The genetics of convergent evolution: insights from plant photosynthesis


The tree of life is resplendent with examples of convergent evolution, whereby distinct species evolve the same trait independently. Many highly convergent adaptations are also complex, which makes their repeated emergence surprising. In plants, the evolutionary history of two carbon concentrating mechanisms (CCMs) — C4 and crassulacean acid metabolism (CAM) photosynthesis — presents such a paradox. Both of these modifications of ancestral C3 photosynthesis require the integration of multiple anatomical and biochemical components, yet together they have evolved more than one hundred times. The presence of CCM enzymes in all plants suggests that a rudimentary CCM might emerge via relatively few genetic changes in potentiated lineages. Here, we propose that many of the complexities often associated with C4 and CAM photosynthesis may have evolved during a post-emergence optimization phase. The ongoing development of new model clades for young, emerging CCMs is enabling the comparative studies needed to test these ideas.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Biochemistry of C3 and CCM pathways.
Fig. 2: Evolutionary patterns of CCMs.
Fig. 3: Expression of PEPC in the leaves of C3 angiosperms belonging to CCM-evolving lineages.


  1. 1.

    Fernald, R. D. Casting a genetic light on the evolution of eyes. Science 313, 1914–1918 (2006).

    CAS  PubMed  Google Scholar 

  2. 2.

    Fraser, J. A. et al. Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLOS Biol. 2, e384 (2004).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Berens, A. J., Hunt, J. H. & Toth, A. L. Comparative transcriptomics of convergent evolution: different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Mol. Biol. Evol. 32, 690–703 (2015).

    CAS  PubMed  Google Scholar 

  4. 4.

    Smith, S. D. & Kriebel, R. Convergent evolution of floral shape tied to pollinator shifts in Iochrominae (Solanaceae). Evolution 72, 688–697 (2018).

    PubMed  Google Scholar 

  5. 5.

    Larter, M. et al. Convergent evolution at the pathway level: predictable regulatory changes during flower color transitions. Mol. Biol. Evol. 35, 2159–2169 (2018).

    CAS  Google Scholar 

  6. 6.

    Knudsen, J. T. & Tollsten, L. Floral scent in bat-pollinated plants: a case of convergent evolution. Bot. J. Linn. Soc. 119, 45–57 (1995).

    Google Scholar 

  7. 7.

    Conn, C. E. et al. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349, 540–543 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Tcherkez, G. G. B., Farquhar, G. D. & Andrews, T. J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl Acad. Sci. USA 103, 7246–7251 (2006).

    CAS  PubMed  Google Scholar 

  9. 9.

    Bauwe, H., Hagemann, M. & Fernie, A. R. Photorespiration: players, partners and origin. Trends Plant Sci. 15, 330–336 (2010).

    CAS  PubMed  Google Scholar 

  10. 10.

    Hatch, M. D. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta 895, 81–106 (1987).

    CAS  Google Scholar 

  11. 11.

    Osmond, C. B. Crassulacean acid metabolism: a curiosity in context. Annu. Rev. Plant Physiol. 29, 379–414 (1978).

    CAS  Google Scholar 

  12. 12.

    Christin, P.-A. et al. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr. Biol. 18, 37–43 (2008).

    CAS  PubMed  Google Scholar 

  13. 13.

    Arakaki, M. et al. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc. Natl Acad. Sci. USA 108, 8379–8384 (2011).

    CAS  PubMed  Google Scholar 

  14. 14.

    Edwards, E. J. & Still, C. J. Climate, phylogeny and the ecological distribution of C4 grasses. Ecol. Lett. 11, 266–276 (2008).

    PubMed  Google Scholar 

  15. 15.

    Edwards, E. J. & Smith, S. A. Phylogenetic analyses reveal the shady history of C4 grasses. Proc. Natl Acad. Sci. USA 107, 2532–2537 (2010).

    CAS  PubMed  Google Scholar 

  16. 16.

    Horn, J. W. et al. Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68, 3485–3504 (2014).

    CAS  PubMed  Google Scholar 

  17. 17.

    Crayn, D. M. et al. Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species. Bot. J. Linn. Soc. 178, 169–221 (2015).

    Google Scholar 

  18. 18.

    McKown, A. D. & Dengler, N. G. Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Am. J. Bot. 94, 382–399 (2007).

    PubMed  Google Scholar 

  19. 19.

    Christin, P.-A. et al. Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proc. Natl Acad. Sci. USA 110, 1381–1386 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Silvera, K. et al. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. Plant Physiol. 149, 1838–1847 (2013).

    Google Scholar 

  21. 21.

    Crayn, D. M., Winter, K. & Smith, J. A. C. Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc. Natl Acad. Sci. USA 101, 3703–3708 (2004).

    CAS  PubMed  Google Scholar 

  22. 22.

    Sage, R. F., Christin, P.-A. & Edwards, E. J. The C4 plant lineages of planet Earth. J. Exp. Bot. 62, 3155–3169 (2011).

    CAS  PubMed  Google Scholar 

  23. 23.

    Edwards, E. J. & Ogburn, R. M. Angiosperm responses to a low-CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories. Int. J. Plant Sci. 173, 724–733 (2012).

    CAS  Google Scholar 

  24. 24.

    Kellogg, E. A. in C 4 Plant Biology (eds Sage, R. F. & Monson, R. K.) 411–444 (Academic Press, 1999).

  25. 25.

    Sage, R. F. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol. 3, 202–213 (2001).

    CAS  Google Scholar 

  26. 26.

    Smith, J. M. et al. Developmental constraints and evolution: a perspective from the Mountain Lake Conference on Development and Evolution. Q. Rev. Biol. 60, 265–287 (1985).

    Google Scholar 

  27. 27.

    Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

    PubMed  Google Scholar 

  28. 28.

    Jordan, D. B. & Ogren, W. L. The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 161, 308–313 (1984).

    CAS  PubMed  Google Scholar 

  29. 29.

    Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33, 317–345 (1982).

    CAS  Google Scholar 

  30. 30.

    Mallmann, J. et al. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. eLife 3, e02478 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Voznesenskaya, E. V. et al. Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414, 543–546 (2001).

    CAS  PubMed  Google Scholar 

  32. 32.

    Dengler, N. G. et al. Quantitative leaf anatomy of C3 and C4 grasses (Poaceae): bundle sheath and mesophyll surface area relationships. Ann. Bot. 73, 241–255 (1994).

    Google Scholar 

  33. 33.

    Hattersley, P. W. Characterization of C4 type leaf anatomy in grasses (Poaceae). Mesophyll: bundle sheath area ratios. Ann. Bot. 53, 163–180 (1984).

    Google Scholar 

  34. 34.

    Hatch, M. D. in C 4 Plant Biology (eds Sage, R. F. & Monson, R. K.) 17–46 (Academic Press, 1999).

  35. 35.

    Furbank, R. T. & Hatch, M. D. Mechanism of C4 photosynthesis: the size and composition of the inorganic carbon pool in bundle sheath cells. Plant Physiol. 85, 958–964 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Christin, P.-A. et al. C4 eudicots are not younger than C4 monocots. J. Exp. Bot. 62, 3171–3181 (2011).

    CAS  PubMed  Google Scholar 

  37. 37.

    Christin, P.-A. & Osborne, C. P. The recurrent assembly of C4 photosynthesis, an evolutionary tale. Photosynth. Res. 117, 163–175 (2013).

    CAS  PubMed  Google Scholar 

  38. 38.

    Long, S. P. in C 4 Plant Biology (eds Sage, R. F. & Monson, R. K.) 215–249 (Academic Press, 1999).

  39. 39.

    Cockburn, W., Ting, I. P. & Sternberg, L. O. Relationships between stomatal behavior and internal carbon dioxide concentration in crassulacean acid metabolism plants. Plant Physiol. 63, 1029–1032 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Borland, A. M. et al. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J. Exp. Bot. 60, 2879–2896 (2009).

    CAS  PubMed  Google Scholar 

  41. 41.

    Sage, R. F. et al. Some like it hot: the physiological ecology of C4 plant evolution. Oecologia 187, 941–966 (2018).

    PubMed  Google Scholar 

  42. 42.

    Heckmann, D. et al. Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell 153, 1579–1588 (2013).

    CAS  PubMed  Google Scholar 

  43. 43.

    Winter, K., Garcia, M. & Holtum, J. A. M. On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchöe, and Opuntia. J. Exp. Bot. 59, 1829–1840 (2008).

    CAS  PubMed  Google Scholar 

  44. 44.

    Winter, K. & Holtum, J. A. M. Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients. Funct. Plant Biol. 38, 576–582 (2011).

    CAS  Google Scholar 

  45. 45.

    Heyduk, K. et al. Shifts in gene expression profiles are associated with weak and strong crassulacean acid metabolism. Am. J. Bot. 105, 587–601 (2018).

    CAS  PubMed  Google Scholar 

  46. 46.

    Silvera, K., Santiago, L. S. & Winter, K. Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. Funct. Plant Biol. 32, 397 (2005).

    CAS  Google Scholar 

  47. 47.

    Goolsby, E. W. et al. Molecular evolution of key metabolic genes during transitions to C4 and CAM photosynthesis. Am. J. Bot. 105, 602–613 (2018).

    CAS  PubMed  Google Scholar 

  48. 48.

    Christin, P.-A. et al. Shared origins of a key enzyme during the evolution of C4 and CAM metabolism. J. Exp. Bot. 65, 3609–3621 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).

    CAS  PubMed  Google Scholar 

  50. 50.

    Cai, J. et al. The genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47, 65–72 (2015).

    CAS  PubMed  Google Scholar 

  51. 51.

    Yang, X. et al. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat. Commun. 8, 1899 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    CAS  PubMed  Google Scholar 

  53. 53.

    Ding, Z. et al. Identification of photosynthesis-associated C4 candidate genes through comparative leaf gradient transcriptome in multiple lineages of C3 and C4 species. PLOS ONE 10, e0140629 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wang, L. et al. Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat. Biotechnol. 32, 1158–1165 (2014).

    PubMed  Google Scholar 

  55. 55.

    Brilhaus, D. et al. Reversible burst of transcriptional changes during induction of crassulacean acid metabolism in Talinum triangulare. Plant Physiol. 170, 102–122 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Xu, J. et al. Systems analysis of cis-regulatory motifs in C4 photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation. J. Exp. Bot. 67, 5105–5117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Gowik, U. et al. Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell 23, 2087–2105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Bräutigam, A. et al. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol. 155, 142–156 (2011).

    PubMed  Google Scholar 

  59. 59.

    Lauterbach, M. et al. De novo transcriptome assembly and comparison of C3, C3–C4, and C4 species of Tribe Salsoleae (Chenopodiaceae). Front. Plant Sci. 8, 1939 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Ellis, R. P. Anomalous vascular bundle sheath structure in Alloteropsis semialata leaf blades. Bothalia 11, 273–275 (1974).

    Google Scholar 

  61. 61.

    Lundgren, M. R. et al. Evolutionary implications of C3–C4 intermediates in the grass Alloteropsis semialata. Plant Cell Environ. 39, 1874–1885 (2016).

    CAS  PubMed  Google Scholar 

  62. 62.

    Olofsson, J. K. et al. Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait. Mol. Ecol. 25, 6107–6123 (2016).

    CAS  PubMed  Google Scholar 

  63. 63.

    Ueno, O. & Sentoku, N. Comparison of leaf structure and photosynthetic characteristics of C3 and C4 Alloteropsis semialata subspecies. Plant Cell Environ. 29, 257–268 (2006).

    CAS  PubMed  Google Scholar 

  64. 64.

    Dunning, L. T. et al. Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives. Evolution 71, 1541–1555 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Christin, P.-A. et al. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Curr. Biol. 22, 445–449 (2012).

    CAS  PubMed  Google Scholar 

  66. 66.

    Sayre, R. T., Kennedy, R. A. & Pringnitz, D. J. Photosynthetic enzyme activities and localization in Mollugo verticillata populations differing in the levels of C3 and C4 cycle operation. Plant Physiol. 64, 293–299 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Heyduk, K. et al. Gas exchange and leaf anatomy of a C3-CAM hybrid, Yucca gloriosa (Asparagaceae). J. Exp. Bot. 67, 1369–1379 (2016).

    CAS  PubMed  Google Scholar 

  68. 68.

    Reeves, G. et al. Natural variation within a species for traits underpinning C4 photosynthesis. Plant Physiol. 177, 504–512 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    O’Leary, B., Park, J. & Plaxton, W. C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem. J. 436, 15–34 (2011).

    PubMed  Google Scholar 

  70. 70.

    Smith, F. A. & Raven, J. A. Intracellular PH and its regulation. Annu. Rev. Plant Physiol. 30, 289–311 (1979).

    CAS  Google Scholar 

  71. 71.

    Kunitake, G., Stitt, C. & Saltman, P. Dark fixation of CO2 by tobacco leaves. Plant Physiol. 34, 123–127 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Dhindsa, R. S., Beasley, C. A. & Ting, I. P. Osmoregulation in cotton fiber: accumulation of potassium and malate during growth. Plant Physiol. 56, 394–398 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Hibberd, J. M. & Quick, W. P. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415, 451–454 (2002).

    CAS  PubMed  Google Scholar 

  74. 74.

    Cui, H., Kong, D., Liu, X. & Hao, Y. SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana. Plant J. 78, (319–327 (2014).

    Google Scholar 

  75. 75.

    Slewinski, T. L. et al. Scarecrow plays a role in establishing Kranz anatomy in maize leaves. Plant Cell Physiol. 53, 2030–2037 (2012).

    CAS  PubMed  Google Scholar 

  76. 76.

    Yuan, M. et al. A single leaf of Camellia oleifera has two types of carbon assimilation pathway, C3 and crassulacean acid metabolism. Tree Physiol. 32, 188–199 (2012).

    CAS  PubMed  Google Scholar 

  77. 77.

    Blount, Z. D., Borland, C. Z. & Lenski, R. E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl Acad. Sci. USA 105, 7899–7906 (2008).

    CAS  PubMed  Google Scholar 

  78. 78.

    Marshall, D. M. et al. Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis: C4 photosynthesis in Cleome. Plant J. 51, 886–896 (2007).

    CAS  PubMed  Google Scholar 

  79. 79.

    Sage, R. F. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. J. Exp. Bot. 67, 4039–4056 (2016).

    CAS  PubMed  Google Scholar 

  80. 80.

    Males, J. Concerted anatomical change associated with crassulacean acid metabolism in the Bromeliaceae. Funct. Plant Biol. 45, 681–695 (2018).

    CAS  Google Scholar 

  81. 81.

    Zambrano, V. A. B. et al. Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia. J. Exp. Bot. 65, 3513–3523 (2014).

    Google Scholar 

  82. 82.

    Heyduk, K. et al. Evolution of CAM anatomy predates the origins of crassulacean acid metabolism in the Agavoideae (Asparagaceae). Mol. Phylogenet. Evol. 105, 102–113 (2016).

    CAS  PubMed  Google Scholar 

  83. 83.

    Gowik, U. et al. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16, 1077–1090 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Matsuoka, M. et al. The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Plant J. 6, 311–319 (1994).

    CAS  PubMed  Google Scholar 

  85. 85.

    Akyildiz, M. et al. Evolution and function of a cis-regulatory module for mesophyll-specific gene expression in the C4 dicot Flaveria trinervia. Plant Cell 19, 3391–3402 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Yin, H. et al. Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave. BMC Genomics 19, 588 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Ming, R. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47, 1435–1442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Moreno-Villena, J. J. et al. Highly expressed genes are preferentially co-opted for C4 photosynthesis. Mol. Biol. Evol. 35, 94–106 (2018).

    CAS  PubMed  Google Scholar 

  89. 89.

    Silvera, K. et al. Multiple isoforms of phosphoenolpyruvate carboxylase in the Orchidaceae (subtribe Oncidiinae): implications for the evolution of crassulacean acid metabolism. J. Exp. Bot. 65, 3623–3636 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Brown, N. J. et al. Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis. Science 331, 1436–1439 (2011).

    CAS  PubMed  Google Scholar 

  91. 91.

    Borba, A. R., Serra, T. S. & Górska, A. Synergistic binding of bHLH transcription factors to the promoter of the maize NADP-ME gene used in C4 photosynthesis is based on an ancient code found in the ancestral C3 state. Mol. Biol. 35, 1690–1705 (2018).

    CAS  Google Scholar 

  92. 92.

    Adwy, W., Laxa, M. & Peterhansel, C. A simple mechanism for the establishment of C2-specific gene expression in Brassicaceae. Plant J. 84, 1231–1238 (2015).

    CAS  PubMed  Google Scholar 

  93. 93.

    Reyna-Llorens, I. et al. Ancient duons may underpin spatial patterning of gene expression in C4 leaves. Proc. Natl Acad. Sci. USA 115, 1931–1936 (2018).

    CAS  PubMed  Google Scholar 

  94. 94.

    Kausch, A. P. et al. Mesophyll-specific, light and metabolic regulation of the C4 PPCZm1 promoter in transgenic maize. Plant Mol. Biol. 45, 1–15 (2001).

    CAS  PubMed  Google Scholar 

  95. 95.

    Burgess, S. J. et al. Ancestral light and chloroplast regulation form the foundations for C4 gene expression. Nat. Plants 2, 16161 (2016).

    CAS  PubMed  Google Scholar 

  96. 96.

    Cao, C. et al. Evidence for the role of transposons in the recruitment of cis-regulatory motifs during the evolution of C4 photosynthesis. BMC Genomics 17, 201 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Wang, X. et al. Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol. 10, R68 (2009).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Christin, P.-A. et al. Evolution of C4 phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype. Mol. Biol. Evol. 26, 357–365 (2009).

    CAS  PubMed  Google Scholar 

  99. 99.

    Wang, P. et al. Evolution of GOLDEN2-LIKE gene function in C3 and C4 plants. Planta 237, 481–495 (2013).

    CAS  PubMed  Google Scholar 

  100. 100.

    Bianconi, M. E. et al. Gene duplication and dosage effects during the early emergence of C4 photosynthesis in the grass genus Alloteropsis. J. Exp. Bot. 69, 1967–1980 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Emms, D. M. et al. Independent and parallel evolution of new genes by gene duplication in two origins of C4 photosynthesis provides new insight into the mechanism of phloem loading in C4 species. Mol. Biol. Evol. 33, 1796–1806 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Huang, P. et al. Cross species selection scans identify components of C4 photosynthesis in the grasses. J. Exp. Bot. 68, 127–135 (2017).

    CAS  PubMed  Google Scholar 

  103. 103.

    Matasci, N. et al. Data access for the 1,000 Plants (1KP) project. Gigascience 3, 17 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859–E4868 (2014).

    CAS  PubMed  Google Scholar 

  105. 105.

    Deng, H. et al. Evolutionary history of PEPC genes in green plants: implications for the evolution of CAM in orchids. Mol. Phylogenet. Evol. 94 (Suppl. B), 559–564 (2016).

    CAS  PubMed  Google Scholar 

  106. 106.

    Lundgren, M. R., Osborne, C. P. & Christin, P.-A. Deconstructing Kranz anatomy to understand C4 evolution. J. Exp. Bot. 65, 3357–3369 (2014).

    PubMed  Google Scholar 

  107. 107.

    Freitag, H. & Kadereit, G. C3 and C4 leaf anatomy types in Camphorosmeae (Camphorosmoideae, Chenopodiaceae). Plant Syst. Evol. 300, 665–687 (2014).

    Google Scholar 

  108. 108.

    Lundgren, M. R. et al. C4 anatomy can evolve via a single developmental change. Ecol. Lett. 22, 302–312 (2019).

    PubMed  Google Scholar 

  109. 109.

    Rosnow, J. J. et al. Kranz and single-cell forms of C4 plants in the subfamily Suaedoideae show kinetic C4 convergence for PEPC and Rubisco with divergent amino acid substitutions. J. Exp. Bot. 66, 7347–7358 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Rosnow, J. J., Edwards, G. E. & Roalson, E. H. Positive selection of Kranz and non-Kranz C4 phosphoenolpyruvate carboxylase amino acids in Suaedoideae (Chenopodiaceae). J. Exp. Bot. 65, 3595–3607 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Besnard, G. et al. Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Mol. Biol. Evol. 26, 1909–1919 (2009).

    CAS  PubMed  Google Scholar 

  112. 112.

    Christin, P.-A. et al. Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis. Mol. Biol. Evol. 25, 2361–2368 (2008).

    CAS  PubMed  Google Scholar 

  113. 113.

    Christin, P.-A. et al. C4 Photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr. Biol. 17, 1241–1247 (2007).

    CAS  PubMed  Google Scholar 

  114. 114.

    Besnard, G. et al. Herbarium genomics retraces the origins of C4-specific carbonic anhydrase in Andropogoneae (Poaceae). Bot. Lett. 165, 419–433 (2018).

    CAS  Google Scholar 

  115. 115.

    Caird, M. A., Richards, J. H. & Donovan, L. A. Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol. 143, 4–10 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Snyder, K. A., Richards, J. H. & Donovan, L. A. Night-time conductance in C3 and C4 species: do plants lose water at night? J. Exp. Bot. 54, 861–865 (2003).

    CAS  PubMed  Google Scholar 

  117. 117.

    Tallman, G. et al. Induction of CAM in Mesembryanthemum crystallinum abolishes the stomatal response to blue light and light-dependent zeaxanthin formation in guard cell chloroplasts. Plant Cell Physiol. 38, 236–242 (1997).

    CAS  Google Scholar 

  118. 118.

    Lee, D. M. & Assmann, S. M. Stomatal responses to light in the facultative Crassulacean acid metabolism species, Portulacaria afra. Physiol. Plant. 85, 35–42 (1992).

    CAS  Google Scholar 

  119. 119.

    Abraham, P. E. et al. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nat. Plants 2, 16178 (2016).

    CAS  PubMed  Google Scholar 

  120. 120.

    Heyduk, K. et al. Altered gene regulatory networks are associated with the transition from C3 to Crassulacean acid metabolism in Erycina (Oncidiinae: Orchidaceae). Front. Plant Sci. 9, 2000 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Hartwell, J. The co-ordination of central plant metabolism by the circadian clock. Biochem. Soc. Trans. 33, 945–948 (2005).

    CAS  PubMed  Google Scholar 

  122. 122.

    Ceusters, J. et al. Light quality modulates metabolic synchronization over the diel phases of Crassulacean acid metabolism. J. Exp. Bot. 65, 3705–3714 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Harris, L. W. & Davies, T. J. Data from: A complete fossil-calibrated phylogeny of seed plant families as a tool for comparative analyses: an example testing the ‘time for speciation’ hypothesis. Knowledge Network for Biocomplexity https://doi.org/10.5063/F13T9F5P (2016).

    Article  Google Scholar 

Download references


The authors thank members of the Edwards laboratory for their thoughtful discussions on this manuscript. K.H. is supported by a Donnelley Postdoctoral Fellowship through the Yale Institute of Biospheric Studies. Additional support came from US National Science Foundation awards DEB-1252901 and IOS-1754662 to E.J.E. P.-A.C. is supported by a Royal Society Research Fellowship (grant number URF120119).

Reviewer information

Nature Reviews Genetics thanks R. VanBuren and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Karolina Heyduk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information



Chemical reactions that provide intermediates to various metabolic pathways, including the tricarboxylic acid (TCA) cycle.


The addition of a carboxyl group to a substrate, often via a carboxylase enzyme.


The recruitment of a gene, enzyme or other trait for an alternative function.


Pertaining to a molecule from which a carboxyl group has been removed by a decarboxylase enzyme in a process that releases CO2.


Portions of the genome that both code for amino acids and provide motifs that can regulate gene expression.

Gene flow

Movement of genetic information between populations.

Genome-wide association studies

Analyses that correlate genetic markers from across the genome with a phenotype of interest in order to find loci underlying traits.

Lateral gene transfer

Movement of genes between individuals by mechanisms other than sexual reproduction.


Fixation of oxygen by Rubisco, resulting in a loss of energy and a release of CO2 but no net gain in carbohydrates.


The passive movement of water via stomata from the leaf intercellular airspace to the atmosphere along the water concentration gradient.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heyduk, K., Moreno-Villena, J.J., Gilman, I. et al. The genetics of convergent evolution: insights from plant photosynthesis. Nat Rev Genet 20, 485–493 (2019). https://doi.org/10.1038/s41576-019-0107-5

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing