Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutation–selection balance and compensatory mechanisms in tumour evolution

A Publisher Correction to this article was published on 14 December 2020

This article has been updated

Abstract

Intratumour heterogeneity and phenotypic plasticity, sustained by a range of somatic aberrations, as well as epigenetic and metabolic adaptations, are the principal mechanisms that enable cancers to resist treatment and survive under environmental stress. A comprehensive picture of the interplay between different somatic aberrations, from point mutations to whole-genome duplications, in tumour initiation and progression is lacking. We posit that different genomic aberrations generally exhibit a temporal order, shaped by a balance between the levels of mutations and selective pressures. Repeat instability emerges first, followed by larger aberrations, with compensatory effects leading to robust tumour fitness maintained throughout the tumour progression. A better understanding of the interplay between genetic aberrations, the microenvironment, and epigenetic and metabolic cellular states is essential for early detection and prevention of cancer as well as development of efficient therapeutic strategies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The mutation–selection diagram of tumour evolution.
Fig. 2: The dynamics and role of repeat instability in species and cancer evolution.
Fig. 3: Proposed compensatory relationships between different types of genomic aberration during tumour evolution.

Change history

References

  1. American Cancer Society. Cancer facts & figures 2019. American Cancer Society www.cancer.org (2019).

  2. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    CAS  PubMed  Google Scholar 

  4. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    CAS  PubMed  Google Scholar 

  5. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Faltas, B. M. et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat. Genet. 48, 1490–1499 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nayar, U. et al. Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat. Genet. 51, 207–216 (2019).

    CAS  PubMed  Google Scholar 

  11. Ye, K. et al. Systematic discovery of complex insertions and deletions in human cancers. Nat. Med. 22, 97–104 (2016).

    CAS  PubMed  Google Scholar 

  12. Wooster, R. et al. Instability of short tandem repeats (microsatellites) in human cancers. Nat. Genet. 6, 152–156 (1994).

    CAS  PubMed  Google Scholar 

  13. Hause, R. J., Pritchard, C. C., Shendure, J. & Salipante, S. J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 22, 1342–1350 (2016).

    CAS  PubMed  Google Scholar 

  14. Campbell, B. B. et al. Comprehensive analysis of hypermutation in human cancer. Cell 171, 1042–1056.e10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Persi, E. et al. Proteomic and genomic signatures of repeat instability in cancer and adjacent normal tissues. Proc. Natl Acad. Sci. USA 116, 16987–16996 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Winge, Ö. Zytologische untersuchungen über die natur maligner tumoren [German]. Z. Zellforsch. 10, 683–735 (1930).

    Google Scholar 

  17. Abdel-Rahman, W. M. et al. Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc. Natl Acad. Sci. USA 98, 2538–2543 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189–203 (2012).

    CAS  PubMed  Google Scholar 

  20. Sansregret, L., Vanhaesebroeck, B. & Swanton, C. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 15, 139–150 (2018).

    CAS  PubMed  Google Scholar 

  21. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    CAS  PubMed  Google Scholar 

  23. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50, 1189–1195 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705 (1997).

    CAS  PubMed  Google Scholar 

  27. Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364, eaaw0726 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Reynolds, T. Y., Rockwell, S. & Glazer, P. M. Genetic instability induced by the tumor microenvironment. Cancer Res. 56, 5754–5757 (1996).

    CAS  PubMed  Google Scholar 

  34. Koshiji, M. et al. HIF-1α induces genetic instability by transcriptionally downregulating MutSα expression. Mol. Cell 17, 793–803 (2005).

    CAS  PubMed  Google Scholar 

  35. Gillies, R. J., Verduzco, D. & Gatenby, R. A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat. Rev. Cancer 12, 487–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Alexandrov, L. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  38. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    CAS  PubMed  Google Scholar 

  39. Lipinski, K. A. et al. Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer 2, 49–63 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    CAS  PubMed  Google Scholar 

  41. Gillies, R. J., Brown, J. S., Anderson, A. R. A. & Gatenby, R. A. Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat. Rev. Cancer 18, 576–585 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Feinberg, A. P., Koldobskiy, M. A. & Göndör, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17, 284–299 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kinnaird, A., Zhao, S., Wellen, K. E. & Michelakis, E. D. Metabolic control of epigenetics in cancer. Nat. Rev. Cancer 16, 694–707 (2016).

    CAS  PubMed  Google Scholar 

  45. Gatenby, R. A. & Gillies, R. J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 8, 56–61 (2008).

    CAS  PubMed  Google Scholar 

  46. Gatenby, R. A., Gillies, R. J. & Brown, J. S. Of cancer and cave fish. Nat. Rev. Cancer 11, 237–238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lloyd, M. C. et al. Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Res. 76, 3136–3144 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Maley, C. C. et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).

    CAS  PubMed  Google Scholar 

  50. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983).

  51. Lynch, M. The Origins of Genome Architecture (Sinauer Associates (1723), 2007).

  52. Koonin, E. V. The Logic of Chance: The Nature and Origin of Biological Evolution 1st edn (FT Press Science, 2012).

  53. Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).

    CAS  PubMed  Google Scholar 

  54. Haigh, J. The accumulation of deleterious genes in a population — Muller’s ratchet. Theor. Popul. Biol. 14, 251–267 (1978).

    CAS  PubMed  Google Scholar 

  55. Dolja, V. V. & Koonin, E. V. Common origins and host-dependent diversity of plant and animal viromes. Curr. Opin. Virol. 1, 322–331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Reuter, S. et al. Parallel independent evolution of pathogenicity within the genus Yersinia. Proc. Natl Acad. Sci. USA 111, 6768–6773 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kimura, M. On the probability of fixation of mutant genes in a population. Genetics 47, 713–719 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl Acad. Sci. USA 107, 18545–18550 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Goyal, S. et al. Dynamic mutation-selection balance as an evolutionary attractor. Genetics 191, 1309–1319 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. McFarland, C. D., Korolev, K. S., Kryukov, G. V., Sunyaev, S. R. & Mirny, L. A. Impact of deleterious passenger mutations on cancer progression. Proc. Natl Acad. Sci. USA 110, 2910–2915 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. McFarland, C. D., Mirny, L. A. & Korolev, K. S. Tug-of-war between driver and passenger mutations in cancer and other adaptive processes. Proc. Natl Acad. Sci. USA 111, 15138–15143 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. B 34, 187–220 (1972).

    Google Scholar 

  66. Persi, E., Wolf, Y. I., Leiserson, M. D. M., Koonin, E. V. & Ruppin, E. Criticality in tumor evolution and clinical outcome. Proc. Natl Acad. Sci. USA 115, E11101–E11110 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. McFarland, C. D. et al. The damaging effect of passenger mutations on cancer progression. Cancer Res. 77, 4763–4772 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Weghorn, D. & Sunyaev, S. Bayesian inference of negative and positive selection in human cancers. Nat. Genet. 49, 1785–1788 (2017).

    CAS  PubMed  Google Scholar 

  70. Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Williams, M. J. et al. Quantification of subclonal selection in cancer from bulk sequencing data. Nat. Genet. 50, 895–903 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kumar, S. et al. Passenger mutations in more than 2,500 cancer genomes: overall molecular functional impact and consequences. Cell 180, 915–927.e16 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. López, S. et al. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 52, 283–293 (2020).

    PubMed  PubMed Central  Google Scholar 

  74. Kashi, Y. & King, D. G. Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 22, 253–259 (2006).

    CAS  PubMed  Google Scholar 

  75. Gemayel, R., Vinces, M. D., Legendre, M. & Verstrepen, K. J. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Ann. Rev. Genet. 44, 445–477 (2010).

    CAS  PubMed  Google Scholar 

  76. Chavali, S. et al. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins. Nat. Struct. Mol. Biol. 24, 765–777 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Levinson, G. & Gutman, G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203–221 (1987).

    CAS  PubMed  Google Scholar 

  78. Charlesworth, B., Sniegowski, P. & Stephan, W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220 (1994).

    CAS  PubMed  Google Scholar 

  79. Pâques, F., Leung, W. Y. & Haber, J. E. Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol. Cell Biol. 18, 2045–2054 (1998).

    PubMed  PubMed Central  Google Scholar 

  80. Hoelz, A., Debler, E. W. & Blobel, G. The structure of the nuclear pore complex. Annu. Rev. Biochem. 80, 613–643 (2011).

    CAS  PubMed  Google Scholar 

  81. Pick, E., Hofmann, K. & Glickman, M. H. PCI complexes: beyond the proteasome, CSN, and eIF3 troika. Mol. Cell 35, 260–264 (2009).

    CAS  PubMed  Google Scholar 

  82. Klug, A. & Rhodes, D. ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends Biochem. Sci. 12, 464–469 (1987).

    CAS  Google Scholar 

  83. Neer, E. J., Schmidt, C. J., Nambudripad, R. & Smith, T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

    CAS  PubMed  Google Scholar 

  84. Bell, J. K. et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 24, 528–533 (2003).

    CAS  PubMed  Google Scholar 

  85. Mosavi, L. K., Cammett, T. J., Desrosiers, D. C. & Peng, Z. Y. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13, 1435–1448 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chavali, S., Singh, A. K., Santhanam, B. & Babu, M. Amino acid homorepeats in proteins. Nat. Rev. Chem. 4, 420–434 (2020).

    CAS  Google Scholar 

  87. Verstrepen, K. J., Jansen, A., Lewitter, F. & Fink, G. R. Intragenic tandem repeats generate functional variability. Nat. Genet. 37, 986–990 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fondon, J. W. 3rd & Garner, H. R. Molecular origins of rapid and continuous morphological evolution. Proc. Natl Acad. Sci. USA 101, 18058–18063 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sawyer, L. A. et al. Natural variation in a Drosophila clock gene and temperature compensation. Science 278, 2117–2120 (1997).

    CAS  PubMed  Google Scholar 

  90. Gymrek, M. et al. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat. Genet. 48, 22–29 (2016).

    CAS  PubMed  Google Scholar 

  91. Santos-Pereira, J. M. & Aguilera, A. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16, 583–597 (2015).

    CAS  PubMed  Google Scholar 

  92. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bibel, M. & Barde, Y. A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2919–2937 (2000).

    CAS  PubMed  Google Scholar 

  94. Nithianantharajah, J. & Hannan, A. J. Dynamic mutations as digital genetic modulators of brain development, function and dysfunction. Bioessays 29, 525–535 (2007).

    CAS  PubMed  Google Scholar 

  95. Kannan, M. et al. WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy. Proc. Natl Acad. Sci. USA 114, E9308–E9317 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hammock, E. A. & Young, L. J. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308, 1630–1634 (2005).

    CAS  PubMed  Google Scholar 

  97. Segurel, L., Leffler, E. M. & Przeworski, M. The case of the fickle fingers: how the PRDM9 zinc finger protein specifies meiotic recombination hotspots in humans. PLoS Biol. 9, e1001211 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Davies, B. et al. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. Nature 530, 171–176 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Persi, E., Wolf, Y. I. & Koonin, E. V. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat. Commun. 7, 13570 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schaper, E., Gascuel, O. & Anisimova, M. Deep conservation of human protein tandem repeats within the eukaryotes. Mol. Biol. Evol. 31, 1132–1148 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Marcotte, E. M., Pellegrini, M., Yeates, T. O. & Eisenberg, D. A census of protein repeats. J. Mol. Biol. 293, 151–160 (1999).

    CAS  PubMed  Google Scholar 

  102. Persi, E. & Horn, D. Systematic analysis of compositional order of proteins reveals new characteristics of biological functions and a universal correlate of macroevolution. PLoS Comput. Biol. 9, e1003346 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Karlin, S., Brocchieri, L., Bergman, A., Mrazek, J. & Gentles, A. J. Amino acid runs in eukaryotic proteomes and disease associations. Proc. Natl Acad. Sci. USA 99, 333–338 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gatchel, J. R. & Zoghbi, H. Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755 (2005).

    CAS  PubMed  Google Scholar 

  105. Pearson, C. E., Nichol Edamura, K. & Cleary, J. D. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6, 729–742 (2005).

    CAS  PubMed  Google Scholar 

  106. Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

    CAS  PubMed  Google Scholar 

  107. La Spada, A. R. & Taylor, J. P. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11, 247–258 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. López Castel, A., Cleary, J. D. & Pearson, C. E. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell Biol. 11, 165–170 (2010).

    PubMed  Google Scholar 

  109. Carvalho, C. M. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17, 224–238 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hannan, A. J. Tandem repeats mediating genetic plasticity in health and disease. Nat. Rev. Genet. 19, 286–298 (2018).

    CAS  PubMed  Google Scholar 

  111. Khristich, A. N. & Mirkin, S. M. On the wrong DNA track: molecular mechanisms of repeat-mediated genome instability. J. Biol. Chem. 295, 4134–4170 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ishiura, H. et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat. Genet. 50, 581–590 (2018).

    CAS  PubMed  Google Scholar 

  114. Loeb, L. A., Springgate, C. F. & Battula, N. Errors in DNA replication as a basis of malignant changes. Cancer Res. 34, 2311–2321 (1974).

    CAS  PubMed  Google Scholar 

  115. Duval, A. & Hamelin, R. Mutations at coding repeat sequences in mismatch repair deficient human cancers: toward a new concept of target genes for instability. Cancer Res. 62, 2447–2454 (2002).

    CAS  PubMed  Google Scholar 

  116. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011).

    PubMed  PubMed Central  Google Scholar 

  117. El-Metwally, S., Hamza, T., Zakaria, M. & Helmy, M. Next-generation sequence assembly: four stages of data processing and computational challenges. PLoS Comput. Biol. 9, e1003345 (2013).

    PubMed  PubMed Central  Google Scholar 

  118. Popat, S., Hubner, R. & Houlston, R. S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 23, 609–618 (2005).

    CAS  PubMed  Google Scholar 

  119. Li, B. et al. Landscape of tumor-infiltrating T cell repertoire of human cancers. Nat. Genet. 48, 725–732 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017).

    CAS  PubMed  Google Scholar 

  121. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Yarchoan, M., Johnson, B. A. 3rd, Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 209–222 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mlecnik, B. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    CAS  PubMed  Google Scholar 

  124. Mlecnik, B. et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci. Transl. Med. 8, 327ra26 (2016).

    PubMed  Google Scholar 

  125. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    CAS  PubMed  Google Scholar 

  126. Torres, E. M. et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317, 916–924 (2007).

    CAS  PubMed  Google Scholar 

  127. Pavelka, N. et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468, 321–325 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11, 25–36 (2007).

    CAS  PubMed  Google Scholar 

  129. Rowald, K. et al. Negative selection and chromosome instability induced by Mad2 overexpression delay breast cancer but facilitate oncogene-independent outgrowth. Cell Rep. 15, 2679–2691 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sotillo, R., Schvartzman, J. M., Socci, N. D. & Benezra, R. Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464, 436–440 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bakhoum, S. F., Ngo, B., Laughney, A. M., Cavallo, J. A. & Murphy, C. J. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Gao, C. et al. Chromosome instability drives phenotypic switching to metastasis. Proc. Natl Acad. Sci. USA 113, 14793–14798 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Danielsen, H. E., Pradhan, M. & Novelli, M. Revisiting tumour aneuploidy — the place of ploidy assessment in the molecular era. Nat. Rev. Clin. Oncol. 13, 291–304 (2016).

    CAS  PubMed  Google Scholar 

  134. Auslander, N., Wolf, Y. I. & Koonin, E. V. Interplay between DNA damage repair and apoptosis shapes cancer evolution through aneuploidy and microsatellite instability. Nat. Commun. 11, 1234 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Roylance, R. et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol. Biomarkers Prev. 20, 2183–2194 (2011).

    PubMed  PubMed Central  Google Scholar 

  137. Zasadil, L. M. et al. High rates of chromosome missegregation suppress tumor progression but do not inhibit tumor initiation. Mol. Biol. Cell 27, 1981–1989 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Silk, A. D. et al. Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors. Proc. Natl Acad. Sci. USA 110, E4134–E4141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Sansregret, L. et al. APC/C dysfunction limits excessive cancer chromosomal instability. Cancer Discov. 7, 218–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Díaz-Carballo, D. et al. A distinct oncogenerative multinucleated cancer cell serves as a source of stemness and tumor heterogeneity. Cancer Res. 78, 2318–2331 (2018).

    PubMed  Google Scholar 

  143. Pienta, K. J., Hammarlund, E. U., Axelrod, R., Brown, J. S. & Amend, S. R. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evolut. Appl. 13, 1626–1634 (2020).

    Google Scholar 

  144. Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    CAS  PubMed  Google Scholar 

  145. Smith, J. C. & Sheltzer, J. M. Systematic identification of mutations and copy number alterations associated with cancer patient prognosis. eLife 7, e39217 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).

    CAS  PubMed  Google Scholar 

  147. Kondrashov, F. A., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Selection in the evolution of gene duplications. Genome Biol. 3, RESEARCH0008 (2002).

    PubMed  PubMed Central  Google Scholar 

  148. Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11, 97–108 (2010).

    CAS  PubMed  Google Scholar 

  149. Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4, 175–185 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Maciver, S. K. Asexual amoebae escape Muller’s ratchet through polyploidy. Trends Parasitol. 32, 855–862 (2016).

    PubMed  Google Scholar 

  151. Ford, A. M. et al. Fetal origins of the TEL–AML1 fusion gene in identical twins with leukemia. Proc. Natl Acad. Sci. USA 95, 4584–4588 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623.e17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

    PubMed  PubMed Central  Google Scholar 

  156. Paulson, T. G. et al. Chromosomal instability and copy number alterations in Barrett’s esophagus and esophageal adenocarcinoma. Clin. Cancer Res. 15, 3305–3314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Martinez, P. et al. Evolution of Barrett’s esophagus through space and time at single-crypt and whole-biopsy levels. Nat. Commun. 9, 794 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Ordway, B., Swietach, P., Gillies, R. J. & Damaghi, M. Causes and consequences of variable tumor cell metabolism on heritable modifications and tumor evolution. Front. Oncol. 10, 373 (2020).

    PubMed  PubMed Central  Google Scholar 

  159. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  160. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  161. Gillies, R. J., Robey, I. & Gatenby, R. A. Causes and consequences of increased glucose metabolism of cancers. J. Nucl. Med. 49 (Suppl. 2), 24S–42S (2008).

    CAS  PubMed  Google Scholar 

  162. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

    CAS  PubMed  Google Scholar 

  163. Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).

    CAS  PubMed  Google Scholar 

  164. Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    CAS  PubMed  Google Scholar 

  165. Pilon-Thomas, S. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

    CAS  PubMed  Google Scholar 

  166. Persi, E. et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat. Commun. 9, 2997 (2018).

    PubMed  PubMed Central  Google Scholar 

  167. Hoffmann, A. A. & Hercus, M. J. Environmental stress as an evolutionary force. BioScience 50, 217–226 (2000).

    Google Scholar 

  168. Ram, Y. & Hadany, L. The evolution of stress-induced hypermutation in asexual populations. Evolution 66, 2315–2328 (2012).

    PubMed  Google Scholar 

  169. McKenzie, G. J., Harris, R. S., Lee, P. L. & Rosenberg, S. M. The SOS response regulates adaptive mutation. Proc. Natl Acad. Sci. USA 97, 6646–6651 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Rattray, A. J. & Strathern, J. N. Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu. Rev. Genet. 37, 31–66 (2003).

    CAS  PubMed  Google Scholar 

  171. Krutyakov, V. M. Eukaryotic error-prone DNA polymerases: the presumed roles in replication, repair, and mutagenesis. Mol. Biol. 40, 1–8 (2006).

    CAS  Google Scholar 

  172. Fitzgerald, D. M., Hastings, P. J. & Rosenberg, S. M. Stress-induced mutagenesis: implications in cancer and drug resistance. Annu. Rev. Cancer Biol. 1, 119–140 (2017).

    PubMed  PubMed Central  Google Scholar 

  173. Clara, J. A., Monge, C., Yang, Y. & Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells — a clinical update. Nat. Rev. Clin. Oncol. 17, 204–232 (2020).

    PubMed  Google Scholar 

  174. Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555–1559 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Young, S. D., Marshall, R. S. & Hill, R. P. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc. Natl Acad. Sci. USA 85, 9533–9537 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Jackson, A. L., Chen, R. & Loeb, A. L. Induction of microsatellite instability by oxidative DNA damage. Proc. Natl Acad. Sci. USA 95, 12468–12473 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Chatterjee, N., Lin, Y., Santillan, B. A., Yotnda, P. & Wilson, J. H. Environmental stress induces trinucleotide repeat mutagenesis in human cells. Proc. Natl Acad. Sci. USA 112, 3764–3769 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Matzke, M. A., Mittelsten Scheid, O. & Matzke, A. J. Rapid structural and epigenetic changes in polyploid and aneuploid genomes. Bioessays 21, 761–767 (1999).

    CAS  PubMed  Google Scholar 

  180. Tang, Y. C. & Amon, A. Gene copy-number alterations: a cost–benefit analysis. Cell 152, 394–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Herrera, L. A., Prada, D., Andonegui, M. A. & Dueñas-González, A. The epigenetic origin of aneuploidy. Curr. Genomics 9, 43–50 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Chen, G., Bradford, W. D., Seidel, C. W. & Li, R. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482, 246–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Yona, A. H. et al. Chromosomal duplication is a transient evolutionary solution to stress. Proc. Natl Acad. Sci. USA 109, 21010–21015 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Espina, V. & Liotta, L. A. What is the malignant nature of human ductal carcinoma in situ? Nat. Rev. Cancer 11, 68–75 (2011).

    CAS  PubMed  Google Scholar 

  185. Filippova, G. N. et al. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat. Genet. 28, 335–343 (2001).

    CAS  PubMed  Google Scholar 

  186. Libby, R. T. et al. CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination. PLoS Genet. 4, e1000257 (2008).

    PubMed  PubMed Central  Google Scholar 

  187. Dion, V., Lin, Y., Hubert, L. Jr, Waterland, R. A. & Wilson, J. H. Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline. Hum. Mol. Genet. 17, 1306–1317 (2008).

    CAS  PubMed  Google Scholar 

  188. Gallagher, E. J. & LeRoith, D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol. Rev. 95, 727–748 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).

    CAS  PubMed  Google Scholar 

  190. Cvijović, I., Good, B. H., Jerison, E. R. & Desai, M. M. Fate of a mutation in a fluctuating environment. Proc. Natl Acad. Sci. USA 112, E5021–E5028 (2015).

    PubMed  PubMed Central  Google Scholar 

  191. Gatenby, R. A., Cunningham, J. J. & Brown, J. S. Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nat. Commun. 5, 5499 (2014).

    CAS  PubMed  Google Scholar 

  192. Schiffman, J. D., White, R. M., Graham, T. A., Huang, Q. & Aktipis, A. in Frontiers in Cancer Research: Evolutionary Foundations, Revolutionary Directions (eds. C. C. Maley & M. Greaves) 135–176 (Springer, 2016).

  193. Ashworth, A., Lord, C. J. & Reis-Filho, J. S. Genetic interactions in cancer progression and treatment. Cell 145, 30–38 (2011).

    CAS  PubMed  Google Scholar 

  194. Phillips, P. C. Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Poelwijk, F. J., Tănase-Nicola, S., Kiviet, D. J. & Tans, S. J. Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J. Theor. Biol. 272, 141–144 (2011).

    PubMed  Google Scholar 

  196. O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623 (2017).

    PubMed  Google Scholar 

  197. Huang, A., Garraway, L. A., Ashworth, A. & Weber, B. Synthetic lethality as an engine for cancer drug target discovery. Nat. Rev. Drug Discov. 19, 23–38 (2020).

    CAS  PubMed  Google Scholar 

  198. Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Bitler, B. G. et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 21, 231–238 (2015).

    CAS  PubMed  Google Scholar 

  200. Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Dis. 8, 579–591 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Koonin group at the National Center for Biotechnology Information (NCBI) and members of the Moffitt Cancer Center for useful discussions and feedback. E.P. and E.V.K. are supported by intramural funds from the US Department of Health and Human Services (to the National Library of Medicine). R.J.G. and R.A.G. acknowledge support from the Physical Sciences in Oncology Program U54CA193489. F.D. is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 648670).

Author information

Authors and Affiliations

Authors

Contributions

E.P. researched data for the article. E.P. and E.V.K. wrote the article and reviewed/edited the manuscript before submission. All authors substantially contributed to discussion of content.

Corresponding authors

Correspondence to Erez Persi, Robert J. Gillies or Eugene V. Koonin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks P. Campbell, C. Maley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Persi, E., Wolf, Y.I., Horn, D. et al. Mutation–selection balance and compensatory mechanisms in tumour evolution. Nat Rev Genet 22, 251–262 (2021). https://doi.org/10.1038/s41576-020-00299-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-00299-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer