Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering adeno-associated virus vectors for gene therapy

Abstract

Adeno-associated virus (AAV) vector-mediated gene delivery was recently approved for the treatment of inherited blindness and spinal muscular atrophy, and long-term therapeutic effects have been achieved for other rare diseases, including haemophilia and Duchenne muscular dystrophy. However, current research indicates that the genetic modification of AAV vectors may further facilitate the success of AAV gene therapy. Vector engineering can increase AAV transduction efficiency (by optimizing the transgene cassette), vector tropism (using capsid engineering) and the ability of the capsid and transgene to avoid the host immune response (by genetically modifying these components), as well as optimize the large-scale production of AAV.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: AAV vector transduction pathway.
Fig. 2: Engineering the AAV cassette.
Fig. 3: Engineering the AAV capsid.
Fig. 4: Immune response to AAV vectors.

References

  1. 1.

    Moore, N. A., Bracha, P., Hussain, R. M., Morral, N. & Ciulla, T. A. Gene therapy for age-related macular degeneration. Expert. Opin. Biol. Ther. 17, 1235–1244 (2017).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Martinez-Navio, J. M. et al. Adeno-associated virus delivery of anti-HIV monoclonal antibodies can drive long-term virologic suppression. Immunity 50, 567–575.e5 (2019).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Bass-Stringer, S. et al. Adeno-associated virus gene therapy: translational progress and future prospects in the treatment of heart failure. Heart Lung Circ. 27, 1285–1300 (2018).

    PubMed  Article  Google Scholar 

  4. 4.

    Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Kotterman, M. A., Chalberg, T. W. & Schaffer, D. V. Viral vectors for gene therapy: translational and clinical outlook. Annu. Rev. Biomed. Eng. 17, 63–89 (2015).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Lundstrom, K. Viral vectors in gene therapy. Diseases 6, 42 (2018).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  7. 7.

    Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12, 316–328 (2011).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Buning, H. Gene therapy enters the pharma market: the short story of a long journey. EMBO Mol. Med. 5, 1–3 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Yla-Herttuala, S. Endgame: Glybera finally recommended for approval as the first gene therapy drug in the European Union. Mol. Ther. 20, 1831–1832 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Aiuti, A., Roncarolo, M. G. & Naldini, L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol. Med. 9, 737–740 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Keeler, A. M. & Flotte, T. R. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu. Rev. Virol. 6, 601–621 (2019).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Wu, Z., Asokan, A. & Samulski, R. J. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14, 316–327 (2006).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Hastie, E. & Samulski, R. J. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success — a personal perspective. Hum. Gene Ther. 26, 257–265 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Xie, Q. et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc. Natl Acad. Sci. USA 99, 10405–10410 (2002).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Govindasamy, L. et al. Structurally mapping the diverse phenotype of adeno-associated virus serotype 4. J. Virol. 80, 11556–11570 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Buning, H., Huber, A., Zhang, L., Meumann, N. & Hacker, U. Engineering the AAV capsid to optimize vector–host-interactions. Curr. Opin. Pharmacol. 24, 94–104 (2015).

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Kotterman, M. A. & Schaffer, D. V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 15, 445–451 (2014). This review describes, in detail, the development of AAV mutants using directed evolution.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Pillay, S. & Carette, J. E. Host determinants of adeno-associated viral vector entry. Curr. Opin. Virol. 24, 124–131 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Bleker, S., Sonntag, F. & Kleinschmidt, J. A. Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity. J. Virol. 79, 2528–2540 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Kronenberg, S., Bottcher, B., von der Lieth, C. W., Bleker, S. & Kleinschmidt, J. A. A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini. J. Virol. 79, 5296–5303 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Haberman, R. P., McCown, T. J. & Samulski, R. J. Novel transcriptional regulatory signals in the adeno-associated virus terminal repeat A/D junction element. J. Virol. 74, 8732–8739 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Wu, Z. et al. Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol. Ther. 16, 280–289 (2008).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Mendell, J. R. et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N. Engl. J. Med. 363, 1429–1437 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    George, L. A. et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N. Engl. J. Med. 377, 2215–2227 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Rodrigues, G. A. et al. Pharmaceutical development of AAV-based gene therapy products for the eye. Pharm. Res. 36, 29 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Nathwani, A. C. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Nathwani, A. C. et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med. 365, 2357–2365 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV–factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006). This paper is the first report of successful gene therapy using an AAV vector in patients with haemophilia; the paper also shows that transduced target cells are eliminated by capsid-specific CTLs.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Rangarajan, S. et al. AAV5–factor VIII gene transfer in severe hemophilia A. N. Engl. J. Med. 377, 2519–2530 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Nathwani, A. C. et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 107, 2653–2661 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    He, Y. et al. Kinetics of adeno-associated virus serotype 2 (AAV2) and AAV8 capsid antigen presentation in vivo are identical. Hum. Gene Ther. 24, 545–553 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Shao, W. et al. Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction. JCI Insight 3, e120474 (2018). This study demonstrates activation of the innate immune response in the later phase of AAV transduction in human cells.

    PubMed Central  Article  Google Scholar 

  34. 34.

    Deverman, B. E., Ravina, B. M., Bankiewicz, K. S., Paul, S. M. & Sah, D. W. Y. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug. Discov. 17, 767 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    McCarty, D. M. et al. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 10, 2112–2118 (2003). This paper describes the development of a novel approach involving the mutation of AAV ITRs to generate self-complementary AAV vectors to achieve faster and higher transgene expression.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Fu, H. et al. Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol. Ther. 8, 911–917 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017). This paper presents findings that led to the second AAV-based drug, Zolgensma, being approved by the FDA.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Greig, J. A. et al. Characterization of adeno-associated viral vector-mediated human factor VIII gene therapy in hemophilia A mice. Hum. Gene Ther. 28, 392–402 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Yan, Z. et al. Optimization of recombinant adeno-associated virus-mediated expression for large transgenes, using a synthetic promoter and tandem array enhancers. Hum. Gene Ther. 26, 334–346 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Chuah, M. K. et al. Liver-specific transcriptional modules identified by genome-wide in silico analysis enable efficient gene therapy in mice and non-human primates. Mol. Ther. 22, 1605–1613 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Rincon, M. Y. et al. Genome-wide computational analysis reveals cardiomyocyte-specific transcriptional cis-regulatory motifs that enable efficient cardiac gene therapy. Mol. Ther. 23, 43–52 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Garel, J. Quantitative adaptation of isoacceptor tRNAs to mRNA codons of alanine, glycine and serine. Nature 260, 805–806 (1976).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Dong, H., Nilsson, L. & Kurland, C. G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLOS Genet. 2, e221 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Brown, H. C. et al. Target-cell-directed bioengineering approaches for gene therapy of hemophilia A. Mol. Ther. Methods Clin. Dev. 9, 57–69 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Bowles, D. E. et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol. Ther. 20, 443–455 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Duan, D., Yue, Y. & Engelhardt, J. F. Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol. Ther. 4, 383–391 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Hirsch, M. L., Wolf, S. J. & Samulski, R. J. Delivering transgenic DNA exceeding the carrying capacity of AAV vectors. Methods Mol. Biol. 1382, 21–39 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Koo, T., Popplewell, L., Athanasopoulos, T. & Dickson, G. Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum. Gene Ther. 25, 98–108 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Hirsch, M. L. et al. Oversized AAV transductifon is mediated via a DNA-PKcs-independent, Rad51C-dependent repair pathway. Mol. Ther. 21, 2205–2216 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Ghosh, A., Yue, Y., Lai, Y. & Duan, D. A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol. Ther. 16, 124–130 (2008).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Fakhiri, J. et al. Novel chimeric gene therapy vectors based on adeno-associated virus and four different mammalian bocaviruses. Mol. Ther. Methods Clin. Dev. 12, 202–222 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Srivastava, C. H., Samulski, R. J., Lu, L., Larsen, S. H. & Srivastava, A. Construction of a recombinant human parvovirus B19: adeno-associated virus 2 (AAV) DNA inverted terminal repeats are functional in an AAV–B19 hybrid virus. Proc. Natl Acad. Sci. USA 86, 8078–8082 (1989).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Tornabene, P. et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci. Transl Med. 11, eaav4523 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Herrmann, A. K. & Grimm, D. High-throughput dissection of AAV–host interactions: the fast and the curious. J. Mol. Biol. 430, 2626–2640 (2018).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Shen, S. et al. Engraftment of a galactose receptor footprint onto adeno-associated viral capsids improves transduction efficiency. J. Biol. Chem. 288, 28814–28823 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Wang, D. et al. A rationally engineered capsid variant of AAV9 for systemic CNS-directed and peripheral tissue-detargeted gene delivery in neonates. Mol. Ther. Methods Clin. Dev. 9, 234–246 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Zhong, L. et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc. Natl Acad. Sci. USA 105, 7827–7832 (2008).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Petrs-Silva, H. et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol. Ther. 17, 463–471 (2009).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Markusic, D. M. et al. High-efficiency transduction and correction of murine hemophilia B using AAV2 vectors devoid of multiple surface-exposed tyrosines. Mol. Ther. 18, 2048–2056 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Ling, C., Li, B., Ma, W. & Srivastava, A. Development of optimized AAV serotype vectors for high-efficiency transduction at further reduced doses. Hum. Gene Ther. Methods 27, 143–149 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    White, S. J. et al. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 109, 513–519 (2004).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Grifman, M. et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol. Ther. 3, 964–975 (2001).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Adachi, K. & Nakai, H. A new recombinant adeno-associated virus (AAV)-based random peptide display library system: infection-defective AAV1.9-3 as a novel detargeted platform for vector evolution. Gene Ther. Regul. 5, 31–55 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Muller, O. J. et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat. Biotechnol. 21, 1040–1046 (2003).

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Korbelin, J. et al. Pulmonary targeting of adeno-associated viral vectors by next-generation sequencing-guided screening of random capsid displayed peptide libraries. Mol. Ther. 24, 1050–1061 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Varadi, K. et al. Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors. Gene Ther. 19, 800–809 (2012).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Korbelin, J. et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol. Med. 8, 609–625 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Maheshri, N., Koerber, J. T., Kaspar, B. K. & Schaffer, D. V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24, 198–204 (2006). This study is the first to apply directed evolution to the selection of AAV vectors with the ability to enhance transgene expression and evade NAbs.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Pulicherla, N. et al. Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol. Ther. 19, 1070–1078 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Voigt, C. A., Martinez, C., Wang, Z. G., Mayo, S. L. & Arnold, F. H. Protein building blocks preserved by recombination. Nat. Struct. Biol. 9, 553–558 (2002).

    CAS  PubMed  Google Scholar 

  73. 73.

    Ojala, D. S. et al. In vivo selection of a computationally designed SCHEMA AAV library yields a novel variant for infection of adult neural stem cells in the SVZ. Mol. Ther. 26, 304–319 (2018).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Marsic, D. et al. Vector design tour de force: integrating combinatorial and rational approaches to derive novel adeno-associated virus variants. Mol. Ther. 22, 1900–1909 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Dalkara, D. et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl Med. 5, 189ra176 (2013).

    Article  CAS  Google Scholar 

  78. 78.

    Santiago-Ortiz, J. et al. AAV ancestral reconstruction library enables selection of broadly infectious viral variants. Gene Ther. 22, 934–946 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Zinn, E. et al. In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep. 12, 1056–1068 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Landegger, L. D. et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat. Biotechnol. 35, 280–284 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Pan, B. et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat. Biotechnol. 35, 264–272 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Rabinowitz, J. E. et al. Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J. Virol. 78, 4421–4432 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Chai, Z. et al. Application of polyploid adeno-associated virus vectors for transduction enhancement and neutralizing antibody evasion. J. Control Rel. 262, 348–356 (2017).

    CAS  Article  Google Scholar 

  84. 84.

    Monahan, P. E. et al. Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models: a strategy for broad clinical application. Mol. Ther. 18, 1907–1916 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Mitchell, A. M. & Samulski, R. J. Mechanistic insights into the enhancement of adeno-associated virus transduction by proteasome inhibitors. J. Virol. 87, 13035–13041 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Mitchell, A. M., Li, C. & Samulski, R. J. Arsenic trioxide stabilizes accumulations of adeno-associated virus virions at the perinuclear region, increasing transduction in vitro and in vivo. J. Virol. 87, 4571–4583 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Nicolson, S. C., Li, C., Hirsch, M. L., Setola, V. & Samulski, R. J. Identification and validation of small molecules that enhance recombinant adeno-associated virus transduction following high-throughput screens. J. Virol. 90, 7019–7031 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Berry, G. E. & Asokan, A. Chemical modulation of endocytic sorting augments adeno-associated viral transduction. J. Biol. Chem. 291, 939–947 (2016).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Maddalena, A. et al. High-throughput screening identifies kinase inhibitors that increase dual adeno-associated viral vector transduction in vitro and in mouse retina. Hum. Gene Ther. 29, 886–901 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Chandler, L. C. et al. Enhancement of adeno-associated virus-mediated gene therapy using hydroxychloroquine in murine and human tissues. Mol. Ther. Methods Clin. Dev. 14, 77–89 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Denard, J. et al. Human galectin 3 binding protein interacts with recombinant adeno-associated virus type 6. J. Virol. 86, 6620–6631 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Denard, J. et al. C-reactive protein (CRP) is essential for efficient systemic transduction of recombinant adeno-associated virus vector 1 (rAAV-1) and rAAV-6 in mice. J. Virol. 87, 10784–10791 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Wang, M. et al. Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications. Gene Ther. 24, 49–59 (2017).

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Pei, X. et al. AAV8 virions hijack serum proteins to increase hepatocyte binding for transduction enhancement. Virology 518, 95–102 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Chai, Z. et al. Cryoprecipitate augments the global transduction of the adeno-associated virus serotype 9 after a systemic administration. J. Control Rel. 286, 415–424 (2018).

    CAS  Article  Google Scholar 

  96. 96.

    Denard, J. et al. AAV-8 and AAV-9 vectors cooperate with serum proteins differently than AAV-1 and AAV-6. Mol. Ther. Methods Clin. Dev. 10, 291–302 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Fitzpatrick, Z. et al. Influence of pre-existing anti-capsid neutralizing and binding antibodies on AAV vector transduction. Mol. Ther. Methods Clin. Dev. 9, 119–129 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Bevan, A. K. et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol. Ther. 19, 1971–1980 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Liu, Y. et al. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides. Mol. Ther. Methods Clin. Dev. 1, 12 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Zhang, X., He, T., Chai, Z., Samulski, R. J. & Li, C. Blood–brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials 176, 71–83 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Li, C. et al. Cellular immune response to cryptic epitopes during therapeutic gene transfer. Proc. Natl Acad. Sci. USA 106, 10770–10774 (2009).

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Sun, J. et al. An observational study from long-term AAV re-administration in two hemophilia dogs. Mol. Ther. Methods Clin. Dev. 10, 257–267 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Sun, J., Hua, B., Chen, X., Samulski, R. J. & Li, C. Gene delivery of activated factor VII using alternative adeno-associated virus serotype improves hemostasis in hemophiliac mice with FVIII inhibitors and adeno-associated virus neutralizing antibodies. Hum. Gene Ther. 28, 654–666 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Sack, B. K. & Herzog, R. W. Evading the immune response upon in vivo gene therapy with viral vectors. Curr. Opin. Mol. Ther. 11, 493–503 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Ahn, K. et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613–621 (1997).

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Ahn, K. et al. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J. 15, 3247–3255 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Shao, W., Chen, X., Samulski, R. J., Hirsch, M. L. & Li, C. Inhibition of antigen presentation during AAV gene therapy using virus peptides. Hum. Mol. Genet. 27, 601–613 (2018).

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Xiao, Y. et al. Circumventing cellular immunity by miR142-mediated regulation sufficiently supports rAAV-delivered OVA expression without activating humoral immunity. JCI Insight 4, e99052 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  109. 109.

    Cooper, M. et al. Improved induction of immune tolerance to factor IX by hepatic AAV-8 gene transfer. Hum. Gene Ther. 20, 767–776 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Mays, L. E. et al. Adeno-associated virus capsid structure drives CD4-dependent CD8+ T cell response to vector encoded proteins. J. Immunol. 182, 6051–6060 (2009).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Zhu, J., Huang, X. & Yang, Y. The TLR9–MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. J. Clin. Invest. 119, 2388–2398 (2009). This study shows that an innate immune response is triggered soon after AAV transduction.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Martino, A. T. et al. The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9-dependent innate immune responses in the liver. Blood 117, 6459–6468 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Faust, S. M. et al. CpG-depleted adeno-associated virus vectors evade immune detection. J. Clin. Invest. 123, 2994–3001 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Chan, Y. K. et al. Engineering AAV vectors to evade innate immune and inflammatory responses. Mol. Ther. 26, 457–458 (2018).

    Google Scholar 

  115. 115.

    Reichel, F. F. et al. AAV8 can induce innate and adaptive immune response in the primate eye. Mol. Ther. 25, 2648–2660 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Louis Jeune, V., Joergensen, J. A., Hajjar, R. J. & Weber, T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum. Gene Ther. Methods 24, 59–67 (2013).

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Vandamme, C., Adjali, O. & Mingozzi, F. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum. Gene Ther. 28, 1061–1074 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    McCraw, D. M., O’Donnell, J. K., Taylor, K. A., Stagg, S. M. & Chapman, M. S. Structure of adeno-associated virus-2 in complex with neutralizing monoclonal antibody A20. Virology 431, 40–49 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Tseng, Y. S. et al. Adeno-associated virus serotype 1 (AAV1)– and AAV5–antibody complex structures reveal evolutionary commonalities in parvovirus antigenic reactivity. J. Virol. 89, 1794–1808 (2015).

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Li, C. et al. Single amino acid modification of adeno-associated virus capsid changes transduction and humoral immune profiles. J. Virol. 86, 7752–7759 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Jose, A. et al. High resolution structural characterization of a new AAV5 antibody epitope toward engineering antibody resistant recombinant gene delivery vectors. J. Virol. https://doi.org/10.1128/JVI.01394-18 (2018).

  122. 122.

    Smith, J. K. & Agbandje-McKenna, M. Creating an arsenal of adeno-associated virus (AAV) gene delivery stealth vehicles. PLOS Pathog. 14, e1006929 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. 123.

    Tse, L. V. et al. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc. Natl Acad. Sci. USA 114, E4812–E4821 (2017).

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Waterkamp, D. A., Muller, O. J., Ying, Y., Trepel, M. & Kleinschmidt, J. A. Isolation of targeted AAV2 vectors from novel virus display libraries. J. Gene Med. 8, 1307–1319 (2006).

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Li, C. et al. Development of patient-specific AAV vectors after neutralizing antibody selection for enhanced muscle gene transfer. Mol. Ther. 24, 53–65 (2016).

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Paulk, N. K. et al. Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity. Mol. Ther. 26, 289–303 (2018).

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Li, C. et al. Adeno-associated virus capsid antigen presentation is dependent on endosomal escape. J. Clin. Invest. 123, 1390–1401 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Pei, X. et al. Efficient capsid antigen presentation from adeno-associated virus empty virions. Vivo. Front. Immunol. 9, 844 (2018).

    PubMed  Article  CAS  Google Scholar 

  130. 130.

    Sen, D. et al. Targeted modifications in adeno-associated virus serotype 8 capsid improves its hepatic gene transfer efficiency in vivo. Hum. Gene Ther. Methods 24, 104–116 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Martino, A. T. et al. Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells. Blood 121, 2224–2233 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Kaemmerer, W. F. How will the field of gene therapy survive its success? Bioeng. Transl Med. 3, 166–177 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Kotin, R. M. Large-scale recombinant adeno-associated virus production. Hum. Mol. Genet. 20, R2–R6 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Grieger, J. C., Soltys, S. M. & Samulski, R. J. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol. Ther. 24, 287–297 (2016).

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Penaud-Budloo, M., Francois, A., Clement, N. & Ayuso, E. Pharmacology of recombinant adeno-associated virus production. Mol. Ther. Methods Clin. Dev. 8, 166–180 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Kotin, R. M. & Snyder, R. O. Manufacturing clinical grade recombinant adeno-associated virus using invertebrate cell lines. Hum. Gene Ther. 28, 350–360 (2017).

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Mietzsch, M. et al. OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1–12 vectors for gene therapy. Hum. Gene Ther. 25, 212–222 (2014).

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Kondratov, O. et al. Direct head-to-head evaluation of recombinant adeno-associated viral vectors manufactured in human versus insect cells. Mol. Ther. 25, 2661–2675 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Bosma, B. et al. Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system. Gene Ther. 25, 415–424 (2018).

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Wang, Q. et al. A robust system for production of superabundant VP1 recombinant AAV vectors. Mol. Ther. Methods Clin. Dev. 7, 146–156 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Wang, Z., Cheng, F., Engelhardt, J. F., Yan, Z. & Qiu, J. Development of a novel recombinant adeno-associated virus production system using human bocavirus 1 helper genes. Mol. Ther. Methods Clin. Dev. 11, 40–51 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Wang, Z. et al. Human bocavirus 1 is a novel helper for adeno-associated virus replication. J. Virol. https://doi.org/10.1128/JVI.00710-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Zolotukhin, S. et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6, 973–985 (1999).

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Auricchio, A., O’Connor, E., Hildinger, M. & Wilson, J. M. A single-step affinity column for purification of serotype-5 based adeno-associated viral vectors. Mol. Ther. 4, 372–374 (2001).

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Grimm, D., Kern, A., Rittner, K. & Kleinschmidt, J. A. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene Ther. 9, 2745–2760 (1998).

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Smith, R. H., Levy, J. R. & Kotin, R. M. A simplified baculovirus–AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol. Ther. 17, 1888–1896 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Arnold, G. S., Sasser, A. K., Stachler, M. D. & Bartlett, J. S. Metabolic biotinylation provides a unique platform for the purification and targeting of multiple AAV vector serotypes. Mol. Ther. 14, 97–106 (2006).

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Koerber, J. T., Jang, J. H., Yu, J. H., Kane, R. S. & Schaffer, D. V. Engineering adeno-associated virus for one-step purification via immobilized metal affinity chromatography. Hum. Gene Ther. 18, 367–378 (2007).

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Wang, Q. et al. Identification of an adeno-associated virus binding epitope for AVB Sepharose affinity resin. Mol. Ther. Methods Clin. Dev. 2, 15040 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  150. 150.

    Qu, G. et al. Separation of adeno-associated virus type 2 empty particles from genome containing vectors by anion-exchange column chromatography. J. Virol. Methods 140, 183–192 (2007).

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Mingozzi, F. et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl Med. 5, 194ra192 (2013).

    Article  CAS  Google Scholar 

  152. 152.

    Nass, S. A. et al. Universal method for the purification of recombinant AAV vectors of differing serotypes. Mol. Ther. Methods Clin. Dev. 9, 33–46 (2018).

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Matsuzaki, Y. et al. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci. Lett. 665, 182–188 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154.

    Hordeaux, J. et al. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J Mice. Mol. Ther. 26, 664–668 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Markusic, D. M. et al. Evaluation of engineered AAV capsids for hepatic factor IX gene transfer in murine and canine models. J. Transl Med. 15, 94 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. 156.

    Nietupski, J. B. et al. Systemic administration of AAV8–α-galactosidase A induces humoral tolerance in nonhuman primates despite low hepatic expression. Mol. Ther. 19, 1999–2011 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Lisowski, L. et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386 (2014). This study uses chimeric humanized mice to select novel AAV mutants.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  158. 158.

    Li, S. et al. Efficient and targeted transduction of nonhuman primate liver with systemically delivered optimized AAV3B vectors. Mol. Ther. 23, 1867–1876 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Wang, L. et al. Comparative study of liver gene transfer with AAV vectors based on natural and engineered AAV capsids. Mol. Ther. 23, 1877–1887 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160.

    Vercauteren, K. et al. Superior in vivo transduction of human hepatocytes using engineered AAV3 capsid. Mol. Ther. 24, 1042–1049 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Shao, W. et al. Superior human hepatocyte transduction with adeno-associated virus vector serotype 7. Gene Ther. 26, 504–514 (2019).

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Kay, M. A. Selecting the best AAV capsid for human studies. Mol. Ther. 23, 1800–1801 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Zhang, Y. et al. Human skeletal muscle xenograft as a new preclinical model for muscle disorders. Hum. Mol. Genet. 23, 3180–3188 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Walsh, N. C. et al. Humanized mouse models of clinical disease. Annu. Rev. Pathol. 12, 187–215 (2017).

    CAS  PubMed  Article  Google Scholar 

  165. 165.

    Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Gonzalez-Cordero, A. et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat. Biotechnol. 31, 741–747 (2013).

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Santos-Ferreira, T. et al. Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone–rod dystrophy. Invest. Ophthalmol. Vis. Sci. 57, 3509–3520 (2016).

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Zaiss, A. K. et al. Complement is an essential component of the immune response to adeno-associated virus vectors. J. Virol. 82, 2727–2740 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Moore, N. A., Morral, N., Ciulla, T. A. & Bracha, P. Gene therapy for inherited retinal and optic nerve degenerations. Expert. Opin. Biol. Ther. 18, 37–49 (2018).

    CAS  PubMed  Article  Google Scholar 

  170. 170.

    Bainbridge, J. W. et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med. 372, 1887–1897 (2015). This paper presents findings that led to the first AAV-based drug, Luxturna, being approved by the FDA.

    PubMed  PubMed Central  Article  Google Scholar 

  171. 171.

    Jacobson, S. G. et al. Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med. 372, 1920–1926 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172.

    Cideciyan, A. V. et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl Acad. Sci. USA 110, E517–E525 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  173. 173.

    Perrin, G. Q., Herzog, R. W. & Markusic, D. M. Update on clinical gene therapy for hemophilia. Blood 133, 407–414 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  174. 174.

    Miesbach, W. et al. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B. Blood 131, 1022–1031 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Deverman, B. E., Ravina, B. M., Bankiewicz, K. S., Paul, S. M. & Sah, D. W. Y. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug. Discov. 17, 641–659 (2018).

    CAS  PubMed  Article  Google Scholar 

  176. 176.

    Chien, Y. H. et al. Efficacy and safety of AAV2 gene therapy in children with aromatic L-amino acid decarboxylase deficiency: an open-label, phase 1/2 trial. Lancet. Child. Adolesc. Health 1, 265–273 (2017).

    PubMed  Article  Google Scholar 

  177. 177.

    Leone, P. et al. Long-term follow-up after gene therapy for canavan disease. Sci. Transl Med. 4, 165ra163 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  178. 178.

    Duan, D. & Systemic, A. A. V. Micro-dystrophin gene therapy for duchenne muscular dystrophy. Mol. Ther. 26, 2337–2356 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. 179.

    Aguti, S., Malerba, A. & Zhou, H. The progress of AAV-mediated gene therapy in neuromuscular disorders. Expert Opin. Biol. Ther. 18, 681–693 (2018).

    CAS  PubMed  Article  Google Scholar 

  180. 180.

    Ishikawa, K., Weber, T. & Hajjar, R. J. Human cardiac gene therapy. Circ. Res. 123, 601–613 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  181. 181.

    Greenberg, B. et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387, 1178–1186 (2016).

    CAS  PubMed  Article  Google Scholar 

  182. 182.

    Mueller, C. et al. 5 Year expression and neutrophil defect repair after gene therapy in α-1 antitrypsin deficiency. Mol. Ther. 25, 1387–1394 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183.

    D’Avola, D. et al. Phase I open label liver-directed gene therapy clinical trial for acute intermittent porphyria. J. Hepatol. 65, 776–783 (2016).

    CAS  PubMed  Article  Google Scholar 

  184. 184.

    Lee, C. S. et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 4, 43–63 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  185. 185.

    Zhang, W. W. et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum. Gene Ther. 29, 160–179 (2018).

    CAS  PubMed  Article  Google Scholar 

  186. 186.

    Lowenstein, P. R. & Castro, M. G. Evolutionary basis of a new gene- and immune-therapeutic approach for the treatment of malignant brain tumors: from mice to clinical trials for glioma patients. Clin. Immunol. 189, 43–51 (2018).

    CAS  PubMed  Article  Google Scholar 

  187. 187.

    Hoggatt, J. Gene therapy for “Bubble Boy” disease. Cell 166, 263 (2016).

    CAS  PubMed  Article  Google Scholar 

  188. 188.

    Sheridan, C. First approval in sight for Novartis’ CAR-T therapy after panel vote. Nat. Biotechnol. 35, 691–693 (2017).

    CAS  PubMed  Article  Google Scholar 

  189. 189.

    Chow, V. A., Shadman, M. & Gopal, A. K. Translating anti-CD19 CAR T-cell therapy into clinical practice for relapsed/refractory diffuse large B-cell lymphoma. Blood 132, 777–781 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Dobbins for critical reading of the manuscript. This work was supported by National Institutes of Health Grants R01AI117408, R01HL125749, P01HL112761, R01AI072176 and R01HL144661. The authors apologize to any research group that feels their work was overlooked in this Review; we had to be extremely selective owing to space restrictions.

Author information

Affiliations

Authors

Contributions

Both authors contributed to all aspects of the article.

Corresponding authors

Correspondence to Chengwen Li or R. Jude Samulski.

Ethics declarations

Competing interests

R.J.S. is the founder and a shareholder at Asklepios BioPharmaceutical and Bamboo Therapeutics, Inc. He holds patents that have been licensed by University of North Carolina to Asklepios Biopharmaceutical, for which he receives royalties. He has consulted for Baxter Healthcare and has received payment for speaking. C.L. is a cofounder of Bedrock Therapeutics, Inc. He holds patents licensed by University of North Carolina and has received royalties from Bedrock Therapeutics and Asklepios Biopharmaceutical.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy: https://www.fda.gov/news-events/press-announcements/fda-approves-innovative-gene-therapy-treat-pediatric-patients-spinal-muscular-atrophy-rare-disease

Pfizer presents initial clinical data on phase 1b gene therapy study for duchenne muscular dystrophy (DMD): https://www.pfizer.com/news/press-release/press-release-detail/pfizer_presents_initial_clinical_data_on_phase_1b_gene_therapy_study_for_duchenne_muscular_dystrophy_dmd

Solid Biosciences announces FDA removes clinical hold on SGT-001: https://investors.solidbio.com/news-releases/news-release-details/solid-biosciences-announces-fda-removes-clinical-hold-sgt-001

Statement by FDA Commissioner Scott Gottlieb, M.D., and Biologics Center Director Peter Marks, M.D., Ph.D. on FDA’s continued efforts to stop stem cell clinics and manufacturers from marketing unapproved products that put patients at risk: https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-peter-marks-md-phd-director-centre-biologics

Glossary

Leber congenital amaurosis

A rare genetic eye disease caused by the deficiency of various genes.

Choroideremia

A genetic disorder with progressive vision loss due to a deficiency in Rab escort protein-1 (REP-1) owing to mutations in the CHM gene.

Retinitis pigmentosa

A genetic disorder that causes progressive vision loss due to inherited retinal degeneration.

Leber’s hereditary optic neuropathy

An inherited mitochondrial disorder involving the loss of central vision caused by the degeneration of retinal ganglion cells and their axons owing to point mutations in mitochondrial DNA.

Achromatopsia

Autosomal recessive congenital vision loss due to malfunction of the retinal phototransduction pathway.

X-linked retinoschisis

A congenital eye disorder caused by mutations in the gene encoding retinoschisin, which plays a role in intercellular adhesion.

Innate immune response

A general or non-specific defence mechanism that is the first-line defence against infection from viruses, bacteria, parasites and other foreign particles.

Codon usage bias

A bias that results from background substitution biases and natural selection, and refers to the fact that, among species, some codons are more frequently used than other synonymous codons during translation.

Stargardt disease

A common inherited retinal disease due to mutations in ABCA4, the gene encoding ATP-binding cassette transporter (ABCA4).

Mini-dystrophin

A truncated form of dystrophin that retains its function despite deletion of ~75% of the central rod domain (19 of the 24 rods; two of the four hinges) and the distal C-terminal domain (exons 71–78).

Usher syndrome

A genetic disease caused by a deficiency in various genes that results in partial or total hearing and vision loss.

AAV helper plasmids

Plasmids containing adeno-associated virus (AAV) rep and cap genes without inverted terminal repeats.

Alloantibodies

Antibodies produced from B cells after exposure to the individual’s own proteins.

Major histocompatibility complex (MHC) class I pathway

MHC class I molecules are expressed on the cell surface of all nucleated cells. When peptide fragments generated from intracellular proteins bind MHC class I, the MHC class I–peptide complex is transported to the cell surface to induce the production of, and/or be recognized and killed by, cytotoxic T lymphocytes.

Plasma apheresis

A procedure to remove the plasma from blood outside the body and reinfuse it back into patients.

Adenovirus helper plasmid

A plasmid containing most adenovirus genes that helps the production of adeno-associated virus (AAV) Rep and AAV replication.

Stable HeLa cell line–adenovirus method

A HeLa cell line contains adeno-associated virus (AAV) rep and cap genes, with or without integration of the AAV vector genome. When transduced with wild-type adenovirus and AAV vector, AAV Rep and Cap will be produced and the AAV vector genome will replicate and be packaged to produce a large amount of AAV vector.

Herpesvirus helper method

Recombinant herpesvirus vectors (one contains adeno-associated virus (AAV) rep and cap, another contains AAV vector genome) are used to deliver the rep and cap genes, as well as the AAV vector genome, into HeLa cells for AAV vector production. Helper genes for helping AAV Rep and Cap production are provided by the herpes simplex virus genome.

Kozak sequence

A sequence with the consensus ACCAUGG and a critical role in translation initiation.

Leaky ribosomal scanning

A mechanism for regulating gene expression during the initiation phase of eukaryotic translation, in which a suboptimal translational initiation codon on mRNA is skipped by the small 40S ribosome subunit in translation initiation.

Complement activation

Complement is a system made up of plasma proteins that can be activated by a pathogen or the antigen–antibody complex. Complement activation enhances the ability of antibodies or phagocytic cells to clear invading microorganisms or damaged cells.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 21, 255–272 (2020). https://doi.org/10.1038/s41576-019-0205-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing