Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carrier screening for recessive disorders


Technological and other advances over the past decades have led to the discovery of thousands of gene–disease associations for autosomal and X-linked recessive Mendelian disorders. Combined with recent improvements in assessing individual variants in each human genome, these developments offer the possibility of testing populations for all known severe recessive genetic disorders. Past experience has provided the framework for expanded carrier screening, but many challenges remain regarding which disorders to include, how to interpret variants and how to incorporate newly discovered gene–disease links into existing screening programmes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Haploinsufficiency index for autosomal recessive and dominant genes.
Fig. 2: The Ptolemy dynasty, 323–30 bce.
Fig. 3: Likelihood of autosomal recessive disorders.
Fig. 4: Homozygosity regions in the genomes of outbred and inbred individuals.
Fig. 5: Potential different thresholds for the interpretation of variants of recessive genes in expanded carrier screening.


  1. 1.

    Stamatoyannoulos, G. in Birth Defects: Proceedings of the Fourth International Conference (International Congress Series No. 310) (eds Motulsky, A. G. & Ebling, F. J. G.) 268–276 (Excerpta Medica, 1974). This report describes the first pioneer carrier screening.

  2. 2.

    Solomon, B. D., Nguyen, A. D., Bear, K. A. & Wolfsberg, T. G. Clinical genomic database. Proc. Natl Acad. Sci. USA 110, 9851–9855 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    van der Hout, S., Dondorp, W. & de Wert, G. The aims of expanded universal carrier screening: autonomy, prevention, and responsible parenthood. Bioethics. (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kraft, S. A., Duenas, D., Wilfond, B. S. & Goddard, K. A. B. The evolving landscape of expanded carrier screening: challenges and opportunities. Genet. Med. 21, 790–797 (2019).

    PubMed  Google Scholar 

  5. 5.

    Baird, P. A., Anderson, T. W., Newcombe, H. B. & Lowry, R. B. Genetic disorders in children and young adults: a population study. Am. J. Hum. Genet. 42, 677–693 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Verma, I. C. & Puri, R. D. Global burden of genetic disease and the role of genetic screening. Semin. Fetal Neonatal Med. 20, 354–363 (2015).

    CAS  PubMed  Google Scholar 

  7. 7.

    Allison, A. C. Protection afforded by sickle-cell trait against subtertian malareal infection. Br. Med. J. 1, 290–294 (1954). This study provides the first historical link between the sickle cell trait and malaria.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Abouelhoda, M. et al. Clinical genomics can facilitate countrywide estimation of autosomal recessive disease burden. Genet. Med. 18, 1244–1249 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Makrythanasis, P. et al. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum. Mutat. 35, 1203–1210 (2014).

    CAS  PubMed  Google Scholar 

  10. 10.

    Ropers, H. H. Genetics of early onset cognitive impairment. Annu. Rev. Genomics Hum. Genet. 11, 161–187 (2010).

    CAS  PubMed  Google Scholar 

  11. 11.

    Akawi, N. et al. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat. Genet. 47, 1363–1369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Martin, H. C. et al. Quantifying the contribution of recessive coding variation to developmental disorders. Science 362, 1161–1164 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Karczewski, K. J. et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. Preprint at bioRxiv (2019).

    Article  Google Scholar 

  14. 14.

    Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016). This study describes a freely available and extensive database of genomic variants, generated as part of ExAC, that is extremely useful for diagnostic evaluation.

    CAS  Article  Google Scholar 

  15. 15.

    Saleheen, D. et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544, 235–239 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Dewey, F. E. et al. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science 354, aaf6814 (2016). An exemplary study of population genomic medicine.

    PubMed  Google Scholar 

  17. 17.

    Telenti, A. et al. Deep sequencing of 10,000 human genomes. Proc. Natl Acad. Sci. USA 113, 11901–11906 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Samuel, G. N. & Farsides, B. The UK’s 100,000 Genomes Project: manifesting policymakers’ expectations. New Genet. Soc. 36, 336–353 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Short, P. J. et al. De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 555, 611–616 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    The 1000 Genomes Project Consortium. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    PubMed Central  Google Scholar 

  21. 21.

    Xue, Y. et al. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am. J. Hum. Genet. 91, 1022–1032 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gonzaga-Jauregui, C., Lupski, J. R. & Gibbs, R. A. Human genome sequencing in health and disease. Annu. Rev. Med. 63, 35–61 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lazarin, G. A. et al. An empirical estimate of carrier frequencies for 400+ causal Mendelian variants: results from an ethnically diverse clinical sample of 23,453 individuals. Genet. Med. 15, 178–186 (2013).

    PubMed  Google Scholar 

  24. 24.

    Crow, J. F. Eighty years ago: the beginnings of population genetics. Genetics 119, 473–476 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Haque, I. S. et al. Modeled fetal risk of genetic diseases identified by expanded carrier screening. JAMA 316, 734–742 (2016).

    PubMed  Google Scholar 

  26. 26.

    Kahrizi, K. et al. Effect of inbreeding on intellectual disability revisited by trio sequencing. Clin. Genet. 95, 151–159 (2019).

    CAS  PubMed  Google Scholar 

  27. 27.

    Romeo, G. & Bittles, A. H. Consanguinity in the contemporary world. Hum. Hered. 77, 6–9 (2014).

    PubMed  Google Scholar 

  28. 28.

    Bittles, A. H. A community genetics perspective on consanguineous marriage. Commun. Genet. 11, 324–330 (2008).

    CAS  Google Scholar 

  29. 29.

    Hamamy, H. et al. Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop report. Genet. Med. 13, 841–847 (2011).

    PubMed  Google Scholar 

  30. 30.

    Bittles, A. Consanguinity and its relevance to clinical genetics. Clin. Genet. 60, 89–98 (2001).

    CAS  PubMed  Google Scholar 

  31. 31.

    Small, N., Bittles, A. H., Petherick, E. S. & Wright, J. Endogamy, consanguinity and the health implications of changing marital choices in the UK Pakistani community. J. Biosoc. Sci. 49, 435–446 (2017).

    PubMed  Google Scholar 

  32. 32.

    Monies, D. et al. The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum. Genet. 136, 921–939 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).

    CAS  PubMed  Google Scholar 

  34. 34.

    Bobadilla, J. L., Macek, M. Jr, Fine, J. P. & Farrell, P. M. Cystic fibrosis: a worldwide analysis of CFTR mutations — correlation with incidence data and application to screening. Hum. Mutat. 19, 575–606 (2002).

    CAS  PubMed  Google Scholar 

  35. 35.

    Committee on Genetics. Committee opinion no. 691: carrier screening for genetic conditions. Obstet. Gynecol. 129, e41–e55 (2017).

    Google Scholar 

  36. 36.

    Rosner, G., Rosner, S. & Orr-Urtreger, A. Genetic testing in Israel: an overview. Annu. Rev. Genomics Hum. Genet. 10, 175–192 (2009).

    CAS  PubMed  Google Scholar 

  37. 37.

    Beutler, E. Gaucher disease. Curr. Opin. Hematol. 4, 19–23 (1997).

    CAS  PubMed  Google Scholar 

  38. 38.

    Watson, M. S., Lloyd-Puryear, M. A., Mann, M. Y., Rinaldo, P. & Howell, R. R. Main report. Genet. Med. 8 (Suppl. 1), 12S–252S (2006).

    Google Scholar 

  39. 39.

    Lazarin, G. A. et al. Systematic classification of disease severity for evaluation of expanded carrier screening panels. PLOS ONE 9, e114391 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bell, C. J. et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl Med. 3, 65ra4 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Himes, P. et al. Genome sequencing and carrier testing: decisions on categorization and whether to disclose results of carrier testing. Genet. Med. 19, 803–808 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Punj, S. et al. Preconception carrier screening by genome sequencing: results from the clinical laboratory. Am. J. Hum. Genet. 102, 1078–1089 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Lettre, G. et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl Acad. Sci. USA 105, 11869–11874 (2008).

    CAS  PubMed  Google Scholar 

  44. 44.

    Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018). A database of interpretation of genomic variants that is extremely useful for diagnostic evaluation.

    CAS  PubMed  Google Scholar 

  45. 45.

    Lee, J. S. et al. Reclassification of BRCA1 and BRCA2 variants of uncertain significance: a multifactorial analysis of multicentre prospective cohort. J. Med. Genet. 55, 794–802 (2018).

    CAS  PubMed  Google Scholar 

  46. 46.

    Need, A. C. & Goldstein, D. B. Next generation disparities in human genomics: concerns and remedies. Trends Genet. 25, 489–494 (2009).

    CAS  PubMed  Google Scholar 

  47. 47.

    Badano, J. L. & Katsanis, N. Beyond Mendel: an evolving view of human genetic disease transmission. Nat. Rev. Genet. 3, 779–789 (2002).

    CAS  PubMed  Google Scholar 

  48. 48.

    Ansar, M. et al. Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3. Hum. Mol. Genet. 27, 2703–2711 (2018).

    CAS  PubMed Central  Google Scholar 

  49. 49.

    Serjeant, G. R. et al. Hb S-β-thalassemia: molecular, hematological and clinical comparisons. Hemoglobin 35, 1–12 (2011).

    CAS  PubMed  Google Scholar 

  50. 50.

    Raraigh, K. S. et al. Functional assays are essential for interpretation of missense variants associated with variable expressivity. Am. J. Hum. Genet. 102, 1062–1077 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Langley, S. D., Lai, K., Dembure, P. P., Hjelm, L. N. & Elsas, L. J. Molecular basis for Duarte and Los Angeles variant galactosemia. Am. J. Hum. Genet. 60, 366–372 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Kaback, M. M. & Desnick, R. J. Hexosaminidase A deficiency. GeneReviews (updated 11 Aug 2011).

  53. 53.

    Thauvin-Robinet, C. et al. CFTR p. Arg117His associated with CBAVD and other CFTR-related disorders. J. Med. Genet. 50, 220–227 (2013).

    CAS  PubMed  Google Scholar 

  54. 54.

    Chokoshvili, D., Borry, P. & Vears, D. F. A systematic analysis of online marketing materials used by providers of expanded carrier screening. Genet. Med. 20, 976–984 (2018).

    PubMed  Google Scholar 

  55. 55.

    Chokoshvili, D., Vears, D. & Borry, P. Expanded carrier screening for monogenic disorders: where are we now? Prenat. Diagn. 38, 59–66 (2018).

    PubMed  Google Scholar 

  56. 56.

    Kroos, M. A. et al. Glycogen storage disease type II: frequency of three common mutant alleles and their associated clinical phenotypes studied in 121 patients. J. Med. Genet. 32, 836–837 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ceyhan-Birsoy, O. et al. Interpretation of genomic sequencing results in healthy and Ill newborns: results from the BabySeq project. Am. J. Hum. Genet. 104, 76–93 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Committee on Bioethics. et al. Ethical and policy issues in genetic testing and screening of children. Pediatrics 131, 620–622 (2013).

    Google Scholar 

  59. 59.

    Lynch, F. L. et al. Time costs for genetic counseling in preconception carrier screening with genome sequencing. J. Genet. Couns. 27, 823–833 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Cao, A. & Kan, Y. W. The prevention of thalassemia. Cold Spring Harb. Perspect. Med. 3, a011775 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Weatherall, D. J. The inherited diseases of hemoglobin are an emerging global health burden. Blood 115, 4331–4336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Angastiniotis, M. A. & Hadjiminas, M. G. Prevention of thalassaemia in Cyprus. Lancet 1, 369–371 (1981).

    CAS  PubMed  Google Scholar 

  63. 63.

    Loukopoulos, D. Current status of thalassemia and the sickle cell syndromes in Greece. Semin. Hematol. 33, 76–86 (1996).

    CAS  PubMed  Google Scholar 

  64. 64.

    Cao, A., Galanello, R., Rosatelli, M. C., Argiolu, F. & De Virgiliis, S. Clinical experience of management of thalassemia: the Sardinian experience. Semin. Hematol. 33, 66–75 (1996).

    CAS  PubMed  Google Scholar 

  65. 65.

    Cao, A. et al. Prevention of homozygous β-thalassemia by carrier screening and prenatal diagnosis in Sardinia. Am. J. Hum. Genet. 33, 592–605 (1981). This publication describes the success of a pioneer carrier screening programme for β-thalassaemia.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Kalokairinou, E. M. The experience of β-thalassaemia and its prevention in Cyprus. Med. Law 26, 291–307 (2007).

    CAS  PubMed  Google Scholar 

  67. 67.

    Angastiniotis, M. & Modell, B. Global epidemiology of hemoglobin disorders. Ann. NY Acad. Sci. 850, 251–269 (1998).

    CAS  PubMed  Google Scholar 

  68. 68.

    Cao, A. Results of programmes for antenatal detection of thalassemia in reducing the incidence of the disorder. Blood Rev. 1, 169–176 (1987).

    CAS  PubMed  Google Scholar 

  69. 69.

    Okada, S. & O’Brien, J. S. Tay–Sachs disease: generalized absence of a β-d-N-acetylhexosaminidase component. Science 165, 698–700 (1969).

    CAS  PubMed  Google Scholar 

  70. 70.

    Kaback, M. & Zeigler, R. in Sphingolipids, Sphingolipidoses and Allied Disorders: Proceedings of the Symposium on Sphingolipidoses and Allied Disorders Vol. 19 (eds Volk, B. W. & Aronson, S. M.) 613–632 (Springer, 1972).

  71. 71.

    Kaback, M. et al. Tay–Sachs disease — carrier screening, prenatal diagnosis, and the molecular era. An international perspective, 1970 to 1993. The International TSD Data Collection Network. JAMA 270, 2307–2315 (1993). This study describes the success of a pioneer carrier screening programme for Tay–Sachs disease.

    CAS  PubMed  Google Scholar 

  72. 72.

    Gason, A. A., Delatycki, M. B., Metcalfe, S. A. & Aitken, M. It’s “back to school” for genetic screening. Eur. J. Hum. Genet. 14, 384–389 (2006).

    PubMed  Google Scholar 

  73. 73.

    Kerem, B. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    CAS  PubMed  Google Scholar 

  74. 74.

    Riordan, J. R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    CAS  PubMed  Google Scholar 

  75. 75.

    Watson, M. S. et al. Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics Mutation Panel. Genet. Med. 6, 387–391 (2004).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    American College of Obstetricians and Gynecologists Committee on Genetics. ACOG Committee Opinion No. 486: update on carrier screening for cystic fibrosis. Obstet. Gynecol. 117, 1028–1031 (2011).

    Google Scholar 

  77. 77.

    Morgan, M. A., Driscoll, D. A., Mennuti, M. T. & Schulkin, J. Practice patterns of obstetrician-gynecologists regarding preconception and prenatal screening for cystic fibrosis. Genet. Med. 6, 450–455 (2004).

    PubMed  Google Scholar 

  78. 78.

    Ioannou, L. et al. Population-based carrier screening for cystic fibrosis: a systematic review of 23 years of research. Genet. Med. 16, 207–216 (2014).

    CAS  PubMed  Google Scholar 

  79. 79.

    Castellani, C. et al. Association between carrier screening and incidence of cystic fibrosis. JAMA 302, 2573–2579 (2009).

    CAS  PubMed  Google Scholar 

  80. 80.

    Cunningham, S. & Marshall, T. Influence of five years of antenatal screening on the paediatric cystic fibrosis population in one region. Arch. Dis. Child. 78, 345–348 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Hale, J. E., Parad, R. B. & Comeau, A. M. Newborn screening showing decreasing incidence of cystic fibrosis. N. Engl. J. Med. 358, 973–974 (2008).

    CAS  PubMed  Google Scholar 

  82. 82.

    Ramsey, B. W. et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365, 1663–1672 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Massie, J., Castellani, C. & Grody, W. W. Carrier screening for cystic fibrosis in the new era of medications that restore CFTR function. Lancet 383, 923–925 (2014).

    PubMed  Google Scholar 

  84. 84.

    Taylor-Cousar, J. L. et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N. Engl. J. Med. 377, 2013–2023 (2017).

    CAS  PubMed  Google Scholar 

  85. 85.

    Archibald, A. D. et al. Reproductive genetic carrier screening for cystic fibrosis, fragile X syndrome, and spinal muscular atrophy in Australia: outcomes of 12,000 tests. Genet. Med. 20, 513–523 (2018).

    PubMed  Google Scholar 

  86. 86.

    Henneman, L. et al. Responsible implementation of expanded carrier screening. Eur. J. Hum. Genet. 24, e1–e12 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    The American College of Obstetricians and Gynecologists. Committee opinion no. 690 summary: carrier screening in the age of genomic medicine. Obstet. Gynecol. 129, 595–596 (2017).

    Google Scholar 

  88. 88.

    Grody, W. W. et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet. Med. 15, 482–483 (2013).

    CAS  PubMed  Google Scholar 

  89. 89.

    Edwards, J. G. et al. Expanded carrier screening in reproductive medicine-points to consider: a joint statement of the American College of Medical Genetics and Genomics, American College of Obstetricians and Gynecologists, National Society of Genetic Counselors, Perinatal Quality Foundation, and Society for Maternal-Fetal Medicine. Obstet. Gynecol. 125, 653–662 (2015).

    PubMed  Google Scholar 

  90. 90.

    Ager, S. L. The power of excess: royal incest and the ptolemaic dynasty. Anthropologica 48, 165–186 (2006).

    Google Scholar 

  91. 91.

    Lewis, R. Human Genetics: Concepts and Applications 10th edn (McGraw-Hill Education, 2012).

Download references


The author thanks I. Kolpakov, M. Garieri, M. Ansar, E. Ranza, T. Papayannopoulou and H. C. Martin for discussions or preparation of figures, and the University of Geneva for continuous support. The author also thanks the three anonymous expert reviewers for their constructive comments.

Author information



Corresponding author

Correspondence to Stylianos E. Antonarakis.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Clinical Genomic Database (CGD):

ClinVar database:

Consanguinity and endogamy resource:

Cystic Fibrosis Mutation Database:

Dor Yeshorim:

Exome Aggregation Consortium (ExAC) browser:

Genome Aggregation Database (gnomAD):

gnomAD 7-117171028-C-T:

gnomAD 7-117230454-G-C:

Online Mendelian Inheritance in Man (OMIM):

The American College of Medical Genetics and Genomics (ACMG):

The American College of Obstetricians and Gynecologists (ACOG):

The European Society of Human Genetics (ESHG) Public and Professional Policy Committee:

This Review is dedicated to the memory of Professor George Stamatoyannopoulos (1934–2018).

Supplementary information


Autosomal recessive inheritance

The mode of inheritance in which the phenotype is due to two pathogenic variants in the same gene: one in the paternal allele and the other in the maternal allele. The causative gene maps in one of the autosomes.

Carrier screening

The detection of unaffected individuals who harbour one copy of a pathogenic variant in a gene known to be involved in a recessive disorder.

X-linked disorders

Genetic disorders for which the pathogenic variant is on the X chromosome.

Expanded carrier screening

(ECS). Genetic testing for a large number of genetic disorders (generally 100 or more) simultaneously in 1 test. In this Review, ECS refers to the identification of carriers for the majority of severe Mendelian autosomal recessive and X-linked disorders beyond the traditional screening guidelines.


A term that refers to the practice of marrying within a specific social or ethnic community or otherwise closed population.


Mating among close relatives, for example, first or second cousins.


Also known as identity by descent. The inheritance of two alleles at a locus from a common ancestor due to inbreeding.

Founder effects

The loss of genetic variation when a new population is established by a very small number of individuals from a larger population.

Variable expressivity

A phenotype expressed to a different degree among individuals with the same genotype.


The fraction of individuals with a phenotype given a genotype known to cause a disease.

Compound heterozygosity

The condition of having two different pathogenic recessive variants, one in each parental allele, at a particular locus.

Copy number variants

(CNVs). Genomic variation due to different copies of a sequence in different alleles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonarakis, S.E. Carrier screening for recessive disorders. Nat Rev Genet 20, 549–561 (2019).

Download citation

Further reading


Quick links