Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enhancer redundancy in development and disease

An Author Correction to this article was published on 13 April 2021

This article has been updated

Abstract

Shadow enhancers are seemingly redundant transcriptional cis-regulatory elements that regulate the same gene and drive overlapping expression patterns. Recent studies have shown that shadow enhancers are remarkably abundant and control most developmental gene expression in both invertebrates and vertebrates, including mammals. Shadow enhancers might provide an important mechanism for buffering gene expression against mutations in non-coding regulatory regions of genes implicated in human disease. Technological advances in genome editing and live imaging have shed light on how shadow enhancers establish precise gene expression patterns and confer phenotypic robustness. Shadow enhancers can interact in complex ways and may also help to drive the formation of transcriptional hubs within the nucleus. Despite their apparent redundancy, the prevalence and evolutionary conservation of shadow enhancers underscore their key role in emerging metazoan gene regulatory networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Shadow enhancers confer phenotypic robustness in mammals.
Fig. 2: Independent TF inputs to shadow enhancers lead to more robust transcriptional output.
Fig. 3: Shadow enhancers can combine in complex and varied ways.
Fig. 4: Interactions of shadow enhancers with target promoters.
Fig. 5: Shadow enhancers buffer gene expression against non-coding mutations in disease-causing genes.
Fig. 6: Many evolutionary routes potentially lead to shadow enhancer birth.

Similar content being viewed by others

Change history

References

  1. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

    CAS  PubMed  Google Scholar 

  2. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167, 1170–1187 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    CAS  PubMed  Google Scholar 

  5. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2020).

    CAS  PubMed  Google Scholar 

  6. Field, A. & Adelman, K. Evaluating enhancer function and transcription. Annu. Rev. Biochem. 89, 213–234 (2020).

    CAS  PubMed  Google Scholar 

  7. Visel, A., Rubin, E. M. & Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoch, M., Schröder, C., Seifert, E. & Jäckle, H. cis-acting control elements for Krüppel expression in the Drosophila embryo. EMBO J. 9, 2587–2595 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kassis, J. A. Spatial and temporal control elements of the Drosophila engrailed gene. Genes Dev. 4, 433–443 (1990).

    CAS  PubMed  Google Scholar 

  10. Zeitlinger, J. et al. Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. Genes Dev. 21, 385–390 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeong, Y., El-Jaick, K., Roessler, E., Muenke, M. & Epstein, D. J. A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development 133, 761–772 (2006).

    CAS  PubMed  Google Scholar 

  12. Kurokawa, D. et al. Regulation of Otx2 expression and its functions in mouse forebrain and midbrain. Development 131, 3319–3331 (2004).

    CAS  PubMed  Google Scholar 

  13. Hong, J.-W., Hendrix, D. A. & Levine, M. S. Shadow enhancers as a source of evolutionary novelty. Science 321, 1314 (2008). This article introduces the term ‘shadow enhancer’ to describe several enhancers important for dorsal–ventral patterning in the fly embryo and speculates on the evolutionary role of shadow enhancers.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Barolo, S. Shadow enhancers: frequently asked questions about distributed cis-regulatory information and enhancer redundancy. Bioessays 34, 135–141 (2012).

    CAS  PubMed  Google Scholar 

  15. Hobert, O. Gene regulation: enhancers stepping out of the shadow. Curr. Biol. 20, R697–R699 (2010).

    CAS  PubMed  Google Scholar 

  16. Cannavò, E. et al. Shadow enhancers are pervasive features of developmental regulatory networks. Curr. Biol. 26, 38–51 (2016). In this study, the authors identify more than 1,000 shadow enhancers that pattern D. melanogaster mesoderm; sequence conservation suggests that these shadow enhancers play a key role in development.

    PubMed  PubMed Central  Google Scholar 

  17. Wunderlich, Z. et al. Krüppel expression levels are maintained through compensatory evolution of shadow enhancers. Cell Rep. 12, 1740–1747 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Antosova, B. et al. The gene regulatory network of lens induction is wired through meis-dependent shadow enhancers of Pax6. PLoS Genet. 12, e1006441 (2016). This is one of the first studies to examine the phenotypic impact of double shadow enhancer deletions and shadow enhancer deletions on a sensitized background in mice.

    PubMed  PubMed Central  Google Scholar 

  19. Letelier, J. et al. A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat. Genet. 50, 504–509 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nolte, C., Jinks, T., Wang, X., Martinez Pastor, M. T. & Krumlauf, R. Shadow enhancers flanking the HoxB cluster direct dynamic Hox expression in early heart and endoderm development. Dev. Biol. 383, 158–173 (2013).

    CAS  PubMed  Google Scholar 

  21. Swami, M. Transcription: shadow enhancers confer robustness. Nat. Rev. Genet. 11, 454 (2010).

    CAS  PubMed  Google Scholar 

  22. Ghiasvand, N. M. et al. Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat. Neurosci. 14, 578–586 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Watts, J. A. et al. Study of FoxA pioneer factor at silent genes reveals Rfx-repressed enhancer at Cdx2 and a potential indicator of esophageal adenocarcinoma development. PLoS Genet. 7, e1002277 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lagha, M., Bothma, J. P. & Levine, M. Mechanisms of transcriptional precision in animal development. Trends Genet. 28, 409–416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stefanakis, N., Carrera, I. & Hobert, O. Regulatory logic of pan-neuronal gene expression in C. elegans. Neuron 87, 733–750 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Frankel, N. et al. Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature 466, 490–493 (2010). This article describes the phenotypic impact of shadow enhancer deletions on bristle formation in fly larvae. Along with Perry et al. (2010), it was among the first to show that shadow enhancers are required for proper development under stressful conditions.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Perry, M. W., Boettiger, A. N., Bothma, J. P. & Levine, M. Shadow enhancers foster robustness of Drosophila gastrulation. Curr. Biol. 20, 1562–1567 (2010). This article describes the phenotypic impact of shadow enhancer deletions on gastrulation in fly embryos. Along with Frankel et al. (2010), it was among the first to show that shadow enhancers are required for proper development under stressful conditions.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Perry, M. W., Boettiger, A. N. & Levine, M. Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo. Proc. Natl Acad. Sci. USA 108, 13570–13575 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243 (2018). This study uses mouse ENCODE data and systematic deletions (both individual and pairs) of ten different mouse limb enhancers to show widespread redundancy in mammalian genomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sagai, T. et al. SHH signaling directed by two oral epithelium-specific enhancers controls tooth and oral development. Sci. Rep. 7, 13004 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–364 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Roadmap Epigenomics Consortium. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    PubMed Central  Google Scholar 

  34. Abascal, F. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Google Scholar 

  35. Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).

    CAS  PubMed  Google Scholar 

  38. Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006).

    CAS  PubMed  Google Scholar 

  39. Manning, L. et al. A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Rep. 2, 1002–1013 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kvon, E. Z. Using transgenic reporter assays to functionally characterize enhancers in animals. Genomics 106, 185–192 (2015).

    CAS  PubMed  Google Scholar 

  41. Gallo, S. M. et al. REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Res. 39, D118–D123 (2011).

    CAS  PubMed  Google Scholar 

  42. Bonn, S. et al. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat. Genet. 44, 148–156 (2012).

    CAS  PubMed  Google Scholar 

  43. Kvon, E. Z. et al. Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512, 91–95 (2014).

    CAS  PubMed  Google Scholar 

  44. Lopes, R., Korkmaz, G. & Agami, R. Applying CRISPR-Cas9 tools to identify and characterize transcriptional enhancers. Nat. Rev. Mol. Cell Biol. 17, 597–604 (2016).

    CAS  PubMed  Google Scholar 

  45. Catarino, R. R. & Stark, A. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes Dev. 32, 202–223 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Klein, J. C., Chen, W., Gasperini, M. & Shendure, J. Identifying novel enhancer elements with CRISPR-based screens. ACS Chem. Biol. 13, 326–332 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wright, J. B. & Sanjana, N. E. CRISPR screens to discover functional noncoding elements. Trends Genet. 32, 526–529 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Garcia, H. G., Tikhonov, M., Lin, A. & Gregor, T. Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol. 23, 2140–2145 (2013).

    CAS  PubMed  Google Scholar 

  49. Lucas, T. et al. Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr. Biol. 23, 2135–2139 (2013).

    CAS  PubMed  Google Scholar 

  50. Twell, D., Yamaguchi, J., Wing, R. A., Ushiba, J. & McCormick, S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 5, 496–507 (1991).

    CAS  PubMed  Google Scholar 

  51. Poulsen, C. & Chua, N. H. Dissection of 5’ upstream sequences for selective expression of the Nicotiana plumbaginifolia rbcS-8B gene. Mol. Gen. Genet. 214, 16–23 (1988).

    CAS  PubMed  Google Scholar 

  52. Camprodón, F. J. & Castelli-Gair, J. E. Ultrabithorax protein expression in breakpoint mutants: localization of single, co-operative and redundant cis regulatory elements. Rouxs. Arch. Dev. Biol. 203, 411–421 (1994).

    PubMed  Google Scholar 

  53. Bachmann, A. & Knust, E. Dissection of cis-regulatory elements of the Drosophila gene Serrate. Dev. Genes Evol. 208, 346–351 (1998).

    CAS  PubMed  Google Scholar 

  54. Schroeder, M. D. et al. Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol. 2, E271 (2004).

    PubMed  PubMed Central  Google Scholar 

  55. Pappu, K. S. et al. Dual regulation and redundant function of two eye-specific enhancers of the Drosophila retinal determination gene dachshund. Development 132, 2895–2905 (2005).

    CAS  PubMed  Google Scholar 

  56. Yao, L. C. et al. Multiple modular promoter elements drive graded brinker expression in response to the Dpp morphogen gradient. Development 135, 2183–2192 (2008).

    CAS  PubMed  Google Scholar 

  57. Ertzer, R. et al. Cooperation of sonic hedgehog enhancers in midline expression. Dev. Biol. 301, 578–589 (2007).

    CAS  PubMed  Google Scholar 

  58. Nakada, Y., Parab, P., Simmons, A., Omer-Abdalla, A. & Johnson, J. E. Separable enhancer sequences regulate the expression of the neural bHLH transcription factor neurogenin 1. Dev. Biol. 271, 479–487 (2004).

    CAS  PubMed  Google Scholar 

  59. Menke, D. B., Guenther, C. & Kingsley, D. M. Dual hindlimb control elements in the Tbx4 gene and region-specific control of bone size in vertebrate limbs. Development 135, 2543–2553 (2008).

    CAS  PubMed  Google Scholar 

  60. Li, Q., Peterson, K. R., Fang, X. & Stamatoyannopoulos, G. Locus control regions. Blood 100, 3077–3086 (2002).

    CAS  PubMed  Google Scholar 

  61. Grosveld, F., van Assendelft, G. B., Greaves, D. R. & Kollias, G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51, 975–985 (1987).

    CAS  PubMed  Google Scholar 

  62. Zhou, X. & Sigmund, C. D. Chorionic enhancer is dispensable for regulated expression of the human renin gene. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R279 (2008).

    CAS  PubMed  Google Scholar 

  63. Allan, C. M., Walker, D. & Taylor, J. M. Evolutionary duplication of a hepatic control region in the human apolipoprotein E gene locus. Identification of a second region that confers high level and liver-specific expression of the human apolipoprotein E gene in transgenic mice. J. Biol. Chem. 270, 26278–26281 (1995).

    CAS  PubMed  Google Scholar 

  64. Babbitt, C. C., Markstein, M. & Gray, J. M. Recent advances in functional assays of transcriptional enhancers. Genomics 106, 137–139 (2015).

    CAS  PubMed  Google Scholar 

  65. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  PubMed  Google Scholar 

  66. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Parker, S. C. J. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl Acad. Sci. USA 110, 17921–17926 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hay, D. et al. Genetic dissection of the α-globin super-enhancer in vivo. Nat. Genet. 48, 895–903 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pott, S. & Lieb, J. D. What are super-enhancers? Nat. Genet. 47, 8–12 (2015).

    CAS  PubMed  Google Scholar 

  70. Dukler, N., Gulko, B., Huang, Y.-F. & Siepel, A. Is a super-enhancer greater than the sum of its parts? Nat. Genet. 49, 2–3 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Li, W., Notani, D. & Rosenfeld, M. G. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat. Rev. Genet. 17, 207–223 (2016).

    CAS  PubMed  Google Scholar 

  72. Arner, E. et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347, 1010–1014 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, X. & Goldstein, D. B. Enhancer domains predict gene pathogenicity and inform gene discovery in complex disease. Am. J. Hum. Genet. 106, 215–233 (2020). This study uses human chromatin data from the Roadmap Epigenomics Consortium to show that human genes with large redundant domains are depleted of cis-acting genetic variants that disrupt gene expression, and their expression is buffered against the effects of disruptive non-coding mutations.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    CAS  PubMed  Google Scholar 

  75. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    CAS  PubMed  Google Scholar 

  77. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    PubMed  Google Scholar 

  78. Dickel, D. E. et al. Ultraconserved enhancers are required for normal development. Cell 172, 491–499.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Waymack, R., Fletcher, A., Enciso, G. & Wunderlich, Z. Shadow enhancers can suppress input transcription factor noise through distinct regulatory logic. eLife 9, e59351 (2020). This study in fly embryos shows that a pair of shadow enhancers, each regulated by different TFs, drives lower expression noise than do single or duplicated enhancers.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Visel, A. et al. Functional autonomy of distant-acting human enhancers. Genomics 93, 509–513 (2009).

    CAS  PubMed  Google Scholar 

  81. Bothma, J. P. et al. Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. eLife 4, e07956 (2015). This article investigates how the activities of individual shadow enhancers interact to establish their combined activity in fly embryos and finds a wide range of possible interactions (superadditive, additive, subadditive and repressive) that may depend on the strength of the individual enhancers.

    PubMed Central  Google Scholar 

  82. Lam, D. D. et al. Partially redundant enhancers cooperatively maintain mammalian Pomc expression above a critical functional threshold. PLoS Genet. 11, e1004935 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Scholes, C., Biette, K. M., Harden, T. T. & DePace, A. H. Signal integration by shadow enhancers and enhancer duplications varies across the Drosophila embryo. Cell Rep. 26, 2407–2418.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. El-Sherif, E. & Levine, M. Shadow enhancers mediate dynamic shifts of gap gene expression in the drosophila embryo. Curr. Biol. 26, 1164–1169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dunipace, L., Ozdemir, A. & Stathopoulos, A. Complex interactions between cis-regulatory modules in native conformation are critical for Drosophila snail expression. Development 138, 4075–4084 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dunipace, L., Ákos, Z. & Stathopoulos, A. Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization. PLoS Genet. 15, e1008525 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yan, J. et al. Regulatory logic driving stable levels of defective proventriculus expression during terminal photoreceptor specification in flies. Development 144, 844–855 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bentovim, L., Harden, T. T. & DePace, A. H. Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development 144, 3855–3866 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Robson, M. I., Ringel, A. R. & Mundlos, S. Regulatory landscaping: how enhancer-promoter communication is sculpted in 3D. Mol. Cell 74, 1110–1122 (2019).

    CAS  PubMed  Google Scholar 

  90. Zabidi, M. A. & Stark, A. Regulatory enhancer-core-promoter communication via transcription factors and cofactors. Trends Genet. 32, 801–814 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Proudhon, C. et al. Active and inactive enhancers cooperate to exert localized and long-range control of gene regulation. Cell Rep. 15, 2159–2169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jiang, T. et al. Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions. Nucleic Acids Res. 44, 8714–8725 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).

    CAS  PubMed  Google Scholar 

  94. Allahyar, A. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50, 1151–1160 (2018).

    CAS  PubMed  Google Scholar 

  95. Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lim, B., Heist, T., Levine, M. & Fukaya, T. Visualization of transvection in living drosophila embryos. Mol. Cell 70, 287–296.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Godin, A. G., Lounis, B. & Cognet, L. Super-resolution microscopy approaches for live cell imaging. Biophys. J. 107, 1777–1784 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    CAS  PubMed  Google Scholar 

  99. Chen, H. et al. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, H. & Gregor, T. in RNA Tagging: Methods and Protocols (ed. Heinlein, M.) 373–384 (Springer, 2020).

  101. Reiter, F., Wienerroither, S. & Stark, A. Combinatorial function of transcription factors and cofactors. Curr. Opin. Genet. Dev. 43, 73–81 (2017).

    CAS  PubMed  Google Scholar 

  102. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Montavon, T. et al. A regulatory archipelago controls Hox genes transcription in digits. Cell 147, 1132–1145 (2011).

    CAS  PubMed  Google Scholar 

  105. Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jackson, D. A., Iborra, F. J., Manders, E. M. & Cook, P. R. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol. Biol. Cell 9, 1523–1536 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Cisse, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667 (2013).

    CAS  PubMed  Google Scholar 

  108. Benabdallah, N. S. et al. Decreased enhancer-promoter proximity accompanying enhancer activation. Mol. Cell 76, 473–484.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 8, e41769 (2019).

    PubMed  PubMed Central  Google Scholar 

  110. Tsai, A., Alves, M. R. & Crocker, J. Multi-enhancer transcriptional hubs confer phenotypic robustness. eLife 8, e45325 (2019). This study describes how shadow enhancers may be critical for establishing or maintaining local regions of high TF concentrations required for achieving a certain threshold of gene expression.

    PubMed  PubMed Central  Google Scholar 

  111. Zeitlinger, J. & Stark, A. Developmental gene regulation in the era of genomics. Dev. Biol. 339, 230–239 (2010).

    CAS  PubMed  Google Scholar 

  112. Cretekos, C. J. et al. Regulatory divergence modifies limb length between mammals. Genes Dev. 22, 141–151 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Manis, J. P. et al. Class switching in B cells lacking 3′ immunoglobulin heavy chain enhancers. J. Exp. Med. 188, 1421–1431 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bender, M. A. et al. Description and targeted deletion of 5’ hypersensitive site 5 and 6 of the mouse beta-globin locus control region. Blood 92, 4394–4403 (1998).

    CAS  PubMed  Google Scholar 

  115. Fiering, S. et al. Targeted deletion of 5’HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. Genes Dev. 9, 2203–2213 (1995).

    CAS  PubMed  Google Scholar 

  116. Attanasio, C. et al. Fine tuning of craniofacial morphology by distant-acting enhancers. Science 342, 1241006 (2013).

    PubMed  PubMed Central  Google Scholar 

  117. Nolte, M. J. et al. Functional analysis of limb transcriptional enhancers in the mouse. Evol. Dev. 16, 207–223 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ahituv, N. et al. Deletion of ultraconserved elements yields viable mice. PLoS Biol. 5, e234 (2007).

    PubMed  PubMed Central  Google Scholar 

  119. Cunningham, T. J., Lancman, J. J., Berenguer, M., Dong, P. D. S. & Duester, G. Genomic knockout of two presumed forelimb Tbx5 enhancers reveals they are nonessential for limb development. Cell Rep. 23, 3146–3151 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hill, R. E. & Lettice, L. A. Alterations to the remote control of Shh gene expression cause congenital abnormalities. Phil. Trans. R. Soc. B 368, 20120357 (2013).

    PubMed  PubMed Central  Google Scholar 

  121. Gupta, R. M. et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell 170, 522–533.e15 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Huang, L. et al. A noncoding, regulatory mutation implicates HCFC1 in nonsyndromic intellectual disability. Am. J. Hum. Genet. 91, 694–702 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wright, J. B., Brown, S. J. & Cole, M. D. Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol. Cell. Biol. 30, 1411–1420 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sur, I. K. et al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science 338, 1360–1363 (2012).

    CAS  PubMed  Google Scholar 

  125. Oktay, Y. et al. IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation. Sci. Rep. 6, 27569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Inoue, F. & Ahituv, N. Decoding enhancers using massively parallel reporter assays. Genomics 106, 159–164 (2015).

    CAS  PubMed  Google Scholar 

  127. Kvon, E. Z. et al. Comprehensive in vivo interrogation reveals phenotypic impact of human enhancer variants. Cell 180, 1262–1271.e15 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kircher, M. et al. Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. Nat. Commun. 10, 3583 (2019).

    PubMed  PubMed Central  Google Scholar 

  129. Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Saleque, S. et al. Dyad symmetry within the mouse 3’ IgH regulatory region includes two virtually identical enhancers (C alpha3’E and hs3). J. Immunol. 158, 4780–4787 (1997).

    CAS  PubMed  Google Scholar 

  131. Barth, N. K. H., Li, L. & Taher, L. Independent transposon exaptation is a widespread mechanism of redundant enhancer evolution in the mammalian genome. Genome Biol. Evol. 12, 1–17 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Franchini, L. F. et al. Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons. Proc. Natl Acad. Sci. USA 108, 15270–15275 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ludwig, M. Z., Bergman, C., Patel, N. H. & Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403, 564–567 (2000).

    CAS  PubMed  Google Scholar 

  135. Arnold, C. D. et al. Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution. Nat. Genet. 46, 685–692 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Berthelot, C., Villar, D., Horvath, J. E., Odom, D. T. & Flicek, P. Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat. Ecol. Evol. 2, 152–163 (2018).

    PubMed  Google Scholar 

  137. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. McGuire, A. L. et al. The road ahead in genetics and genomics. Nat. Rev. Genet. 21, 581–596 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Short, P. J. et al. De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 555, 611–616 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Turro, E. et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 583, 96–102 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Richter, F. et al. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat. Genet. 52, 769–777 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Turner, T. N. et al. Genomic patterns of De novo mutation in simplex autism. Cell 171, 710–722.e12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 1000 Genomes Project Consortium. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Google Scholar 

  145. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Preprint at bioRxiv https://doi.org/10.1101/563866 (2019).

    Article  Google Scholar 

  146. van Arensbergen, J. et al. High-throughput identification of human SNPs affecting regulatory element activity. Nat. Genet. 51, 1160–1169 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. O’Meara, M. M. et al. Cis-regulatory mutations in the Caenorhabditis elegans homeobox gene locus cog-1 affect neuronal development. Genetics 181, 1679–1686 (2009).

    PubMed  PubMed Central  Google Scholar 

  148. Fujioka, M. & Jaynes, J. B. Regulation of a duplicated locus: Drosophila sloppy paired is replete with functionally overlapping enhancers. Dev. Biol. 362, 309–319 (2012).

    CAS  PubMed  Google Scholar 

  149. Bell, K., Skier, K., Chen, K. H. & Gergen, J. P. Two pair-rule responsive enhancers regulate wingless transcription in the Drosophila blastoderm embryo. Dev. Dyn. 249, 556–572 (2020).

    CAS  PubMed  Google Scholar 

  150. Kalay, G., Lachowiec, J., Rosas, U., Dome, M. R. & Wittkopp, P. Redundant and cryptic enhancer activities of the drosophila yellow gene. Genetics 212, 343–360 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Johnson, W. A., McCormick, C. A., Bray, S. J. & Hirsh, J. A neuron-specific enhancer of the Drosophila dopa decarboxylase gene. Genes Dev. 3, 676–686 (1989).

    CAS  PubMed  Google Scholar 

  152. Torbey, P. et al. Cooperation, cis-interactions, versatility and evolutionary plasticity of multiple cis-acting elements underlie krox20 hindbrain regulation. PLoS Genet. 14, e1007581 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Yao, Y. et al. Cis-regulatory architecture of a brain signaling center predates the origin of chordates. Nat. Genet. 48, 575–580 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. de Souza, F. S. J. et al. Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprinting. Mol. Cell. Biol. 25, 3076–3086 (2005).

    PubMed  PubMed Central  Google Scholar 

  155. Degenhardt, K. R. et al. Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expressions. Dev. Biol. 339, 519–527 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. McGreal-Estrada, R. S., Wolf, L. V. & Cvekl, A. Promoter-enhancer looping and shadow enhancers of the mouse αA-crystallin locus. Biol. Open 7, bio036897 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Berlivet, S. et al. Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs. PLoS Genet. 9, e1004018 (2013).

    PubMed  PubMed Central  Google Scholar 

  158. Will, A. J. et al. Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog). Nat. Genet. 49, 1539–1545 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Miesfeld, J. B. et al. The Atoh7 remote enhancer provides transcriptional robustness during retinal ganglion cell development. Proc. Natl Acad. Sci. USA 117, 21690–21700 (2020).

    PubMed  PubMed Central  Google Scholar 

  160. Dimanlig, P. V., Faber, S. C., Auerbach, W., Makarenkova, H. P. & Lang, R. A. The upstream ectoderm enhancer in Pax6 has an important role in lens induction. Development 128, 4415–4424 (2001).

    CAS  PubMed  Google Scholar 

  161. Hui, C. C. & Joyner, A. L. A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat. Genet. 3, 241–246 (1993).

    CAS  PubMed  Google Scholar 

  162. Hogan, B. L. et al. Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. Exp. Morphol. 97, 95–110 (1986).

    CAS  PubMed  Google Scholar 

  163. Hill, R. E. et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants R01HD095246 (to Z.W.) and R00HG009682 (to E.Z.K). R.W. was supported by an ARCS Foundation award. The authors thank A. Visel, D. Dickel, A. Stark, D. Shlyueva and the reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the literature and wrote the article. E.Z.K., R.W. and Z.W. substantially contributed to discussions of the content, and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Evgeny Z. Kvon or Zeba Wunderlich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks A. Cvekl, M. Levine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Expression domains

The specific tissues or cell types where an enhancer drives expression of its target gene.

Phenotypic robustness

The ability of a system to reliably produce a wild-type phenotype in the presence of environmental (for example, temperature) or genetic (for example, decreased expression levels of an upstream transcription factor) stress.

Evolutionary constraint

Factors that serve to limit the divergence of a particular phenotype; conserved DNA sequences are interpreted as evidence of evolutionary constraint.

Super-enhancers or stretch enhancers

Clusters of enhancers that are strongly occupied by transcription factors, co-activators or modified histones (as measured by chromatin immunoprecipitation followed by sequencing) and that control key cell identity genes.

Enhancer-derived RNAs

(eRNAs). Short, non-coding RNAs that are transcribed from the DNA of enhancer sequences and whose transcription correlates with enhancer activity.

Haplosufficiency

A property of an allele whereby a single copy of that allele in a diploid organism is sufficient to drive a wild-type phenotype.

Expression noise

Variability in gene expression across either time or space, owing to the stochastic nature of the molecular interactions underlying gene expression.

Quenching

A form of repression whereby the binding of repressive transcription factors within an enhancer sequence blocks the binding of activating transcription factors.

Transcription bursts

Periods of rapid transcription interspersed with periods of transcriptional silence.

Transcriptional hubs

Three-dimensional nuclear compartments (more than 300 nm) formed around actively transcribed genes with a high local concentration of transcription factors, co-activators, RNA polymerase II and other components of the core transcriptional machinery.

Ultraconserved enhancers

Enhancers overlapping ‘ultraconserved’ sequences, which are stretches of DNA that share perfect sequence conservation between mouse, rat and human.

Transposon co-option

The process by which a transposon changes its function (for example, becomes a new gene or enhancer) through the introduction of sequence mutations.

Topologically associating domain

Large genomic domains (~1 Mb) that display more frequent physical contacts between sequences within the same domain than between sequences from different domains.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvon, E.Z., Waymack, R., Gad, M. et al. Enhancer redundancy in development and disease. Nat Rev Genet 22, 324–336 (2021). https://doi.org/10.1038/s41576-020-00311-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-00311-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing