencing approaches.

    CAS  PubMed  Google Scholar 

  34. Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Preprint at bioRxiv https://doi.org/10.1101/735928 (2019). This landmark study shows that PacBio and ONT long reads are able to generate a de novo genome assembly superior in contiguity to all other genome assemblies (including hg38). Importantly, it reveals the first telomere-to-telomere sequence assembly of a human chromosome and shows that it is possible to resolve megabase-sized arrays of near-identical tandem repeats (that is, the centromere) with long and ultra-long reads.

    Article  Google Scholar 

  35. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018). This article demonstrates that ONT ultra-long reads can be used for de novo human genome assembly. Additionally, this assembly resolved both haplotypes of the human major histocompatibility locus for the first time.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0503-6 (2020). This study describes the rapid assembly of 11 human genomes using ONT long reads, and it debuts a new assembler (Shasta) and polisher (HELEN). This article provides the methodological basis for scalability in human genome assembly using long reads.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Payne, A., Holmes, N., Rakyan, V. & Loose, M. BulkVis: a graphical viewer for Oxford Nanopore bulk FAST5 files. Bioinformatics 35, 2193–2198 (2019).

    CAS  PubMed  Google Scholar 

  38. Rang, F. J., Kloosterman, W. P. & de Ridder, J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 19, 90 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 46, 2159–2168 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Carneiro, M. O. et al. Pacific Biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13, 375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    CAS  PubMed  Google Scholar 

  42. Korlach, J. Understanding accuracy in SMRT® sequencing. PacBio https://www.pacb.com/wp-content/uploads/2015/09/Perspective_UnderstandingAccuracySMRTSequencing.pdf (2015).

  43. Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–289 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Weirather, J. L. et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Res 6, 100 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Fox, E. J., Reid-Bayliss, K. S., Emond, M. J. & Loeb, L. A. Accuracy of next generation sequencing platforms. Next Gener. Seq. Appl. 1, 1000106 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    CAS  PubMed  Google Scholar 

  47. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Vaser, R., Sović, I., Nagarajan, N. & Šikic, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at arXiv https://arxiv.org/abs/1207.3907 (2012).

  50. Gordon, D. et al. Long-read sequence assembly of the gorilla genome. Science 352, aae0344 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).

    CAS  PubMed  Google Scholar 

  52. Vollger, M. R. et al. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Ann. Hum. Genet. 84, 125–140 (2020).

    CAS  PubMed  Google Scholar 

  53. Wenger, A. M. et al. Highly-accurate long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019). This study introduces PacBio HiFi reads as a new data type and reveals the power of highly accurate (greater than 99%), long (greater than 10 kb) reads for de novo genome assembly and structural variant detection.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Vollger, M. R. et al. Long-read sequence and assembly of segmental duplications. Nat. Methods 16, 88–94 (2019). This article quantifies the extent to which segmental duplications remain unassembled in long-read genomes. Additionally, it describes a method to locally reconstruct segmental duplications by partitioning long-read sequence data using paralogous sequence variant graphs and locally assembling them.

    CAS  PubMed  Google Scholar 

  55. Nurk, S. et al. HiCanu: accurate assembly of segmental duplications and allelic variants from high-fidelity long reads. Preprint at bioRxiv https://doi.org/10.1101/2020.03.14.992248 (2020).

    Article  Google Scholar 

  56. Miao, H. et al. Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis. Hereditas 155, 32 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20, 129 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. Li, C. et al. INC-Seq: accurate single molecule reads using nanopore sequencing. Gigascience 5, 34 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wilson, B. D., Eisenstein, M. & Soh, H. T. High-fidelity nanopore sequencing of ultra-short DNA targets. Anal. Chem. 91, 6783–6789 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Oxford Nanopore. 1D squared kit available in the store: boost accuracy, simple prep. Oxford Nanopore Technologies http://nanoporetech.com/about-us/news/1d-squared-kit-available-store-boost-accuracy-simple-prep (2017).

  61. Lewandowski, K. et al. Metagenomic nanopore sequencing of influenza virus direct from clinical respiratory samples. J. Clin. Microbiol. 58, e00963-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Charalampous, T. et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat. Biotechnol. 37, 783–792 (2019).

    CAS  PubMed  Google Scholar 

  63. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12, 780–786 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Okubo, M. et al. GGC repeat expansion of NOTCH2NLC in adult patients with leukoencephalopathy. Ann. Neurol. 86, 962–968 (2019).

    CAS  PubMed  Google Scholar 

  66. Sone, J. et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat. Genet. 51, 1215–1221 (2019). The authors show that PacBio CLRs and ONT long reads can detect structural variation in clinically relevant disease-risk genes, which were previously missed with short-read whole-exome and whole-genome sequencing.

    CAS  PubMed  Google Scholar 

  67. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharp, A. J. et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat. Genet. 38, 1038–1042 (2006).

    CAS  PubMed  Google Scholar 

  69. Hsieh, P. et al. Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science 366, eaax2083 (2019). The authors describe large structural variants, originating in Neanderthals or Denisovans, that show signs of adaptation and positive selection in the Melanesian population. In particular, they use long reads to assemble a 386-kb duplication polymorphism that is present in 79% of Melanesians but generally absent from other populations, demonstrating the importance of developing new human reference genomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Shi, L. et al. Long-read sequencing and de novo assembly of a Chinese genome. Nat. Commun. 7, 12065 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Seo, J.-S. et al. De novo assembly and phasing of a Korean human genome. Nature 538, 243–247 (2016).

    CAS  PubMed  Google Scholar 

  72. International Human Genome Project Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Google Scholar 

  73. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chin, C.-S. & Khalak, A. Human genome assembly in 100 minutes. Preprint at bioRxiv https://doi.org/10.1101/705616 (2019). This article describes a unique and fast genome assembly algorithm called Peregrine that uses PacBio HiFi data. This long-read assembler is able to assemble a human genome in less than 100 minutes or ~30 CPU hours.

    Article  Google Scholar 

  75. Chin, C.-S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    CAS  PubMed  Google Scholar 

  77. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).

    CAS  PubMed  Google Scholar 

  78. Steinberg, K. M. et al. High-quality assembly an individual of Yoruban descent. Preprint at bioRxiv https://doi.org/10.1101/067447 (2016).

    Article  Google Scholar 

  79. Oliver, J. S. et al. High-definition electronic genome maps from single molecule data. Preprint at bioRxiv https://doi.org/10.1101/139840 (2017).

    Article  Google Scholar 

  80. Udall, J. A. & Dawe, R. K. Is it ordered correctly? Validating genome assemblies by optical mapping. Plant Cell 30, 7–14 (2018).

    CAS  PubMed  Google Scholar 

  81. Ameur, A. et al. De novo assembly of two Swedish genomes reveals missing segments from the human GRCh38 reference and improves variant calling of population-scale sequencing data. Genes 9, 486 (2018).

    PubMed Central  Google Scholar 

  82. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv https://arxiv.org/abs/1303.3997 (2013).

  83. Watson, M. & Warr, A. Errors in long-read assemblies can critically affect protein prediction. Nat. Biotechnol. 37, 124–126 (2019).

    CAS  PubMed  Google Scholar 

  84. Koren, S., Phillippy, A. M., Simpson, J. T., Loman, N. J. & Loose, M. Reply to ‘Errors in long-read assemblies can critically affect protein prediction’. Nat. Biotechnol. 37, 127–128 (2019).

    CAS  PubMed  Google Scholar 

  85. Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733–735 (2015).

    CAS  PubMed  Google Scholar 

  86. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017). The authors report a method to detect methylated cytosines in raw ONT reads based on characteristic signal disruptions in ONT data using the computational tool Nanopolish. This tool is used to map methylation within the centromere for the first time.

    CAS  PubMed  Google Scholar 

  87. Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018). The authors demonstrate a method to phase haplotypes for de novo genome assembly known as trio binning in which reads from the parents are used to identity and partition reads from the child into haplotypes before sequence assembly.

    CAS  Google Scholar 

  88. Porubský, D. et al. Direct chromosome-length haplotyping by single-cell sequencing. Genome Res. 26, 1565–1574 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Patterson, M. et al. WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J. Computational Biol. 22, 498–509 (2015).

    CAS  Google Scholar 

  90. Kronenberg, Z. N. et al. Extended haplotype phasing of de novo genome assemblies with FALCON-Phase. Preprint at bioRxiv https://doi.org/10.1101/327064 (2019).

    Article  Google Scholar 

  91. Porubsky, D. et al. A fully phased accurate assembly of an individual human genome. Preprint at bioRxiv https://doi.org/10.1101/855049 (2019).

    Article  Google Scholar 

  92. Eichler, E. E. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661–669 (2001).

    CAS  PubMed  Google Scholar 

  93. Rodriguez, O. L., Ritz, A., Sharp, A. J. & Bashir, A. MsPAC: A tool for haplotype-phased structural variant detection. Bioinformatics 36, 922–924 (2019).

    PubMed Central  Google Scholar 

  94. Bzikadze, A. V. & Pevzner, P. A. centroFlye: assembling centromeres with long error-prone reads. Preprint at bioRxiv https://doi.org/10.1101/772103 (2019).

    Article  Google Scholar 

  95. Ebbert, M. T. W. et al. Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight. Genome Biol. 20, 97 (2019).

    PubMed  PubMed Central  Google Scholar 

  96. Feng, Z. et al. Detecting DNA modifications from SMRT sequencing data by modeling sequence context dependence of polymerase kinetic. PLoS Comput. Biol. 9, e1002935 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single molecule sequencing. Nat. Methods 15, 461–468 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13, 238 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Berlin, K. et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33, 623–630 (2015).

    CAS  PubMed  Google Scholar 

  101. Mizuguchi, T. et al. A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing. J. Hum. Genet. 64, 359–368 (2019).

    CAS  PubMed  Google Scholar 

  102. Merker, J. D. et al. Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genet. Med. 20, 159–163 (2018).

    CAS  PubMed  Google Scholar 

  103. Zeng, S. et al. Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy. J. Med. Genet. 56, 265–270 (2019).

    CAS  PubMed  Google Scholar 

  104. Reiner, J. et al. Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet–Biedl syndrome 9 (BBS9) deletion. NPJ Genom. Med. 3, 3 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. Sato, N. et al. Spinocerebellar ataxia type 31 is associated with ‘inserted’ penta-nucleotide repeats containing (TGGAA)n. Am. J. Hum. Genet. 85, 544–557 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dutta, U. R. et al. Breakpoint mapping of a novel de novo translocation t(X;20)(q11.1;p13) by positional cloning and long read sequencing. Genomics 111, 1108–1114 (2019).

    CAS  PubMed  Google Scholar 

  107. de Jong, L. C. et al. Nanopore sequencing of full-length BRCA1 mRNA transcripts reveals co-occurrence of known exon skipping events. Breast Cancer Res. 19, 127 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. Wenzel, A. et al. Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations. Sci. Rep. 8, 4170 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Ishiura, H. et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat. Genet. 51, 1222–1232 (2019).

    CAS  PubMed  Google Scholar 

  110. Aneichyk, T. et al. Dissecting the causal mechanism of X-linked dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 172, 897–909.e21 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Song, J. H. T., Lowe, C. B. & Kingsley, D. M. Characterization of a human-specific tandem repeat associated with bipolar disorder and schizophrenia. Am. J. Hum. Genet. 103, 421–430 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Carvalho, C. M. B. et al. Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome. Genome Med. 11, 25 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Giesselmann, P. et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 1478–1481 (2019).

    CAS  PubMed  Google Scholar 

  114. Sulovari, A. et al. Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc. Natl Acad. Sci. USA 116, 23243–23253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lei, X. X. et al. TTTCA repeat expansion causes familial cortical myoclonic tremor with epilepsy. Eur. J. Neurol. 26, 513–518 (2019).

    CAS  PubMed  Google Scholar 

  116. Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis. Cell 173, 1356–1369.e22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell 173, 1370–1384.e16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mefford, H. C. et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N. Engl. J. Med. 359, 1685–1699 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Brunetti-Pierri, N. et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat. Genet. 40, 1466–1471 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. He, Y. et al. Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants. Nat. Commun. 10, 4233 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. National Human Genome Research Institute. NHGRI funds centers for advancing the reference sequence of the human genome. Genome.gov https://www.genome.gov/news/news-release/NIH-funds-centers-for-advancing-sequence-of-human-genome-reference (2019).

  122. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018). The authors describe a method to sequence full-length native RNA molecules with ONT sequencing technologies, simplifying the process by removing the steps to convert RNA into cDNA before sequencing.

    CAS  PubMed  Google Scholar 

  123. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Soneson, C. et al. A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes. Nat. Commun. 10, 3359 (2019).

    PubMed  PubMed Central  Google Scholar 

  125. Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Vilfan, I. D. et al. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J. Nanobiotechnol. 11, 8 (2013).

    CAS  Google Scholar 

  127. Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol. 31, 1009–1014 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Au, K. F. et al. Characterization of the human ESC transcriptome by hybrid sequencing. Proc. Natl Acad. Sci. USA 110, E4821–E4830 (2013). This article shows that full-length mRNA transcripts can be sequenced from end to end to identify novel gene isoforms using the PacBio Iso-Seq method. This article also provides a catalogue of the poly(A) transcriptome in human embryonic stem cells using a combination of Iso-Seq and short-read sequencing data.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Byrne, A. et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat. Commun. 8, 16027 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Oikonomopoulos, S., Wang, Y. C., Djambazian, H., Badescu, D. & Ragoussis, J. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. Sci. Rep. 6, 31602 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Dougherty, M. L. et al. Transcriptional fates of human-specific segmental duplications in brain. Genome Res. 28, 1566–1576 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Volden, R. et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc. Natl Acad. Sci. USA 115, 9726–9731 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Clark, M. B. et al. Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. Mol Psychiatry 25, 37–47 (2020).

    CAS  PubMed  Google Scholar 

  136. Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Clark, T. A. et al. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 40, e29 (2012).

    CAS  PubMed  Google Scholar 

  138. Huang, Y. et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5, e8888 (2010).

    PubMed  PubMed Central  Google Scholar 

  139. Pacific Biosciences. Detecting DNA base modifications using single molecule, real-time sequencing. PacBio https://www.pacb.com/wp-content/uploads/2015/09/WP_Detecting_DNA_Base_Modifications_Using_SMRT_Sequencing.pdf (2015).

  140. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. An, N., Fleming, A. M., White, H. S. & Burrows, C. J. Nanopore detection of 8-oxoguanine in the human telomere repeat sequence. ACS Nano 9, 4296–4307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu, H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Leger, A. et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/843136 (2019).

    Article  Google Scholar 

  144. Lorenz, D. A., Sathe, S., Einstein, J. M. & Yeo, G. W. Direct RNA sequencing enables m6A detection in endogenous transcript isoforms at base specific resolution. RNA https://doi.org/10.1261/rna.072785.119 (2019).

    Article  PubMed  Google Scholar 

  145. Li, Y. & Tollefsbol, T. O. DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol. Biol. 791, 11–21 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Schaefer, M., Pollex, T., Hanna, K. & Lyko, F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res. 37, e12 (2009).

    PubMed  Google Scholar 

  147. Levanon, E. Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    CAS  PubMed  Google Scholar 

  148. Incarnato, D. et al. High-throughput single-base resolution mapping of RNA 2΄-O-methylated residues. Nucleic Acids Res. 45, 1433–1441 (2017).

    CAS  PubMed  Google Scholar 

  149. Bakin, A. V. & Ofengand, J. Mapping of pseudouridine residues in RNA to nucleotide resolution. Methods Mol. Biol. 77, 297–309 (1998).

    CAS  PubMed  Google Scholar 

  150. Tsai, Y.-C. et al. Amplification-free, CRISPR-Cas9 targeted enrichment and SMRT sequencing of repeat-expansion disease causative genomic regions. Preprint at bioRxiv https://doi.org/10.1101/203919 (2017).

    Article  Google Scholar 

  151. Hafford-Tear, N. J. et al. CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy–associated TCF4 triplet repeat. Genet. Med. 21, 2092–2102 (2019).

    PubMed  PubMed Central  Google Scholar 

  152. Suzuki, Y. et al. AgIn: measuring the landscape of CpG methylation of individual repetitive elements. Bioinformatics 32, 2911–2919 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ni, P. et al. DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 35, 4586–4595 (2019).

    CAS  PubMed  Google Scholar 

  154. McIntyre, A. B. R. et al. Single-molecule sequencing detection of N6-methyladenine in microbial reference materials. Nat. Commun. 10, 579 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Liu, Q. et al. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10, 2449 (2019).

    PubMed  PubMed Central  Google Scholar 

  156. Stoiber, M. et al. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. Preprint at bioRxiv https://doi.org/10.1101/094672 (2017).

    Article  Google Scholar 

  157. Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/504993 (2019).

    Article  Google Scholar 

  158. Beyter, D. et al. Long read sequencing of 1,817 Icelanders provides insight into the role of structural variants in human disease. Preprint at bioRxiv https://doi.org/10.1101/848366 (2019).

    Article  Google Scholar 

  159. Garrison, E. et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36, 875–879 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Schneider, V. A. et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 27, 849–864 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Li, R. et al. Building the sequence map of the human pan-genome. Nat. Biotechnol. 28, 57–63 (2010).

    CAS  PubMed  Google Scholar 

  162. Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA 108, 1513–1518 (2011).

    CAS  PubMed  Google Scholar 

  163. Sanders, A. D., Falconer, E., Hills, M., Spierings, D. C. J. & Lansdorp, P. M. Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs. Nat. Protoc. 12, 1151–1176 (2017).

    CAS  PubMed  Google Scholar 

  164. Sanders, A. D. et al. Single-cell analysis of structural variations and complex rearrangements with tri-channel processing. Nat. Biotechnol. 38, 343–354 (2020).

    CAS  PubMed  Google Scholar 

  165. Porubsky, D. et al. Dense and accurate whole-chromosome haplotyping of individual genomes. Nat. Commun. 8, 1293 (2017).

    PubMed  PubMed Central  Google Scholar 

  166. Wu, J. K et al. Thrombocytopenia-absent radius syndrome: background, pathophysiology, epidemiology. Medscape https://reference.medscape.com/article/959262-overview (2019).

  167. Rosenfeld, J. A. et al. Proximal microdeletions and microduplications of 1q21.1 contribute to variable abnormal phenotypes. Eur. J. Hum. Genet. 20, 754–761 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. J. Chaisson and D. Porubsky for assistance with the figures, K. Munson for technical assistance and commentarial insight and T. Brown for assistance in editing the manuscript. This work was supported, in part, by grants from the US National Institutes of Health (HG010169 to E.E.E.) and the US National Institute of General Medical Sciences (1F32GM134558-01 to G.A.L.). M.R.V. was supported by a US National Library of Medicine Big Data Training Grant for Genomics and Neuroscience (5T32LM012419-04). E.E.E. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Evan E. Eichler.

Ethics declarations

Competing interests

E.E.E. is on the scientific advisory board of DNAnexus Inc.

Additional information

Peer review information

Nature Reviews Genetics thanks M. Schatz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

All of Us: https://allofus.nih.gov/

Arrow: https://github.com/PacificBiosciences/GenomicConsensus

Loman Labs: https://lab.loman.net/2017/03/09/ultrareads-for-nanopore/

Medaka: https://github.com/nanoporetech/medaka

Nanopolish: https://github.com/jts/nanopolish

Pacific Biosciences: does speed impact quality and yield?: https://github.com/PacificBiosciences/ccs#does-speed-impact-quality-and-yield

Supplementary Information

Glossary

Next-generation sequencing

A sequencing method in which an entire genome is sequenced from fragmented DNA, producing short (less than 300 bp) sequencing reads at high speed and low cost.

Sequence-by-synthesis

A sequencing technology used primarily by Illumina, in which a DNA polymerase synthesizes a strand of DNA complementary to a template by incorporating a fluorescently labelled deoxynucleoside triphosphate that is imaged to identify the base and then cleaved before the process is repeated to determine the order and identity of each base in the DNA strand.

Single-nucleotide variants

Instances in which a single base within a read or genome differs from the base found at the same position in other individuals or populations.

Copy number variants

Instances in which a sequence of bases within a genome differs in the number of copies among individuals or populations.

Indels

Insertions or deletions of bases in the genome of an organism.

Structural variant

A genetic variant greater than 50 bp in length that includes insertions, deletions, inversions or translocations of DNA segments, and copy number differences.

Segmental duplications

Blocks of DNA that are greater than 1 kb in length, occur at more than one site within a genome and share greater than 90% sequence identity.

Linked-read sequencing

A synthetic long-read DNA sequencing method wherein short-read sequencing is applied to long DNA molecules to ‘link’ reads together from the same original long molecule.

Long-read sequencing

A sequencing method used by Pacific Biosciences and Oxford Nanopore Technologies, wherein native DNA or RNA molecules are sequenced in real time, often without the need for amplification, producing reads more than 10 kb in length.

Contigs

Continuous (or ‘contiguous’) sequences of DNA generated by assembling overlapping sequencing reads.

Single-molecule, real-time (SMRT) sequencing

A DNA sequencing method used by Pacific Biosciences wherein the sequence of a single DNA molecule is derived in real time, with no pause after the detection of the bases.

SMRTbell

A double-stranded DNA template used in Pacific Biosciences SMRT sequencing wherein both DNA ends are capped with hairpin adapters. A SMRTbell template is topologically circular and structurally linear.

SMRT Cell

A flow cell comprising arrays of zero-mode waveguide nanostructures used during Pacific Biosciences SMRT sequencing.

Zero-mode waveguides

Nanophotonic devices that confine light to a small observation volume and are part of the SMRT Cell used during Pacific Biosciences SMRT sequencing.

Flow cell

A disposable component of short-read and long-read sequencing platforms that houses the chemistry to sequence DNA and/or RNA molecules.

Subreads

The sequence derived from a single pass of the DNA polymerase as it processes along the SMRTbell template multiple times during Pacific Biosciences SMRT sequencing. Subreads do not contain any adapter sequences.

Homopolymers

Sequences of consecutive identical bases.

Single-pass

The traversal of a single strand within a SMRTbell template by a DNA polymerase during Pacific Biosciences SMRT sequencing.

Polishing tools

Computational tools that increase genome assembly quality and accuracy. These tools typically compare reads to an assembly to derive a more accurate consensus sequence.

Squiggle

A series of voltage shifts that represent overlapping k-mers from a DNA molecule as it translocates through a nanopore during Oxford Nanopore Technologies sequencing.

Sequencing coverage

The average number of unique reads that align to, or ‘cover’, a sequence or genome.

Circular consensus sequencing

(CCS). A sequencing mode used by Pacific Biosciences in which a DNA polymerase makes multiple passes around the SMRTbell template, generating noisy subreads that are computationally combined to generate a highly accurate high-fidelity consensus read.

Polymerase reads

The sequence derived from one or more passes of the DNA polymerase around a SMRTbell template, including both adapters and inserts. Polymerase reads are trimmed to exclude any low-quality regions and are generated by Pacific Biosciences SMRT sequencing.

Read N50

The sequence length of the shortest read at 50% of the total sequencing dataset sorted by read length. In other words, half of the sequencing dataset is in reads larger than or equal to the read N50 size.

ONT long read

A read that is 10–100 kb in length and generated by Oxford Nanopore Technology (ONT) sequencing.

ONT ultra-long read

A read that is greater than 100 kb in length and generated by Oxford Nanopore Technology (ONT) sequencing.

Contig N50

The sequence length of the shortest contig at 50% of the total genome length sorted by contig length. In other words, half of the genome sequence is contained in contigs larger than or equal to the contig N50 size.

Optical mapping

A technique commonly used to scaffold sequence contigs that involves constructing ordered genomic maps from single molecules of DNA with a fluorescent readout.

Electronic mapping

A technique commonly used to scaffold sequence contigs that involves constructing ordered genomic maps from single molecules of DNA with an electronic readout.

Phased de novo genome assembly

A genome assembly in which the maternal and paternal haplotypes are resolved.

Trio binning

A method in which short reads from two parental genomes are used to partition long reads from their offspring into haplotype-specific sets before the assembly of each haplotype.

Paralogous sequence variants

Single nucleotide differences between duplicated loci in the genome that are invariant in a population.

CHM13 human genome

A complete hydatidiform mole (CHM) genome that has lost the maternal genome and duplicated the paternal genome. This genome is currently the focus of the Telomere-to-Telomere (T2T) consortium's genome assembly efforts due to its essentially haploid nature and stable karyotype.

Whole-genome sequencing

Sequencing of the entire genome without using methods for sequencing selection.

SVA

A type of retrotransposon insertion composed of a (CCCTCT)n hexamer simple repeat region at the 5′ end, an Alu-like region, a variable number of tandem repeat (VNTR) region, a short interspersed element of retroviral origin (SINE-R) region, and a poly(A) tail after the putative polyadenylation signal.

Uniparental disomy

Inheritance of two copies of a chromosome or segments of a chromosome from one parent, instead of one copy from each parent.

Expression quantitative trait loci

Loci that explain a fraction of the genetic variant of a gene expression phenotype.

Genome-wide association studies

An approach used in genetics research to associate specific genetic variations with particular traits.

Introgression

The transfer of genetic information from one species to another as a result of hybridization between them and repeat backcrossing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logsdon, G.A., Vollger, M.R. & Eichler, E.E. Long-read human genome sequencing and its applications. Nat Rev Genet 21, 597–614 (2020). https://doi.org/10.1038/s41576-020-0236-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-0236-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research