Chromosome organization in bacteria: mechanistic insights into genome structure and function


Bacterial chromosomes are folded to compact DNA and facilitate cellular processes. Studying model bacteria has revealed aspects of chromosome folding that are applicable to many species. Primarily controlled by nucleoid-associated proteins, chromosome folding is hierarchical, from large-scale macrodomains to smaller-scale structures that influence DNA transactions, including replication and transcription. Here we review the environmentally regulated, architectural and regulatory roles of nucleoid-associated proteins and the implications for bacterial cell biology. We also highlight similarities and differences in the chromosome folding mechanisms of bacteria and eukaryotes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: DNA is locally folded by nucleoid-associated proteins in bacteria, histones in eukaryotes and the evolutionarily conserved SMC complex.
Fig. 2: SMC proteins function as loop-extruding factors.
Fig. 3: Chromosomes are hierarchically organized in bacteria and eukaryotes.
Fig. 4: MukBEF moves along the chromosome as a ‘rock climber’.
Fig. 5: Environmental stimuli induce changes in chromosome organization.
Fig. 6: Modulation of transcription by nucleoid-associated proteins.
Fig. 7: Chromosome organization has an impact on chromosome segregation and cell cycle progression.


  1. 1.

    Cairns, J. in Cold Spring Harbor Symposia on Quantitative Biology Vol. 28 43–46 (1963).

  2. 2.

    Olins, D. E. & Olins, A. L. Physical studies of isolated eucaryotic nuclei. J. Cell Biol. 53, 715–736 (1972).

  3. 3.

    Baker, J. R. The cell-theory: a restatement, history, and critique. Q. J. Microsc. Sci. 96, 449–481 (1955).

  4. 4.

    Dame, R. T., Kalmykowa, O. J. & Grainger, D. C. Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in gram negative bacteria. PLOS Genet. 7, e1002123 (2011).

  5. 5.

    Grainger, D. C. Structure and function of bacterial H-NS protein. Biochem. Soc. Trans. 44, 1561–1569 (2016).

  6. 6.

    Gordon, B. R. et al. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc. Natl Acad. Sci. USA 108, 10690–10695 (2011). A molecular explanation for the recognition of AT-rich DNA by H-NS.

  7. 7.

    Grainger, D. C., Hurd, D., Goldberg, M. D. & Busby, S. J. Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Res. 34, 4642–4652 (2006).

  8. 8.

    Oshima, T., Ishikawa, S., Kurokawa, K., Aiba, H. & Ogasawara, N. Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res. 13, 141–153 (2006).

  9. 9.

    Navarre, W. W. et al. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313, 236–238 (2006). The first description of global DNA binding by a NAP and demonstration of the role H-NS plays in silencing foreign DNA. Concurrently, similar findings were reported by Grainger et al. (2006), Oshima et al. (2006) and Lucchini et al. (2006).

  10. 10.

    Lucchini, S. et al. H-NS mediates the silencing of laterally acquired genes in bacteria. PLOS Pathog. 2, e81 (2006).

  11. 11.

    Kahramanoglou, C. et al. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res. 39, 2073–2091 (2011).

  12. 12.

    Arold, S. T., Leonard, P. G., Parkinson, G. N. & Ladbury, J. E. H-NS forms a superhelical protein scaffold for DNA condensation. Proc. Natl Acad. Sci. USA 107, 15728–15732 (2010). Structural biology is used to demonstrate how H-NS can polymerize by sequential head-to-head and tail-to-tail contacts.

  13. 13.

    Dame, R. T., Noom, M. C. & Wuite, G. J. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444, 387–390 (2006).

  14. 14.

    Dame, R. T., Wyman, C. & Goosen, N. H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res. 28, 3504–3510 (2000).

  15. 15.

    Gordon, B. R. et al. Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 107, 5154–5159 (2010).

  16. 16.

    Smits, W. K. & Grossman, A. D. The transcriptional regulator Rok binds A+T-rich DNA and is involved in repression of a mobile genetic element in bacillus subtilis. PLOS Genet. 6, e1001207 (2010).

  17. 17.

    Duan, B. et al. How bacterial xenogeneic silencer rok distinguishes foreign from self DNA in its resident genome. Nucleic Acids Res 46, 10514–10529 (2018).

  18. 18.

    Ding, P. et al. A novel AT-rich DNA recognition mechanism for bacterial xenogeneic silencer MvaT. PLOS Pathog. 11, e1004967 (2015).

  19. 19.

    Nolivos, S. & Sherratt, D. The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol. Rev. 38, 380–392 (2014).

  20. 20.

    Palecek, J. J. & Gruber, S. Kite proteins: a superfamily of SMC/kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure 23, 2183–2190 (2015).

  21. 21.

    Schleiffer, A. et al. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol. Cell. 11, 571–575 (2003).

  22. 22.

    Wells, J. N., Gligoris, T. G., Nasmyth, K. A. & Marsh, J. A. Evolution of condensin and cohesin complexes driven by replacement of kite by hawk proteins. Curr. Biol. 27, R17–R18 (2017).

  23. 23.

    Melby, T. E., Ciampaglio, C. N., Briscoe, G. & Erickson, H. P. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J. Cell Biol. 142, 1595–1604 (1998).

  24. 24.

    Cuylen, S., Metz, J. & Haering, C. H. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18, 894–901 (2011).

  25. 25.

    Gruber, S., Haering, C. H. & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765–777 (2003).

  26. 26.

    Zhang, N. et al. A handcuff model for the cohesin complex. J. Cell Biol. 183, 1019–1031 (2008).

  27. 27.

    Minnen, A., Attaiech, L., Thon, M., Gruber, S. & Veening, J. W. SMC is recruited to oriC by ParB and promotes chromosome segregation in streptococcus pneumoniae. Mol. Microbiol. 81, 676–688 (2011).

  28. 28.

    Schwartz, M. A. & Shapiro, L. An S. M. C. ATPase mutant disrupts chromosome segregation in Caulobacter. Mol. Microbiol. 82, 1359–1374 (2011).

  29. 29.

    Hiraga, S. et al. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J. Bacteriol. 171, 1496–1505 (1989).

  30. 30.

    Niki, H., Jaffe, A., Imamura, R., Ogura, T. & Hiraga, S. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10, 183–193 (1991).

  31. 31.

    Jensen, R. B. & Shapiro, L. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc. Natl Acad. Sci. USA 96, 10661–10666 (1999).

  32. 32.

    Moriya, S. et al. A Bacillus subtilis gene-encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol. Microbiol. 29, 179–187 (1998).

  33. 33.

    Wang, X., Tang, O. W., Riley, E. P. & Rudner, D. Z. The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr. Biol. 24, 287–292 (2014).

  34. 34.

    Danilova, O., Reyes-Lamothe, R., Pinskaya, M., Sherratt, D. & Possoz, C. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. 65, 1485–1492 (2007).

  35. 35.

    Petrushenko, Z. M., She, W. & Rybenkov, V. V. A new family of bacterial condensins. Mol. Microbiol. 81, 881–896 (2011).

  36. 36.

    Yu, W., Herbert, S., Graumann, P. L. & Gotz, F. Contribution of SMC (structural maintenance of chromosomes) and SpoIIIE to chromosome segregation in Staphylococci. J. Bacteriol. 192, 4067–4073 (2010).

  37. 37.

    Sullivan, N. L., Marquis, K. A. & Rudner, D. Z. Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137, 697–707 (2009).

  38. 38.

    Tran, N. T., Laub, M. T. & Le, T. B. K. SMC progressively aligns chromosomal arms in Caulobacter crescentus but is antagonized by convergent transcription. Cell Rep. 20, 2057–2071 (2017).

  39. 39.

    Gruber, S. & Errington, J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685–696 (2009).

  40. 40.

    Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018). A direct visualization of DNA loop extrusion by an SMC protein.

  41. 41.

    Kim, E., Kerssemakers, J., Shaltiel, I. A., Haering, C. H. & Dekker, C. DNA-loop extruding condensin complexes can traverse one another. Preprint at bioRxiv (2019).

  42. 42.

    Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

  43. 43.

    Alipour, E. & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212 (2012).

  44. 44.

    Wang, X., Brandao, H. B., Le, T. B., Laub, M. T. & Rudner, D. Z. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355, 524–527 (2017).

  45. 45.

    Hirano, T. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. 16, 399–414 (2002).

  46. 46.

    Cairns, J. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol. 6, 208–213 (1963).

  47. 47.

    Stella, S., Cascio, D. & Johnson, R. C. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev. 24, 814–826 (2010).

  48. 48.

    Hancock, S. P., Stella, S., Cascio, D. & Johnson, R. C. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis. PLOS ONE 11, e0150189 (2016).

  49. 49.

    Schneider, R. et al. An architectural role of the Escherichia coli chromatin protein FIS in organizing DNA. Nucleic Acids Res. 29, 5107–5114 (2001).

  50. 50.

    Cosgriff, S. et al. Dimerization and DNA-dependent aggregation of the Escherichia coli nucleoid protein and chaperone CbpA. Mol. Microbiol. 77, 1289–1300 (2010).

  51. 51.

    Rice, P. A., Yang, S., Mizuuchi, K. & Nash, H. A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–1306 (1996).

  52. 52.

    Hales, L. M., Gumport, R. I. & Gardner, J. F. Determining the DNA sequence elements required for binding integration host factor to two different target sites. J. Bacteriol. 176, 2999–3006 (1994).

  53. 53.

    Rouviere-Yaniv, J. & Gros, F. Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc. Natl Acad. Sci. USA 72, 3428–3432 (1975).

  54. 54.

    Grove, A. Functional evolution of bacterial histone-like HU proteins. Curr. Issues Mol. Biol. 13, 1–12 (2011).

  55. 55.

    Swinger, K. K., Lemberg, K. M., Zhang, Y. & Rice, P. A. Flexible DNA bending in HU-DNA cocrystal structures. EMBO J. 22, 3749–3760 (2003).

  56. 56.

    van Noort, J., Verbrugge, S., Goosen, N., Dekker, C. & Dame, R. T. Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc. Natl Acad. Sci. USA 101, 6969–6974 (2004).

  57. 57.

    Swinger, K. K. & Rice, P. A. Structure-based analysis of HU-DNA binding. J. Mol. Biol. 365, 1005–1016 (2007).

  58. 58.

    Swinger, K. K. & Rice, P. A. IHF and HU: flexible architects of bent DNA. Curr. Opin. Struct. Biol. 14, 28–35 (2004).

  59. 59.

    Bensaid, A., Almeida, A., Drlica, K. & Rouviere-Yaniv, J. Crosstalk between topoisomerase I and HU in Escherichia coli. J. Mol. Biol. 256, 292–300 (1996).

  60. 60.

    Ghosh, S., Mallick, B. & Nagaraja, V. Direct regulation of topoisomerase activity by a nucleoid-associated protein. Nucleic Acids Res. 42, 11156–11165 (2014).

  61. 61.

    Guo, F. & Adhya, S. Spiral structure of Escherichia coli HUalphabeta provides foundation for DNA supercoiling. Proc. Natl Acad. Sci. USA 104, 4309–4314 (2007).

  62. 62.

    Witz, G. & Stasiak, A. DNA supercoiling and its role in DNA decatenation and unknotting. Nucleic Acids Res. 38, 2119–2133 (2010).

  63. 63.

    van der Valk, R. A. et al. Mechanism of environmentally driven conformational changes that modulate H-NS DNA-bridging activity. eLife 6, e27369 (2017). A molecular description of the function of H-NS as an environmental sensor.

  64. 64.

    Boudreau, B. A. et al. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Res. 46, 5525–5546 (2018).

  65. 65.

    Johansson, J. & Uhlin, B. E. Differential protease-mediated turnover of H-NS and StpA revealed by a mutation altering protein stability and stationary-phase survival of Escherichia coli. Proc. Natl Acad. Sci. USA 96, 10776–10781 (1999).

  66. 66.

    Johansson, J., Eriksson, S., Sonden, B., Wai, S. N. & Uhlin, B. E. Heteromeric interactions among nucleoid-associated bacterial proteins: localization of StpA-stabilizing regions in H-NS of Escherichia coli. J. Bacteriol. 183, 2343–2347 (2001).

  67. 67.

    Uyar, E. et al. Differential binding profiles of StpA in wild type and h-ns mutant cells: a comparative analysis of cooperative partners by chromatin immunoprecipitation-microarray analysis. J. Bacteriol. 191, 2388–2391 (2009).

  68. 68.

    Madrid, C., Balsalobre, C., Garcia, J. & Juarez, A. The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. Mol. Microbiol. 63, 7–14 (2007).

  69. 69.

    Ali, S. S. et al. Structural insights into the regulation of foreign genes in salmonella by the Hha/H-NS complex. J. Biol. Chem. 288, 13356–13369 (2013).

  70. 70.

    Aravind, L. & Landsman, D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 26, 4413–4421 (1998).

  71. 71.

    Galande, S., Purbey, P. K., Notani, D. & Kumar, P. P. The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr. Opin. Genet. Dev. 17, 408–414 (2007).

  72. 72.

    Naik, R. & Galande, S. SATB family chromatin organizers as master regulators of tumour progression. Oncogene 38, 1989–2004 (2019).

  73. 73.

    Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P. & Kohwi-Shigematsu, T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419, 641–645 (2002).

  74. 74.

    Mattiroli, F. et al. Structure of histone-based chromatin in Archaea. Science 357, 609–612 (2017).

  75. 75.

    Henneman, B., van Emmerik, C., van Ingen, H. & Dame, R. T. Structure and function of archaeal histones. PLOS Genet. 14, e1007582 (2018).

  76. 76.

    Kuhn, M. L. et al. Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLOS ONE 9, e94816 (2014).

  77. 77.

    Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).

  78. 78.

    Weinert, B. T. et al. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol. Cell 51, 265–272 (2013).

  79. 79.

    Dilweg, I. W. & Dame, R. T. Post-translational modification of nucleoid-associated proteins: an extra layer of functional modulation in bacteria? Biochem. Soc. Trans. 46, 1381–1392 (2018).

  80. 80.

    Le, T. B., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342, 731–734 (2013). The first high-resolution three-dimensional map of a folded bacterial chromosome.

  81. 81.

    Marbouty, M. et al. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol. Cell 59, 588–602 (2015).

  82. 82.

    Sexton, T. et al. Three-dimensional folding and functional organization principles of the drosophila genome. Cell 148, 458–472 (2012).

  83. 83.

    Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

  84. 84.

    Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

  85. 85.

    Le, T. B. & Laub, M. T. Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries. EMBO J. 35, 1582–1595 (2016). A demonstration that transcription can control CID boundaries in C. crescentus.

  86. 86.

    Lioy, V. S. et al. Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell 172, 771–783.e18 (2018).

  87. 87.

    Woldringh, C. L. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol. Microbiol. 45, 17–29 (2002).

  88. 88.

    Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

  89. 89.

    Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

  90. 90.

    Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). A high-resolution interaction map of eukaryotic chromosomes.

  91. 91.

    Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell 67, 837–852.e7 (2017).

  92. 92.

    Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).

  93. 93.

    Cubenas-Potts, C. et al. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Nucleic Acids Res. 45, 1714–1730 (2017).

  94. 94.

    Wang, Q., Sun, Q., Czajkowsky, D. M. & Shao, Z. Sub-kb Hi-C in D. melanogaster reveals conserved characteristics of TADs between insect and mammalian cells. Nat. Commun. 9, 188 (2018).

  95. 95.

    Ulianov, S. V. et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res. 26, 70–84 (2016).

  96. 96.

    Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

  97. 97.

    Lal, A. et al. Genome scale patterns of supercoiling in a bacterial chromosome. Nat. Commun. 7, 11055 (2016).

  98. 98.

    Bermudez, I., Garcia-Martinez, J., Perez-Ortin, J. E. & Roca, J. A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding. Nucleic Acids Res. 38, e182 (2010).

  99. 99.

    Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S. & Ishihama, A. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 181, 6361–6370 (1999).

  100. 100.

    Rovinskiy, N., Agbleke, A. A., Chesnokova, O., Pang, Z. & Higgins, N. P. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLOS Genet. 8, e1002845 (2012).

  101. 101.

    Umbarger, M. A. et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 44, 252–264 (2011).

  102. 102.

    Uhlmann, F. SMC complexes: from DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 17, 399–412 (2016).

  103. 103.

    Fennell-Fezzie, R., Gradia, S. D., Akey, D. & Berger, J. M. The MukF subunit of Escherichia coli condensin: architecture and functional relationship to kleisins. EMBO J. 24, 1921–1930 (2005).

  104. 104.

    Woo, J. S. et al. Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions. Cell 136, 85–96 (2009).

  105. 105.

    Badrinarayanan, A., Reyes-Lamothe, R., Uphoff, S., Leake, M. C. & Sherratt, D. J. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338, 528–531 (2012).

  106. 106.

    Chen, N. et al. ATP-induced shrinkage of DNA with MukB protein and the MukBEF complex of Escherichia coli. J. Bacteriol. 190, 3731–3737 (2008).

  107. 107.

    Zawadzka, K. et al. MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin. eLife 7, e31522 (2018).

  108. 108.

    Espeli, O., Mercier, R. & Boccard, F. DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol. Microbiol. 68, 1418–1427 (2008).

  109. 109.

    Valens, M., Thiel, A. & Boccard, F. The MaoP/maoS site-specific system organizes the ori region of the E. coli chromosome into a macrodomain. PLOS Genet. 12, e1006309 (2016).

  110. 110.

    Duigou, S. & Boccard, F. Long range chromosome organization in Escherichia coli: The position of the replication origin defines the non-structured regions and the right and left macrodomains. PLOS Genet. 13, e1006758 (2017).

  111. 111.

    Mercier, R. et al. The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135, 475–485 (2008).

  112. 112.

    Dupaigne, P. et al. Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol. Cell 48, 560–571 (2012). Mercier et al. (2008) and Dupaigne et al. (2012) provide the first molecular explanations for the formation of a chromosomal macrodomain in bacteria.

  113. 113.

    Thiel, A., Valens, M., Vallet-Gely, I., Espeli, O. & Boccard, F. Long-range chromosome organization in E. coli: a site-specific system isolates the Ter macrodomain. PLOS Genet. 8, e1002672 (2012).

  114. 114.

    Espeli, O. et al. A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J. 31, 3198–3211 (2012).

  115. 115.

    Cho, H., McManus, H. R., Dove, S. L. & Bernhardt, T. G. Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc. Natl Acad. Sci. USA 108, 3773–3778 (2011).

  116. 116.

    Sanchez-Romero, M. A. et al. Dynamic distribution of seqa protein across the chromosome of Escherichia coli K-12. mBio 1, e00012–10 (2010).

  117. 117.

    Lu, M., Campbell, J. L., Boye, E. & Kleckner, N. SeqA: a negative modulator of replication initiation in E. coli. Cell 77, 413–426 (1994).

  118. 118.

    Slater, S. et al. E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 82, 927–936 (1995).

  119. 119.

    Wu, L. J. et al. Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J. 28, 1940–1952 (2009).

  120. 120.

    Arias-Cartin, R. et al. Replication fork passage drives asymmetric dynamics of a critical nucleoid-associated protein in Caulobacter. EMBO J. 36, 301–318 (2017).

  121. 121.

    Taylor, J. A., Panis, G., Viollier, P. H. & Marczynski, G. T. A novel nucleoid-associated protein coordinates chromosome replication and chromosome partition. Nucleic Acids Res. 45, 8916–8929 (2017).

  122. 122.

    Qin, L. et al. Structural basis for osmotic regulation of the DNA binding properties of H-NS proteins. Preprint at bioRxiv (2019).

  123. 123.

    Ono, S. et al. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem. J. 391, 203–213 (2005).

  124. 124.

    Goransson, M. et al. Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature 344, 682–685 (1990).

  125. 125.

    Amit, R., Oppenheim, A. B. & Stavans, J. Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys J. 84, 2467–2473 (2003).

  126. 126.

    Kotlajich, M. V. et al. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. eLife 4, e04970 (2015). Highlights the role of DNA architecture in transcriptional regulation.

  127. 127.

    Meyer, A. S. & Grainger, D. C. The Escherichia coli nucleoid in stationary phase. Adv. Appl. Microbiol. 83, 69–86 (2013).

  128. 128.

    Ball, C. A., Osuna, R., Ferguson, K. C. & Johnson, R. C. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J. Bacteriol. 174, 8043–8056 (1992).

  129. 129.

    Almiron, M., Link, A. J., Furlong, D. & Kolter, R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 6, 2646–2654 (1992).

  130. 130.

    Karas, V. O., Westerlaken, I. & Meyer, A. S. The DNA-binding protein from starved cells (Dps) utilizes dual functions to defend cells against multiple stresses. J. Bacteriol. 197, 3206–3215 (2015).

  131. 131.

    Wolf, S. G. et al. DNA protection by stress-induced biocrystallization. Nature 400, 83–85 (1999). Demonstrates that the chromosome of starved E. coli cells is reorganized by Dps to form a biocrystal.

  132. 132.

    Ohniwa, R. L. et al. Dynamic state of DNA topology is essential for genome condensation in bacteria. EMBO J. 25, 5591–5602 (2006).

  133. 133.

    Janissen, R. et al. Global DNA compaction in stationary-phase bacteria does not affect transcription. Cell 174, 1188–1199.e14 (2018). Highlights the role of phase separation in compartmentalization of the bacterial cell.

  134. 134.

    Lamberte, L. E. et al. Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase. Nat. Microbiol. 2, 16249 (2017).

  135. 135.

    Singh, S. S. & Grainger, D. C. H-NS can facilitate specific DNA-binding by RNA polymerase in AT-rich gene regulatory regions. PLOS Genet. 9, e1003589 (2013).

  136. 136.

    Singh, S. S. et al. Widespread suppression of intragenic transcription initiation by H-NS. Genes Dev. 28, 214–219 (2014). Demonstrates that H-NS plays a key role in preventing the spurious initiation of transcription.

  137. 137.

    Myers, K. S. et al. Genome-scale analysis of Escherichia coli FNR reveals complex features of transcription factor binding. PLOS Genet. 9, e1003565 (2013).

  138. 138.

    Haycocks, J. R., Sharma, P., Stringer, A. M., Wade, J. T. & Grainger, D. C. The molecular basis for control of ETEC enterotoxin expression in response to environment and host. PLOS Pathog. 11, e1004605 (2015).

  139. 139.

    Shin, M. et al. DNA looping-mediated repression by histone-like protein H-NS: specific requirement of Esigma70 as a cofactor for looping. Genes Dev. 19, 2388–2398 (2005).

  140. 140.

    Dame, R. T., Wyman, C., Wurm, R., Wagner, R. & Goosen, N. Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J. Biol. Chem. 277, 2146–2150 (2002).

  141. 141.

    Shin, M. et al. Gene silencing by H-NS from distal DNA site. Mol. Microbiol. 86, 707–719 (2012).

  142. 142.

    Dattananda, C. S., Rajkumari, K. & Gowrishankar, J. Multiple mechanisms contribute to osmotic inducibility of proU operon expression in Escherichia coli: demonstration of two osmoresponsive promoters and of a negative regulatory element within the first structural gene. J. Bacteriol. 173, 7481–7490 (1991).

  143. 143.

    Gowrishankar, J. Nucleotide sequence of the osmoregulatory proU operon of Escherichia coli. J. Bacteriol. 171, 1923–1931 (1989).

  144. 144.

    Lucht, J. M., Dersch, P., Kempf, B. & Bremer, E. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J. Biol. Chem. 269, 6578–6578 (1994).

  145. 145.

    Nagarajavel, V., Madhusudan, S., Dole, S., Rahmouni, A. R. & Schnetz, K. Repression by binding of H-NS within the transcription unit. J. Biol. Chem. 282, 23622–23630 (2007).

  146. 146.

    Madrid, C., Nieto, J. M. & Juarez, A. Role of the Hha/YmoA family of proteins in the thermoregulation of the expression of virulence factors. Int. J. Med. Microbiol. 291, 425–432 (2002).

  147. 147.

    Wade, J. T. & Grainger, D. C. Waking the neighbours: disruption of H-NS repression by overlapping transcription. Mol. Microbiol. 108, 221–225 (2018).

  148. 148.

    Mai, X., Chou, S. & Struhl, K. Preferential accessibility of the yeast his3 promoter is determined by a general property of the DNA sequence, not by specific elements. Mol. Cell Biol. 20, 6668–6676 (2000).

  149. 149.

    Schneider, D. A., Ross, W. & Gourse, R. L. Control of rRNA expression in Escherichia coli. Curr. Opin. Microbiol. 6, 151–156 (2003).

  150. 150.

    Browning, D. F., Cole, J. A. & Busby, S. J. Suppression of FNR-dependent transcription activation at the Escherichia coli nir promoter by Fis, IHF and H-NS: modulation of transcription initiation by a complex nucleo-protein assembly. Mol. Microbiol. 37, 1258–1269 (2000).

  151. 151.

    Browning, D. F. et al. Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in catabolite repression. Mol. Microbiol. 57, 496–510 (2005).

  152. 152.

    Bokal, A. J., Ross, W., Gaal, T., Johnson, R. C. & Gourse, R. L. Molecular anatomy of a transcription activation patch: FIS-RNA polymerase interactions at the Escherichia coli rrnB P1 promoter. EMBO J. 16, 154–162 (1997).

  153. 153.

    McLeod, S. M., Aiyar, S. E., Gourse, R. L. & Johnson, R. C. The C-terminal domains of the RNA polymerase alpha subunits: contact site with Fis and localization during co-activation with CRP at the Escherichia coli proP P2 promoter. J. Mol. Biol. 316, 517–529 (2002).

  154. 154.

    Semsey, S., Tolstorukov, M. Y., Virnik, K., Zhurkin, V. B. & Adhya, S. DNA trajectory in the Gal repressosome. Genes Dev. 18, 1898–1907 (2004).

  155. 155.

    Oberto, J., Nabti, S., Jooste, V., Mignot, H. & Rouviere-Yaniv, J. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLOS ONE 4, e4367 (2009).

  156. 156.

    Mangan, M. W. et al. Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar Typhimurium. Microbiology 157, 1075–1087 (2011).

  157. 157.

    Zhang, N., Darbari, V. C., Glyde, R., Zhang, X. & Buck, M. The bacterial enhancer-dependent RNA polymerase. Biochem. J. 473, 3741–3753 (2016).

  158. 158.

    Browning, D. F., Beatty, C. M., Wolfe, A. J., Cole, J. A. & Busby, S. J. Independent regulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleoprotein assembly at a shared regulatory region. Mol. Microbiol. 43, 687–701 (2002).

  159. 159.

    Toro, E. & Shapiro, L. Bacterial chromosome organization and segregation. Cold Spring Harb. Perspect. Biol. 2, a000349 (2010).

  160. 160.

    Wang, X., Montero Llopis, P. & Rudner, D. Z. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 14, 191–203 (2013).

  161. 161.

    Mierzejewska, J. & Jagura-Burdzy, G. Prokaryotic ParA-ParB-parS system links bacterial chromosome segregation with the cell cycle. Plasmid 67, 1–14 (2012).

  162. 162.

    Toro, E., Hong, S. H., McAdams, H. H. & Shapiro, L. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc. Natl Acad. Sci. USA 105, 15435–15440 (2008).

  163. 163.

    Adachi, S., Kohiyama, M., Onogi, T. & Hiraga, S. Localization of replication forks in wild type and mukB mutant cells of Escherichia coli. Mol. Genet. Genomics 274, 264–271 (2005).

  164. 164.

    Badrinarayanan, A., Lesterlin, C., Reyes-Lamothe, R. & Sherratt, D. The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication. J. Bacteriol. 194, 4669–4676 (2012).

  165. 165.

    Nicolas, E. et al. The SMC complex MukBEF recruits topoisomerase IV to the origin of replication region in live Escherichia coli. mBio 5, e01001–e01013 (2014).

  166. 166.

    Hayama, R. & Marians, K. J. Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in Escherichia coli. Proc. Natl Acad. Sci. USA 107, 18826–18831 (2010).

  167. 167.

    Hofmann, A., Makela, J., Sherratt, D. J., Heermann, D. & Murray, S. M. Self-organized segregation of bacterial chromosomal origins. eLife 8, e46564 (2019).

  168. 168.

    Nolivos, S. et al. MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation. Nat. Commun. 7, 10466 (2016).

  169. 169.

    Ricci, D. P. et al. Cell cycle progression in caulobacter requires a nucleoid-associated protein with high AT sequence recognition. Proc. Natl Acad. Sci. USA 113, E5952–E5961 (2016).

  170. 170.

    Guo, M. S., Haakonsen, D. L., Zeng, W., Schumacher, M. A. & Laub, M. T. A bacterial chromosome structuring protein binds overtwisted DNA to stimulate type II topoisomerases and enable DNA replication. Cell 175, 583–597. e523 (2018).

  171. 171.

    Monterroso, B. et al. Bacterial FtsZ protein forms phase-separated condensates with its nucleoid-associated inhibitor SlmA. EMBO Rep. 20, e45946 (2019).

  172. 172.

    Bernhardt, T. G. & de Boer, P. A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18, 555–564 (2005).

  173. 173.

    Tonthat, N. K. et al. Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J. 30, 154–164 (2011).

  174. 174.

    Anand, C., Garg, R., Ghosh, S. & Nagaraja, V. A Sir2 family protein Rv1151c deacetylates HU to alter its DNA binding mode in Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 493, 1204–1209 (2017).

  175. 175.

    Luijsterburg, M. S., White, M. F., van Driel, R. & Dame, R. T. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit. Rev. Biochem. Mol. Biol. 43, 393–418 (2008).

  176. 176.

    Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

  177. 177.

    Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

  178. 178.

    van Berkum, N. L. et al. Hi-C: a method to study the three-dimensional architecture of genomes. J. Vis. Exp. (2010).

  179. 179.

    Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

  180. 180.

    Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

  181. 181.

    Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017). Nagano et al. (2013), Nagano et al. (2017) and Stevens et al. (2017) demonstrate single-cell Hi-C in eukaryotes.

Download references


The authors thank the Netherlands Organization for Scientific Research (VICI 016.160.613) (R.T.D.), the Wellcome Trust (212193/Z/18/Z) (D.C.G.), the Leverhulme Trust (RPG-2018–198) (D.C.G.), the UK Biotechnology and Biological Sciences Research Council (BB/H010289/1) (D.C.G.) and the Human Frontier Science Program (HFSP; RGP0014/2014) (R.T.D. and D.C.G.) for funding of current research in their laboratories.

Author information

All authors researched data for the article, substantially contributed to discussion of the content and wrote the article. R.T.D. and D.C.G. reviewed and edited the manuscript before submission.

Correspondence to Remus T. Dame or David C. Grainger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



An essential molecule containing some or all of the genes required by an organism to survive and reproduce. Whereas chromosomes are made of DNA, not all DNA is chromosomal. Extrachromosomal DNA molecules such as plasmids also encode genes, although these genes are not absolutely required for an organism’s survival and reproduction.


A compact macromolecular complex of DNA and structuring proteins.


Structures found in prokaryotic cells that contain chromosomes, bound proteins and other associated molecules (for example, RNAs). Nucleoids are functionally similar to the nuclei of eukaryotic cells but are not enclosed within a membrane. Nucleoids can be found in eukaryotic organelles believed to be bacterial in origin.


The complete set of genes encoded by the DNA content of a given organism. The genome includes genes encoded by chromosomal and extrachromosomal DNA, and intervening non-coding regions.

Nucleoid-associated proteins

(NAPs). A broad term to describe any proteins implicated in organizing bacterial chromosomes. Here we consider structural maintenance of chromosomes (SMC) proteins as NAPs due to their association with the nucleoid and their role in shaping nucleoid structure. SMC proteins — discovered later than other NAPs and initially studied primarily in the context of chromosome segregation — have historically (and in our view unjustly) not been classified as NAPs.


A generic term, applicable to prokaryotes and eukaryotes, to describe DNA in complex with bound proteins.


DNA loops in which the double-stranded DNA is wrapped around itself as a result of supercoiling.


Pertains to supercoiling, which is underwinding or overwinding of the double helix that causes the double-stranded DNA to fold into higher-order structures: plectonemes and toroids. To alter DNA supercoiling levels, enzymatic breaking and rejoining of DNA strands is required.


An enzyme that alters DNA supercoiling by breaking and rejoining DNA strands. Mechanistically, topoisomerases are distinguished by whether they break and rejoin either a single strand (type I) or both strands (type II).


The sections of a chromosome between the origin and the terminus of replication. Circular chromosomes are usually divided into a left replichore and a right replichore.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dame, R.T., Rashid, F.M. & Grainger, D.C. Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat Rev Genet (2019).

Download citation