Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Building machines with DNA molecules


In nature, DNA molecules carry the hereditary information. But DNA has physical and chemical properties that make it attractive for uses beyond heredity. In this Review, we discuss the potential of DNA for creating machines that are both encoded by and built from DNA molecules. We review the main methods of DNA nanostructure assembly, describe recent advances in building increasingly complex molecular structures and discuss strategies for creating machine-like nanostructures that can be actuated and move. We highlight opportunities for applications of custom DNA nanostructures as scientific tools to address challenges across biology, chemistry and engineering.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Design principles of DNA origami structures and higher-order self-assembly using origami tiles.
Fig. 2: Tile assembly of DNA nanostructures.
Fig. 3: SDR and SDR-based walkers.
Fig. 4: Reshaping nanostructures using SDR.
Fig. 5: Modes of molecular motion in DNA nanostructures.
Fig. 6: Applications of DNA nanostructures.
Fig. 7: Applications of DNA nanostructures.
Fig. 8: Natural biomolecular motors.


  1. 1.

    Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    CAS  PubMed  Google Scholar 

  2. 2.

    Le Poul, N. & Colasson, B. Electrochemically and chemically induced redox processes in molecular machines. Chem. Electro. Chem. 2, 475–496 (2015).

    Google Scholar 

  3. 3.

    Astumian, R. D. Optical vs. chemical driving for molecular machines. Faraday Discuss. 195, 583–597 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Sauvage, J.-P. From chemical topology to molecular machines (nobel lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    CAS  Google Scholar 

  5. 5.

    Stoddart, J. F. Mechanically interlocked molecules (mims)—molecular shuttles, switches, and machines (nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    CAS  Google Scholar 

  6. 6.

    Cheng, C. & Stoddart, J. F. Wholly synthetic molecular machines. Chem. Phys. Chem. 17, 1780–1793 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    CAS  PubMed  Google Scholar 

  8. 8.

    Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Astumian, R. D. Trajectory and cycle-based thermodynamics and kinetics of molecular machines: the importance of microscopic reversibility. Acc. Chem. Res. 51, 2653–2661 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Goychuk, I. Molecular machines operating on the nanoscale: from classical to quantum. Beilstein J. Nanotechnol. 7, 328–350 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Reimann, P. Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002).

    CAS  Google Scholar 

  12. 12.

    Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. Chem. Phys. Chem. 17, 1719–1741 (2016).

    CAS  PubMed  Google Scholar 

  13. 13.

    Ranallo, S., Porchetta, A. & Ricci, F. DNA-based scaffolds for sensing applications. Anal. Chem. 91, 44–59 (2019).

    CAS  PubMed  Google Scholar 

  14. 14.

    Harroun, S. G. et al. Programmable DNA switches and their applications. Nanoscale 10, 4607–4641 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Tang, Y., Ge, B., Sen, D. & Yu, H.-Z. Functional DNA switches: rational design and electrochemical signaling. Chem. Soc. Rev. 43, 518–529 (2014).

    PubMed  Google Scholar 

  16. 16.

    Wang, F., Liu, X. & Willner, I. DNA switches: from principles to applications. Angew. Chem. Int. Ed. 54, 1098–1129 (2015).

    CAS  Google Scholar 

  17. 17.

    Gore, J. et al. DNA overwinds when stretched. Nature 442, 836–839 (2006).

    CAS  PubMed  Google Scholar 

  18. 18.

    Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    CAS  PubMed  Google Scholar 

  19. 19.

    Hagerman, P. J. Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 17, 265–286 (1988).

    CAS  PubMed  Google Scholar 

  20. 20.

    Chuang, H. M., Reifenberger, J. G., Cao, H. & Dorfman, K. D. Sequence-dependent persistence length of long DNA. Phys. Rev. Lett. 119, 227802 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Pfitzner, E. et al. Rigid DNA beams for high-resolution single-molecule mechanics. Angew. Chem. Int. Ed. Engl. 52, 7766–7771 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    CAS  PubMed  Google Scholar 

  23. 23.

    SantaLucia, J. Jr. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).

    CAS  PubMed  Google Scholar 

  24. 24.

    Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    CAS  PubMed  Google Scholar 

  25. 25.

    Trads, J. B., Torring, T. & Gothelf, K. V. Site-selective conjugation of native proteins with DNA. Acc. Chem. Res. 50, 1367–1374 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    Singh, Y., Murat, P. & Defrancq, E. Recent developments in oligonucleotide conjugation. Chem. Soc. Rev. 39, 2054–2070 (2010).

    CAS  PubMed  Google Scholar 

  27. 27.

    Chandrasekaran, A. R. & Rusling, D. A. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology. Nucleic Acids Res. 46, 1021–1037 (2018).

    CAS  PubMed  Google Scholar 

  28. 28.

    Hollenstein, M. DNA catalysis: the chemical repertoire of DNAzymes. Molecules 20, 20777–20804 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Silverman, S. K. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 41, 595–609 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    CAS  PubMed  Google Scholar 

  31. 31.

    Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  PubMed  Google Scholar 

  32. 32.

    Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS  PubMed  Google Scholar 

  33. 33.

    Paukstelis, P. J., Nowakowski, J., Birktoft, J. J. & Seeman, N. C. Crystal structure of a continuous three-dimensional DNA lattice. Chem. Biol. 11, 1119–1126 (2004).

    CAS  PubMed  Google Scholar 

  34. 34.

    Seeman, N. C. At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology. Chem. Biol. 10, 1151–1159 (2003).

    CAS  PubMed  Google Scholar 

  35. 35.

    Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    CAS  PubMed  Google Scholar 

  36. 36.

    Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    CAS  PubMed  Google Scholar 

  37. 37.

    Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  PubMed  Google Scholar 

  38. 38.

    Ke, Y. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Ke, Y., Voigt, N. V., Gothelf, K. V. & Shih, W. M. Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 134, 1770–1774 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    CAS  PubMed  Google Scholar 

  41. 41.

    Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779–784 (2015).

    CAS  PubMed  Google Scholar 

  42. 42.

    Veneziano, R. et al. Designer nanoscale DNA assemblies programmed from the top down. Science 352, 1534 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kim, D. N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40, 2862–2868 (2012).

    CAS  PubMed  Google Scholar 

  47. 47.

    Castro, C. E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011).

    CAS  PubMed  Google Scholar 

  48. 48.

    Snodin, B. E. K. et al. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 142, 234901 (2015).

    PubMed  Google Scholar 

  49. 49.

    Maffeo, C., Yoo, J. & Aksimentiev, A. De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation. Nucleic Acids Res. 44, 3013–3019 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sobczak, J. P., Martin, T. G., Gerling, T. & Dietz, H. Rapid folding of DNA into nanoscale shapes at constant temperature. Science 338, 1458–1461 (2012).

    CAS  PubMed  Google Scholar 

  51. 51.

    Stahl, E., Martin, T. G., Praetorius, F. & Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem. Int. Ed. Engl. 53, 12735–12740 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Wagenbauer, K. F. et al. How we make DNA origami. ChemBioChem 18, 1873–1885 (2017).

    CAS  PubMed  Google Scholar 

  53. 53.

    Shaw, A., Benson, E. & Hogberg, B. Purification of functionalized DNA origami nanostructures. ACS Nano 9, 4968–4975 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    CAS  PubMed  Google Scholar 

  56. 56.

    Woo, S. & Rothemund, P. W. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627 (2011).

    CAS  PubMed  Google Scholar 

  57. 57.

    Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    CAS  PubMed  Google Scholar 

  58. 58.

    Han, D. et al. Single-stranded DNA and RNA origami. Science 358, eaao2648 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Geary, C., Rothemund, P. W. & Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014).

    CAS  PubMed  Google Scholar 

  60. 60.

    Praetorius, F. & Dietz, H. Self-assembly of genetically encoded DNA–protein hybrid nanoscale shapes. Science 355, eaam5488 (2017).

    PubMed  Google Scholar 

  61. 61.

    Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    CAS  PubMed  Google Scholar 

  62. 62.

    Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Yin, P. et al. Programming DNA tube circumferences. Science 321, 824–826 (2008).

    CAS  PubMed  Google Scholar 

  64. 64.

    Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lin, C. et al. In vivo cloning of artificial DNA nanostructures. Proc. Natl Acad. Sci. USA 105, 17626–17631 (2008).

    CAS  PubMed  Google Scholar 

  66. 66.

    Kick, B., Praetorius, F., Dietz, H. & Weuster-Botz, D. Efficient production of single-stranded phage DNA as scaffolds for DNA origami. Nano Lett. 15, 4672–4676 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Engelhardt, F. A. S. et al. Custom-size, functional, and durable DNA origami with design-specific scaffolds. ACS Nano 13, 5015–5027 (2019).

    CAS  PubMed  Google Scholar 

  68. 68.

    Ducani, C., Kaul, C., Moche, M., Shih, W. M. & Hogberg, B. Enzymatic production of ‘monoclonal stoichiometric’ single-stranded DNA oligonucleotides. Nat. Methods 10, 647–652 (2013).

    CAS  PubMed  Google Scholar 

  69. 69.

    Schmidt, T. L. et al. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat. Commun. 6, 8634 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Kishi, J. Y., Schaus, T. E., Gopalkrishnan, N., Xuan, F. & Yin, P. Programmable autonomous synthesis of single-stranded DNA. Nat. Chem. 10, 155–164 (2018).

    CAS  PubMed  Google Scholar 

  71. 71.

    Praetorius, F. et al. Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017).

    CAS  PubMed  Google Scholar 

  72. 72.

    Gu, H., Furukawa, K., Weinberg, Z., Berenson, D. F. & Breaker, R. R. Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc. 135, 9121–9129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Li, M. et al. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs. Nat. Commun. 9, 2196 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Elbaz, J., Yin, P. & Voigt, C. A. Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nat. Commun. 7, 11179 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Chi, Q., Wang, G. & Jiang, J. The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory. Physica A 392, 1072–1079 (2013).

    CAS  Google Scholar 

  76. 76.

    Rechendorff, K., Witz, G., Adamcik, J. & Dietler, G. Persistence length and scaling properties of single-stranded DNA adsorbed on modified graphite. J. Chem. Phys. 131, 095103 (2009).

    PubMed  Google Scholar 

  77. 77.

    Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    CAS  PubMed  Google Scholar 

  78. 78.

    Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    CAS  PubMed  Google Scholar 

  79. 79.

    Pan, J., Li, F., Cha, T. G., Chen, H. & Choi, J. H. Recent progress on DNA based walkers. Curr. Opin. Biotechnol. 34, 56–64 (2015).

    PubMed  Google Scholar 

  80. 80.

    Thubagere, A. J. et al. A cargo-sorting DNA robot. Science 357, eaan6558 (2017).

    PubMed  Google Scholar 

  81. 81.

    Gu, H., Chao, J., Xiao, S. J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Valero, J., Pal, N., Dhakal, S., Walter, N. G. & Famulok, M. A bio-hybrid DNA rotor–stator nanoengine that moves along predefined tracks. Nat. Nanotechnol. 13, 496–503 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Han, D., Pal, S., Liu, Y. & Yan, H. Folding and cutting DNA into reconfigurable topological nanostructures. Nat. Nanotechnol. 5, 712–717 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Reconfigurable DNA origami to generate quasifractal patterns. Nano Lett. 12, 3290–3295 (2012).

    CAS  PubMed  Google Scholar 

  85. 85.

    Wei, B., Ong, L. L., Chen, J., Jaffe, A. S. & Yin, P. Complex reconfiguration of DNA nanostructures. Angew. Chem. Int. Ed. Engl. 53, 7475–7479 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Choi, Y., Choi, H., Lee, A. C., Lee, H. & Kwon, S. A reconfigurable DNA accordion rack. Angew. Chem. Int. Ed. Engl. 57, 2811–2815 (2018).

    CAS  PubMed  Google Scholar 

  87. 87.

    Marras, A. E., Zhou, L., Su, H. J. & Castro, C. E. Programmable motion of DNA origami mechanisms. Proc. Natl Acad. Sci. USA 112, 713–718 (2015).

    CAS  PubMed  Google Scholar 

  88. 88.

    List, J., Falgenhauer, E., Kopperger, E., Pardatscher, G. & Simmel, F. C. Long-range movement of large mechanically interlocked DNA nanostructures. Nat. Commun. 7, 12414 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Ketterer, P., Willner, E. M. & Dietz, H. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components. Sci. Adv. 2, e1501209 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Turek, V. A. et al. Thermo-responsive actuation of a DNA origami flexor. Adv. Funct. Mater. 28, 1706410 (2018).

    Google Scholar 

  91. 91.

    Song, J. et al. Reconfiguration of DNA molecular arrays driven by information relay. Science 357, eaan3377 (2017).

    PubMed  Google Scholar 

  92. 92.

    Kopperger, E. et al. A self-assembled nanoscale robotic arm controlled by electric fields. Science 359, 296–301 (2018).

    CAS  PubMed  Google Scholar 

  93. 93.

    Maier, A. M. et al. Magnetic propulsion of microswimmers with DNA-based flagellar bundles. Nano Lett. 16, 906–910 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Kuzyk, A. et al. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat. Commun. 7, 10591 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Yang, Y. et al. A photoregulated DNA-based rotary system and direct observation of its rotational movement. Chemistry 23, 3979–3985 (2017).

    CAS  PubMed  Google Scholar 

  96. 96.

    Liu, N. & Liedl, T. DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Zhou, C., Duan, X. & Liu, N. DNA-nanotechnology-enabled chiral plasmonics: from static to dynamic. Acc. Chem. Res. 50, 2906–2914 (2017).

    CAS  PubMed  Google Scholar 

  98. 98.

    Samanta, A., Banerjee, S. & Liu, Y. DNA nanotechnology for nanophotonic applications. Nanoscale 7, 2210–2220 (2015).

    CAS  PubMed  Google Scholar 

  99. 99.

    Lan, X. & Wang, Q. DNA-programmed self-assembly of photonic nanoarchitectures. NPG Asia Mater. 6, e97 (2014).

    CAS  Google Scholar 

  100. 100.

    Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Simmons, C. R. et al. Construction and structure determination of a three-dimensional DNA crystal. J. Am. Chem. Soc. 138, 10047–10054 (2016).

    CAS  PubMed  Google Scholar 

  102. 102.

    Simmons, C. R. et al. Tuning the cavity size and chirality of self-assembling 3D DNA crystals. J. Am. Chem. Soc. 139, 11254–11260 (2017).

    CAS  PubMed  Google Scholar 

  103. 103.

    Stahl, E., Praetorius, F., de Oliveira Mann, C. C., Hopfner, K. P. & Dietz, H. Impact of heterogeneity and lattice bond strength on DNA triangle crystal growth. ACS Nano 10, 9156–9164 (2016).

    CAS  PubMed  Google Scholar 

  104. 104.

    McNeil, R. Jr. & Paukstelis, P. J. Core-shell and layer-by-layer assembly of 3D DNA crystals. Adv. Mater. 29, 1701019 (2017).

    Google Scholar 

  105. 105.

    Zhang, T. et al. 3D DNA origami crystals. Adv. Mater. 30, e1800273 (2018).

    PubMed  Google Scholar 

  106. 106.

    Rinker, S. et al. nanostructures for distance-dependent multivalent ligand–protein binding. Nat. Nanotechnol. 3, 418–422 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Tokura, Y. et al. Fabrication of defined polydopamine nanostructures by DNA origami-templated polymerization. Angew. Chem. Int. Ed. Engl. 57, 1587–1591 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Kershner, R. J. et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4, 557–561 (2009).

    CAS  PubMed  Google Scholar 

  109. 109.

    Hung, A. M. et al. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat. Nanotechnol. 5, 121–126 (2010).

    CAS  PubMed  Google Scholar 

  110. 110.

    Funke, J. J. & Dietz, H. Placing molecules with Bohr radius resolution using DNA origami. Nat. Nanotechnol. 11, 47–52 (2016).

    CAS  PubMed  Google Scholar 

  111. 111.

    Fu, J. et al. Assembly of multienzyme complexes on DNA nanostructures. Nat. Protoc. 11, 2243–2273 (2016).

    CAS  PubMed  Google Scholar 

  112. 112.

    Ke, G. et al. Directional regulation of enzyme pathways through the control of substrate channeling on a DNA origami scaffold. Angew. Chem. Int. Ed. Engl. 55, 7483–7486 (2016).

    CAS  PubMed  Google Scholar 

  113. 113.

    Zhang, Y., Tsitkov, S. & Hess, H. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade. Nat. Commun. 7, 13982 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Zhao, Z. et al. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat. Commun. 7, 10619 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).

    CAS  PubMed  Google Scholar 

  116. 116.

    Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    CAS  PubMed  Google Scholar 

  117. 117.

    Dai, M., Jungmann, R. & Yin, P. Optical imaging of individual biomolecules in densely packed clusters. Nat. Nanotechnol. 11, 798–807 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Jungmann, R. et al. Quantitative super-resolution imaging with qPAINT. Nat. Methods 13, 439–442 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Zanacchi, F. C. et al. A DNA origami platform for quantifying protein copy number in super-resolution. Nat. Methods 14, 789–792 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    CAS  PubMed  Google Scholar 

  121. 121.

    Bastings, M. M. C. et al. Modulation of the cellular uptake of DNA origami through control over mass and shape. Nano Lett. 18, 3557–3564 (2018).

    CAS  PubMed  Google Scholar 

  122. 122.

    Wang, P. et al. Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J. Am. Chem. Soc. 140, 2478–2484 (2018).

    CAS  PubMed  Google Scholar 

  123. 123.

    Zhang, D. & Paukstelis, P. J. Enhancing DNA crystal durability through chemical crosslinking. Chem. Bio. Chem. 17, 1163–1170 (2016).

    CAS  PubMed  Google Scholar 

  124. 124.

    Gerling, T., Kube, M., Kick, B. & Dietz, H. Sequence-programmable covalent bonding of designed DNA assemblies. Sci. Adv. 4, eaau1157 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Zhao, J. et al. Post-assembly stabilization of rationally designed DNA crystals. Angew. Chem. Int. Ed. Engl. 54, 9936–9939 (2015).

    CAS  PubMed  Google Scholar 

  126. 126.

    Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Auvinen, H. et al. Protein coating of DNA nanostructures for enhanced stability and immunocompatibility. Adv. Healthc. Mater. 6, 1700692 (2017).

    Google Scholar 

  128. 128.

    Agarwal, N. P., Matthies, M., Gur, F. N., Osada, K. & Schmidt, T. L. Block copolymer micellization as a protection strategy for DNA origami. Angew. Chem. Int. Ed. Engl. 56, 5460–5464 (2017).

    CAS  PubMed  Google Scholar 

  129. 129.

    Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Lee, A. J., Endo, M., Hobbs, J. K. & Walti, C. Direct single-molecule observation of mode and geometry of reca-mediated homology search. ACS Nano 12, 272–278 (2018).

    CAS  PubMed  Google Scholar 

  131. 131.

    Endo, M., Katsuda, Y., Hidaka, K. & Sugiyama, H. Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. J. Am. Chem. Soc. 132, 1592–1597 (2010).

    CAS  PubMed  Google Scholar 

  132. 132.

    Nickels, P. C. et al. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 354, 305–307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Funke, J. J. et al. Uncovering the forces between nucleosomes using DNA origami. Sci. Adv. 2, e1600974 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Kilchherr, F. et al. Single-molecule dissection of stacking forces in DNA. Science 353, eaaf5508 (2016).

    Google Scholar 

  135. 135.

    Krishnan, S. et al. Molecular transport through large-diameter DNA nanopores. Nat. Commun. 7, 12787 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Ketterer, P. et al. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nat. Commun. 9, 902 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Fisher, P. D. E. et al. A programmable DNA origami platform for organizing intrinsically disordered nucleoporins within nanopore confinement. ACS Nano 12, 1508–1518 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Zhang, Z., Yang, Y., Pincet, F., Llaguno, M. C. & Lin, C. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 9, 653–659 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Grome, M. W., Zhang, Z., Pincet, F. & Lin, C. Vesicle tubulation with self-assembling DNA nanosprings. Angew. Chem. Int. Ed. Engl. 57, 5330–5334 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Franquelim, H. G., Khmelinskaia, A., Sobczak, J. P., Dietz, H. & Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9, 811 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Ohmann, A. et al. A synthetic enzyme built from DNA flips 10(7) lipids per second in biological membranes. Nat. Commun. 9, 2426 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Akbari, E. et al. Engineering cell surface function with DNA origami. Adv. Mater. 29, 1703632 (2017).

    Google Scholar 

  145. 145.

    Balzani, V., Credi, A. & Venturi, M. Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009).

    CAS  PubMed  Google Scholar 

  146. 146.

    Silvi, S., Venturi, M. & Credi, A. Light operated molecular machines. Chem. Commun. 47, 2483–2489 (2011).

    CAS  Google Scholar 

  147. 147.

    Baker, D. What has de novo protein design taught us about protein folding and biophysics? Protein Sci. 28, 678–683 (2019).

    CAS  PubMed  Google Scholar 

  148. 148.

    Lin, Y.-R. et al. Control over overall shape and size in de novo designed proteins. Proc. Natl Acad. Sci. USA 112, E5478–E5485 (2015).

    CAS  PubMed  Google Scholar 

  149. 149.

    Chevalier, A. et al. Massively parallel de novo protein design for targeted therapeutics. Nature 550, 74 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Whitford, P. C. & Onuchic, J. N. What protein folding teaches us about biological function and molecular machines. Curr. Opin. Struct. Biol. 30, 57–62 (2015).

    CAS  PubMed  Google Scholar 

  151. 151.

    Giri Rao, V. V. H. & Gosavi, S. Using the folding landscapes of proteins to understand protein function. Curr. Opin. Struct. Biol. 36, 67–74 (2016).

    CAS  PubMed  Google Scholar 

  152. 152.

    Elber, R. & Kirmizialtin, S. Molecular machines. Curr. Opin. Struct. Biol. 23, 206–211 (2013).

    CAS  PubMed  Google Scholar 

  153. 153.

    Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684 (2012).

    CAS  PubMed  Google Scholar 

  154. 154.

    Cross, R. A. Mechanochemistry of the kinesin-1 ATPase. Biopolymer 105, 476–482 (2016).

    CAS  Google Scholar 

  155. 155.

    Wang, W., Cao, L., Wang, C., Gigant, B. & Knossow, M. Kinesin, 30 years later: recent insights from structural studies. Protein Sci. 24, 1047–1056 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Sielaff, H., Yanagisawa, S., Frasch, W. D., Junge, W. & Börsch, M. Structural asymmetry and kinetic limping of single rotary F-ATP synthases. Molecules 24, 504 (2019).

    PubMed Central  Google Scholar 

  157. 157.

    Junge, W. & Nelson, N. ATP Synthase. Annu. Rev. Biochem. 84, 631–657 (2015).

    CAS  PubMed  Google Scholar 

  158. 158.

    Stewart, A. G., Laming, E. M., Sobti, M. & Stock, D. Rotary ATPases—dynamic molecular machines. Curr. Opin. Struct. Biol. 25, 40–48 (2014).

    CAS  PubMed  Google Scholar 

  159. 159.

    Watson, M. A. & Cockroft, S. L. Man-made molecular machines: membrane bound. Chem. Soc. Rev. 45, 6118–6129 (2016).

    CAS  PubMed  Google Scholar 

  160. 160.

    Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    CAS  PubMed  Google Scholar 

  161. 161.

    Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Baroncini, M. et al. Making and operating molecular machines: a multidisciplinary challenge. Chemistry Open 7, 169–179 (2018).

    CAS  PubMed  Google Scholar 

  163. 163.

    Astumian, R. D. & Hänggi, P. Brownian motors. Phys. Today, 33–39 (2002).

  164. 164.

    Dogan, M. Y. et al. Kinesin’s front head is gated by the backward orientation of its neck linker. Cell Rep. 10, 1967–1973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Noji, H., Ueno, H. & McMillan, D. G. G. Catalytic robustness and torque generation of the F1-ATPase. Biophys. Rev. 9, 103–118 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank E. Feigl for making Figs. 1A and 1B. This work was financially supported by the Deutsche Forschungsgemeinschaft through the Gottfried-Wilhelm-Leibniz Program and by the European Commission through an ERC Consolidator Grant (#724261).

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Hendrik Dietz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



A process through which the disordered components of a system organize themselves into a defined ordered state. The process is guided by minimization of the free energy of the system. Protein folding is an example of molecular self-assembly.

DNA nanotechnology

The design and self-assembly of DNA into pre-defined patterns and attempts to control the shapes and functions of the assembled nanostructures.


A class of mechanically interlocked molecules consisting of a ring entrapped between the two bulky ends of a dumbbell-shaped molecule.


A class of mechanically interlocked molecules comprising two or more interchained macrocyclic rings.

Brownian motors

A molecule or a molecular system that converts random Brownian motion to directional motion at the nanoscale by doing work on the environment.

DNA switches

Molecular switches made of DNA that transition between at least two distinct states using a trigger — for example, pH or metal ions.

Persistence lengths

A physical parameter indicating the stiffness of a polymer such as DNA, defined as the length over which the molecule behaves like a rigid rod.


A DNA motif self-assembled from multiple single-stranded DNA oligomers to form a unit for further assembly of a nanostructure. There are usually one or more crossovers in each tile, rendering it more rigid.

Sticky-ended DNA

A DNA partial duplex with a single-stranded overhang that can hybridize to another, complementary single-stranded overhang, thus ‘sticking’ the two partial duplexes together.

DNA origamis

DNA nanostructures formed by folding a long single-stranded DNA scaffold via hybridization of many short DNA complements, known as staple strands.


The long single-stranded DNA template molecule, running through a whole DNA origami structure.

DNA crossovers

The points at which a DNA single strand exits its hybridization axis and enters an adjacent helix to continue its hybridization in the second helical axis.

Staple strands

The short DNA oligomers (usually 20–60 nucleotides long) used to staple different segments of the scaffold together and form a pre-determined geometry.

Segment lengths

Distances between two consecutive crossovers, which are a multiple of 7 bp in a honeycomb packing and a multiple of 8 bp in a square packing.

Wireframe tessellation

A DNA structure approximating a geometrical shape at its edges, through tiling of its surfaces by non-overlapping polygons that do not leave a gap.

Click contacts

Topological surface features of a DNA nanostructure, in the forms of protrusions and recessions that are capable of forming base-stacking interactions between two shape-complementary features, thus binding them.


Also known as deoxyribozyme, DNA enzyme or catalytic DNA. A DNA oligonucleotide with a specific sequence that performs a chemical reaction similar to enzymes.

Strand displacement reaction

(SDR). A hybridization scheme in which a longer complement (fuel strand) displaces a shorter complement (output strand) via branch migration to form a more stable duplex.


The unpaired segment of a partial DNA duplex, which can act as a seeding region to start a branch migration and a strand displacement reaction.

DNA walkers

Small DNA oligonucleotides that can move on a molecular track by a series of hybridization–dehybridization cycles.


Originally an architectural concept; a particular type of structure that maintains its integrity through pervasive tensional forces. In a tensegrity, each individual structural element is under stress, but the overall structure is stable.


Oligonucleotides or small peptides that bind specifically to a target molecule.

Ratchet effects

The mechanisms by which molecular motors use random thermal noise to produce directional motion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramezani, H., Dietz, H. Building machines with DNA molecules. Nat Rev Genet 21, 5–26 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing