Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A great-ape view of the gut microbiome

Abstract

Humans assemble a specialized microbiome from a world teeming with diverse microorganisms. Comparison to the microbiomes of great apes provides a dimension that is indispensable to understanding how these microbial communities form, function and change. This evolutionary perspective exposes not only how human gut microbiomes have been shaped by our great-ape heritage but also the features that make humans unique, as exemplified by an expansive loss of bacterial and archaeal diversity and the identification of microbial lineages that have co-diversified with their hosts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial taxa in human and chimpanzee gut microbiomes.
Fig. 2: Stratification of human and chimpanzee gut microbiomes into compositionally similar enterotypes.
Fig. 3: Bacterial and archaeal diversity in gut microbiomes across great-ape evolution.

Similar content being viewed by others

References

  1. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arrieta, M.-C. et al. The intestinal microbiome in early life: health and disease. Front. Immunol. 5, 427 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yadav, M., Verma, M. K. & Chauhan, N. S. A review of metabolic potential of human gut microbiome in human nutrition. Arch. Microbiol. 200, 203–217 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Sommer, F. & Bäckhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Iyer, S. S. & Blumberg, R. S. in Physiology of the Gastrointestinal Tract 6th edn (eds Said, H. M., Ghishan, F. K., Kaunitz, J. D., Merchant, J. L. & Wood, J. D.) 767–774 (Academic Press, 2018).

  8. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). This report demonstrates that human individuals assigned to different dietary groups diverged in the compositions of their gut microbiomes.

    Article  CAS  PubMed  Google Scholar 

  9. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Gibbons, S. M., Duvallet, C. & Alm, E. J. Correcting for batch effects in case-control microbiome studies. PLOS Comput. Biol. 14, e1006102 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017). This commentary posits that the reduction in microorganisms in contemporary human populations is responsible for increases in autoimmune, metabolic and neurological disorders.

    Article  CAS  PubMed  Google Scholar 

  14. Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010). This pioneering study shows that dietary differences in African and European children were associated with differences in the composition of the gut microbiome.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goodrich, J. K., Davenport, E. R., Clark, A. G. & Ley, R. E. The relationship between the human genome and microbiome comes into view. Annu. Rev. Genet. 51, 413–433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012). This paper serves as the foundational survey of the variation of the human gut microbiome across populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–805 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108, 4578–4585 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2014).

    Article  CAS  Google Scholar 

  23. Debelius, J. et al. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 17, 217 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Davenport, E. R. et al. The human microbiome in evolution. BMC Biol. 15, 127 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sze, M. A. & Schloss, P. D. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio 7, e01018-16 (2016). This analysis shows that many publications reporting an association between microbiome composition and obesity were baseless.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blekhman, R. et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 16, 191 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016). This study identifies heritable members of the human microbiome and the genetic factors influencing the abundance of certain bacterial taxa.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wood, B. & Harrison, T. The evolutionary context of the first hominins. Nature 470, 347–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Langergraber, K. E. et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape genomes. Science 360, eaar6343 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Weiss, A. et al. Personality in the chimpanzees of Gombe National Park. Sci. Data 4, 170146 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pusey, A. E., Pintea, L., Wilson, M. L., Kamenya, S. & Goodall, J. The contribution of long-term research at Gombe National Park to chimpanzee conservation. Conserv. Biol. 21, 623–634 (2007).

    Article  PubMed  Google Scholar 

  36. Moeller, A. H. et al. SIV-induced instability of the chimpanzee gut microbiome. Cell Host Microbe 14, 340–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barbian, H. J. et al. Destabilization of the gut microbiome marks the end-stage of simian immunodeficiency virus infection in wild chimpanzees. Am. J. Primatol. 80, e22515 (2018).

    Article  CAS  Google Scholar 

  38. Moeller, A. H. et al. Rapid changes in the gut microbiome during human evolution. Proc. Natl Acad. Sci. USA 111, 16431–16435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knights, D. et al. Rethinking enterotypes. Cell Host Microbe 16, 433–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeffery, I. B., Claesson, M. J., O’Toole, P. W. & Shanahan, F. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10, 591–592 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Costea, P. I. et al. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3, 8–16 (2017). This study is a comprehensive examination of the evidence concerning the existence of enterotypes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Newton-Fisher, N. E. in Handbook of Paleoanthropology (eds Henke, W. & Tattersall, I.) 1295–1320 (Springer Berlin Heidelberg, 2007).

  44. Moeller, A. H. et al. Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat. Commun. 3, 1179 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ramayo-Caldas, Y. et al. Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J. 10, 2973–2977 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl Acad. Sci. USA 111, E2703–E2710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blaser, M. J. & Falkow, S. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol. 7, 887–894 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Prüfer, K. et al. The bonobo genome compared with the chimpanzee and human genomes. Nature 486, 527–531 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Scally, A. et al. Insights into hominid evolution from the gorilla genome sequence. Nature 483, 169–175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLOS Biol. 8, e1000546 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Degnan, P. H. et al. Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. Proc. Natl Acad. Sci. USA 109, 13034–13039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gomez, A. et al. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J. 10, 514–526 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Yildirim, S. et al. Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLOS ONE 5, e13963 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Martínez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

    Article  PubMed  CAS  Google Scholar 

  56. Moeller, A. H. et al. Cospeciation of gut microbiota with hominids. Science 353, 380–382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Toju, H., Tanabe, A. S., Notsu, Y., Sota, T. & Fukatsu, T. Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME J. 7, 1378–1390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Clark, M. A., Moran, N. A., Baumann, P. & Wernegreen, J. J. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54, 517–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLOS Biol. 13, e1002311 (2015). This article represents a critical assessment of a purportedly new paradigm.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ochman, H., Elwyn, S. & Moran, N. A. Calibrating bacterial evolution. Proc. Natl Acad. Sci. USA 96, 12638–12643 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moran, N. A., Munson, M. A., Baumann, P. & Ishikawa, H. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. R. Soc. B 253, 167–171 (1993).

    Article  Google Scholar 

  62. Brito, I. L. & Alm, E. J. Tracking strains in the microbiome: insights from metagenomics and models. Front. Microbiol. 7, 712 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Caro-Quintero, A. & Ochman, H. Assessing the unseen bacterial diversity in microbial communities. Genome Biol. Evol. 7, 3416–3425 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Martino, M. E. et al. Bacterial adaptation to the host’s diet is a key evolutionary force shaping Drosophila-Lactobacillus symbiosis. Cell Host Microbe 24, 109–119 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. King, K. C. et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 10, 1915–1924 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Obregon-Tito, A. J. et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6, 6505 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Segata, N. Gut microbiome: westernization and the disappearance of intestinal diversity. Curr. Biol. 25, R611–R613 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Raymann, K., Moeller, A. H., Goodman, A. L. & Ochman, H. Unexplored archaeal diversity in the great ape gut microbiome. mSphere 2, e00026-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Flahou, B. et al. Diversity of zoonotic enterohepatic Helicobacter species and detection of a putative novel gastric Helicobacter species in wild and wild-born captive chimpanzees and western lowland gorillas. Vet. Microbiol. 174, 186–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl Acad. Sci. USA 113, 10376–10381 (2016). This study recapitulates in captive apes the loss of microbiome diversity apparent in humans.

    Article  CAS  Google Scholar 

  73. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016). This study reports that descendants of mice fed a high-fat, simple-carbohydrate diet were unable to regain microbial diversity even after returning to a fibre-rich diet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28, 561–568 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yildirim, S. et al. Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance. ISME J. 8, 2431–2444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154 (2018). This study scrutinizes the prevalence and functions of the specific bacterial strains that infants acquire from their mothers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marcobal, A. et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10, 507–514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sela, D. A. & Mills, D. A. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18, 298–307 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. eLife 2, e00458 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Meadow, J. F., Bateman, A. C., Herkert, K. M., O’Connor, T. K. & Green, J. L. Significant changes in the skin microbiome mediated by the sport of roller derby. PeerJ 1, e53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kort, R. et al. Shaping the oral microbiota through intimate kissing. Microbiome 2, 41 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Browne, H. P., Neville, B. A., Forster, S. C. & Lawley, T. D. Transmission of the gut microbiota: spreading of health. Nat. Rev. Microbiol. 15, 531–543 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. eLife 4, e05224 (2015).

    Article  PubMed Central  Google Scholar 

  86. Mosites, E. et al. Microbiome sharing between children, livestock and household surfaces in western Kenya. PLOS ONE 12, e0171017 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ellis, R. J. et al. Comparison of the distal gut microbiota from people and animals in Africa. PLOS ONE 8, e54783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moeller, A. H. et al. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res. 23, 1715–1720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mehta, R. S. et al. Stability of the human faecal microbiome in a cohort of adult men. Nat. Microbiol. 3, 347–355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011). This paper title is easily the best for a longitudinal survey of microbiomes.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Saraswati, S. & Sitaraman, R. Aging and the human gut microbiota — from correlation to causality. Front. Microbiol. 5, 764 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z. & Dominguez-Bello, M. G. The infant microbiome development: mom matters. Trends Mol. Med. 21, 109–117 (2015).

    Article  PubMed  Google Scholar 

  97. Badescu, I., Katzenberg, M. A., Watts, D. P. & Sellen, D. W. A novel fecal stable isotope approach to determine the timing of age-related feeding transitions in wild infant chimpanzees. Am. J. Phys. Anthropol. 162, 285–299 (2017).

    Article  PubMed  Google Scholar 

  98. Arboleya, S., Watkins, C., Stanton, C. & Ross, R. P. Gut Bifidobacteria populations in human health and aging. Front. Microbiol. 7, 1204 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mariat, D. et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9, 123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Million, M. et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int. J. Obes. 37, 1460–1466 (2013).

    Article  CAS  Google Scholar 

  101. Dridi, B., Henry, M., El Khéchine, A., Raoult, D. & Drancourt, M. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLOS ONE 4, e7063 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Koskinen, K. et al. First insights into the diverse human archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin. mBio 8, e00824-17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Lovley, D. R. Happy together: microbial communities that hook up to swap electrons. ISME J. 11, 327–336 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sharp, P. M. et al. Source of the human malaria parasite Plasmodium falciparum. Proc. Natl Acad. Sci. USA 108, E744–E745 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hirsch, V. M., Olmsted, R. A., Murphey-Corb, M., Purcell, R. H. & Johnson, P. R. An African primate lentivirus (SIVsm) closely related to HIV-2. Nature 339, 389–392 (1989).

    Article  CAS  PubMed  Google Scholar 

  109. Sharp, P. M. & Hahn, B. H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. D’arc, M. et al. Origin of the HIV-1 group O epidemic in western lowland gorillas. Proc. Natl Acad. Sci. USA 112, E1343–E1352 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Huet, T., Cheynier, R., Meyerhans, A., Roelants, G. & Wain-Hobson, S. Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature 345, 356–359 (1990).

    Article  CAS  PubMed  Google Scholar 

  112. Gao, F. et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Duval, L. et al. African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proc. Natl Acad. Sci. USA 107, 10561–10566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, W. et al. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat. Commun. 8, 1635 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Prugnolle, F. et al. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proc. Natl Acad. Sci. USA 107, 1458–1463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, W. et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 5, 3346 (2014).

    Article  PubMed  CAS  Google Scholar 

  117. Leendertz, F. H. et al. Anthrax kills wild chimpanzees in a tropical rainforest. Nature 430, 451–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264 (2008).

    Article  PubMed  CAS  Google Scholar 

  119. Leroy, E. M. et al. Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science 303, 387–390 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Bermejo, M. et al. Ebola outbreak killed 5000 gorillas. Science 314, 1564 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Kaur, T. et al. Descriptive epidemiology of fatal respiratory outbreaks and detection of a human-related metapneumovirus in wild chimpanzees (Pan troglodytes) at Mahale Mountains National Park, Western Tanzania. Am. J. Primatol. 70, 755–765 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Rwego, I. B., Isabirye-Basuta, G., Gillespie, T. R. & Goldberg, T. L. Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi Impenetrable National Park, Uganda. Conserv. Biol. 22, 1600–1607 (2008).

    Article  PubMed  Google Scholar 

  123. Nguyen, N., Warnow, T., Pop, M. & White, B. A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. NPJ Biofilms Microbiomes 2, 16004 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Nayfach, S. & Pollard, K. S. Toward accurate and quantitative comparative metagenomics. Cell 166, 1103–1116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Davenport, E. R. et al. Seasonal variation in human gut microbiome composition. PLOS ONE 9, e90731 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018). This report on a substantive cohort study of Israelis identifies the environmental factors that shape the composition of the gut microbiome.

    Article  CAS  PubMed  Google Scholar 

  132. Jašarevic, E., Morrison, K. E. & Bale, T. L. Sex differences in the gut microbiome-brain axis across the lifespan. Phil. Trans. R. Soc. B 371, 20150122 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  133. Barbian, H. J. et al. Neutralization properties of simian immunodeficiency viruses infecting chimpanzees and gorillas. mBio 6, e00296-15 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Williams, B., Landay, A. & Presti, R. M. Microbiome alterations in HIV infection a review. Cell. Microbiol. 18, 645–651 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Hammond for assistance with preparation of the figures. This work was supported by grants from the US National Institutes of Health (R35 GM118038 to H.O.) and the US National Science Foundation (Graduate Research Fellowship 2016226761 to A.H.N.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Howard Ochman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Microbiome

The community of microorganisms in an organism or specified environment. The term is often used synonymously with ‘microbiota’ to refer to the taxonomic identity and genomic repertoire of human-associated microbial communities.

Dysbiosis

A change or perturbation in microbiome composition that differs considerably from that of a control or healthy cohort. The term is frequently used to describe the altered microbiome compositions observed in association with disorders or disease.

Great apes

Members of eight extant species within four genera — Pongo, Gorilla, Pan and Homo — that belong to the family Hominidae. Humans (Homo), gorillas (Gorilla), chimpanzees (Pan) and bonobos (Pan) constitute the African great apes, and orangutans (Pongo) are Asian great apes.

Phylotypes

A taxonomic term used to describe unique lineages that are represented by a distinct branch in a phylogenetic tree. In the context of microbiome studies, a phylotype is any sequence that differs by a selected sequence identity threshold, or even a single site, from other sequences.

Enterotypes

Characteristic microbial community structures defined by the over-representation of distinct sets of resident bacterial taxa. Originally, the variation in human gut microbiomes appeared to stratify into three enterotypes on the basis of microbial community compositions, although subsequent studies have reported different numbers of gut enterotypes.

Tree topology

The branching order and relationships depicted by a phylogenetic tree.

Vertical inheritance

With regard to microbiomes, the transfer of microorganisms over generations within a host lineage. In human microbiome studies, this describes the transfer of microorganisms from parents and community members to offspring after birth.

Phylogenetic congruency

The matching tree topologies for two different groups of organisms.

Co-evolution

Reciprocal changes in organisms of different species that arise owing to their association or interaction, such that each species reciprocally affects the evolution of the other species.

Co-speciation

Concurrent diversification of associated or interacting organisms. Cases of co-speciation are usually uncovered by the concordance of the branching orders of the species’ phylogenies. Note that co-evolution may result in co-speciation, but co-speciation can occur in the absence of co-evolution, as would be the case when the co-diversified species are not reciprocally evolving in response to one another.

Syntrophy

One species living off the metabolic by-product of another species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishida, A.H., Ochman, H. A great-ape view of the gut microbiome. Nat Rev Genet 20, 195–206 (2019). https://doi.org/10.1038/s41576-018-0085-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-018-0085-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing