Autism spectrum disorder: insights into convergent mechanisms from transcriptomics

Abstract

Heredity has a major role in autism spectrum disorder (ASD), yet underlying causal genetic variants have been defined only in a fairly small subset of cases. The enormous genetic heterogeneity associated with ASD emphasizes the importance of identifying convergent pathways and molecular mechanisms that are responsible for this disorder. We review how recent transcriptomic analyses have transformed our understanding of pathway convergence in ASD. In particular, deep RNA sequencing coupled with downstream investigations has revealed that a substantial fraction of autistic brains possess distinct transcriptomic signatures. These signatures are in part a consequence of altered neuronal activity and have a particular impact on pre-mRNA alternative splicing patterns.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Major cellular pathways underlying ASD are interconnected through neuronal activity.
Fig. 2: Using transcriptomics to assess molecular changes underlying ASD.
Fig. 3: Cortical organoids grown in vitro to model human brain development reveal an excitatory-to-inhibitory imbalance in ASD.
Fig. 4: Splicing changes in ASD.
Fig. 5: Misregulated RNA processing is a central component of ASD aetiology.

References

  1. 1.

    Tick, B., Bolton, P., Happe, F., Rutter, M. & Rijsdijk, F. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J. Child Psychol. Psychiatry 57, 585–595 (2016).

    PubMed  Google Scholar 

  2. 2.

    Colvert, E. et al. Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry 72, 415–423 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Gronborg, T. K., Schendel, D. E. & Parner, E. T. Recurrence of autism spectrum disorders in full- and half-siblings and trends over time: a population-based cohort study. JAMA Pediatr. 167, 947–953 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Gaugler, T. et al. Most genetic risk for autism resides with common variation. Nat. Genet. 46, 881–885 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Sandin, S. et al. The familial risk of autism. JAMA 311, 1770–1777 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Fernandez, B. A. & Scherer, S. W. Syndromic autism spectrum disorders: moving from a clinically defined to a molecularly defined approach. Dialogues Clin. Neurosci. 19, 353–371 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Pinto, D. et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am. J. Hum. Genet. 94, 677–694 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Krishnan, A. et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci. 19, 1454–1462 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wen, Y., Alshikho, M. J. & Herbert, M. R. Pathway network analyses for autism reveal multisystem involvement, major overlaps with other diseases and convergence upon MAPK and calcium signaling. PLOS ONE 11, e0153329 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 16, 551–563 (2015).

    CAS  PubMed  Google Scholar 

  13. 13.

    Mullins, C., Fishell, G. & Tsien, R. W. Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops. Neuron 89, 1131–1156 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kwan, V., Unda, B. K. & Singh, K. K. Wnt signaling networks in autism spectrum disorder and intellectual disability. J. Neurodev. Disord. 8, 45 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hormozdiari, F., Penn, O., Borenstein, E. & Eichler, E. E. The discovery of integrated gene networks for autism and related disorders. Genome Res. 25, 142–154 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ebert, D. H. & Greenberg, M. E. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493, 327–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhang, L. I. & Poo, M. M. Electrical activity and development of neural circuits. Nat. Neurosci. 4, (Suppl.), 1207–1214 (2001).

    CAS  PubMed  Google Scholar 

  19. 19.

    Nader, K., Schafe, G. E. & Le Doux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

    CAS  PubMed  Google Scholar 

  20. 20.

    Salinas, P. C. & Zou, Y. Wnt signaling in neural circuit assembly. Annu. Rev. Neurosci. 31, 339–358 (2008).

    CAS  PubMed  Google Scholar 

  21. 21.

    West, A. E. & Greenberg, M. E. Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb. Perspect. Biol. 3, a005744 (2011).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Maze, I. et al. Critical role of histone turnover in neuronal transcription and plasticity. Neuron 87, 77–94 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Eom, T. et al. NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure. eL ife 2, e00178 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Iijima, T. et al. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 147, 1601–1614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Xie, J. & Black, D. L. A. CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410, 936–939 (2001).

    CAS  PubMed  Google Scholar 

  26. 26.

    Mauger, O., Lemoine, F. & Scheiffele, P. Targeted intron retention and excision for rapid gene regulation in response to neuronal activity. Neuron 92, 1266–1278 (2016).

    CAS  PubMed  Google Scholar 

  27. 27.

    Quesnel-Vallieres, M. et al. Misregulation of an activity-dependent splicing network as a common mechanism underlying autism spectrum disorders. Mol. Cell 64, 1023–1034 (2016). A mouse model with SRRM4 levels reduced by half exhibits hallmark features of ASD and thus indicates that SRRM4 reduction and increased microexon skipping can result in ASD phenotypes.

    CAS  PubMed  Google Scholar 

  28. 28.

    Amaral, D. G., Schumann, C. M. & Nordahl, C. W. Neuroanatomy of autism. Trends Neurosci. 31, 137–145 (2008).

    CAS  Google Scholar 

  29. 29.

    Purcell, A. E., Jeon, O. H., Zimmerman, A. W., Blue, M. E. & Pevsner, J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 57, 1618–1628 (2001).

    CAS  PubMed  Google Scholar 

  30. 30.

    Abrahams, B. S. & Geschwind, D. H. Advances in autism genetics: on the threshold of a new neurobiology. Nat. Rev. Genet. 9, 341–355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    CAS  PubMed  Google Scholar 

  32. 32.

    Garbett, K. et al. Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol. Dis. 30, 303–311 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Parikshak, N. N. et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540, 423–427 (2016). Transcriptomic analysis reveals a broader, shared impact of idiopathic ASD on differential expression of long nuclear RNAs, alternative splicing and brain region-specific transcription.

    CAS  PubMed  Google Scholar 

  34. 34.

    Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011). Transcriptomic analysis of mRNAs suggests the existence of shared molecular hubs that are affected in ASD.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W. & Pardo, C. A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81 (2005).

    CAS  PubMed  Google Scholar 

  36. 36.

    Ashwood, P. et al. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun. 25, 40–45 (2011).

    CAS  PubMed  Google Scholar 

  37. 37.

    Molloy, C. A. et al. Elevated cytokine levels in children with autism spectrum disorder. J. Neuroimmunol. 172, 198–205 (2006).

    CAS  PubMed  Google Scholar 

  38. 38.

    Zimmerman, A. W. et al. Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr. Neurol. 33, 195–201 (2005).

    PubMed  Google Scholar 

  39. 39.

    Li, X. et al. Elevated immune response in the brain of autistic patients. J. Neuroimmunol. 207, 111–116 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Chez, M. G., Dowling, T., Patel, P. B., Khanna, P. & Kominsky, M. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr. Neurol. 36, 361–365 (2007).

    PubMed  Google Scholar 

  41. 41.

    Atladottir, H. O. et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 40, 1423–1430 (2010).

    PubMed  Google Scholar 

  42. 42.

    Lee, B. K. et al. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav. Immun. 44, 100–105 (2015).

    PubMed  Google Scholar 

  43. 43.

    Hornig, M. et al. Prenatal fever and autism risk. Mol. Psychiatry 23, 759–766 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Casanova, M. F. The neuropathology of autism. Brain Pathol. 17, 422–433 (2007).

    PubMed  Google Scholar 

  45. 45.

    Cellot, G. & Cherubini, E. Functional role of ambient GABA in refining neuronal circuits early in postnatal development. Front. Neural Circuits 7, 136 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Nelson, S. B. & Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87, 684–698 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Mariani, J. et al. FOXG1-dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375–390 (2015). Transcriptomic analysis of brain organoids from patients with ASD with macrocephaly implicates misexpression of FOXG1, which is disrupted in atypical Rett syndrome, as likely causal of observed ASD phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kelava, I. & Lancaster, M. A. Dishing out mini-brains: current progress and future prospects in brain organoid research. Dev. Biol. 420, 199–209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Renner, M. et al. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 36, 1316–1329 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K. & Kosik, K. S. A. microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Sempere, L. F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13 (2004).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kapsimali, M. et al. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 8, R173 (2007).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Visvanathan, J., Lee, S., Lee, B., Lee, J. W. & Lee, S. K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Sanuki, R. et al. miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat. Neurosci. 14, 1125–1134 (2011).

    CAS  PubMed  Google Scholar 

  57. 57.

    Coolen, M., Katz, S. & Bally-Cuif, L. miR-9: a versatile regulator of neurogenesis. Front. Cell Neurosci. 7, 220 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Fiore, R., Siegel, G. & Schratt, G. MicroRNA function in neuronal development, plasticity and disease. Biochim. Biophys. Acta 1779, 471–478 (2008).

    CAS  PubMed  Google Scholar 

  59. 59.

    Coolen, M. & Bally-Cuif, L. MicroRNAs in brain development and physiology. Curr. Opin. Neurobiol. 19, 461–470 (2009).

    CAS  PubMed  Google Scholar 

  60. 60.

    Fregeac, J., Colleaux, L. & Nguyen, L. S. The emerging roles of MicroRNAs in autism spectrum disorders. Neurosci. Biobehav Rev. 71, 729–738 (2016).

    CAS  PubMed  Google Scholar 

  61. 61.

    Rajman, M. & Schratt, G. MicroRNAs in neural development: from master regulators to fine-tuners. Development 144, 2310–2322 (2017).

    CAS  PubMed  Google Scholar 

  62. 62.

    Sambandan, S. et al. Activity-dependent spatially localized miRNA maturation in neuronal dendrites. Science 355, 634–637 (2017). Visualization of single-synapse stimulation-dependent local maturation of miRNA that then contributes to spatially restricted reduction in the translation of a target mRNA.

    CAS  PubMed  Google Scholar 

  63. 63.

    Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Abu-Elneel, K. et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 9, 153–161 (2008).

    CAS  PubMed  Google Scholar 

  65. 65.

    Zhang, W. et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. eLife 5, e11324 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Ander, B. P., Barger, N., Stamova, B., Sharp, F. R. & Schumann, C. M. Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Mol. Autism 6, 37 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Stamova, B., Ander, B. P., Barger, N., Sharp, F. R. & Schumann, C. M. Specific regional and age-related small noncoding RNA expression patterns within superior temporal gyrus of typical human brains are less distinct in autism brains. J. Child Neurol. 30, 1930–1946 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Wu, Y. E., Parikshak, N. N., Belgard, T. G. & Geschwind, D. H. Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nat. Neurosci. 19, 1463–1476 (2016). Transcriptomic analysis highlights possible involvement of miRNAs in idiopathic ASD.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Rogelj, B. Brain-specific small nucleolar RNAs. J. Mol. Neurosci. 28, 103–109 (2006).

    CAS  PubMed  Google Scholar 

  70. 70.

    Vitali, P., Royo, H., Marty, V., Bortolin-Cavaille, M. L. & Cavaille, J. Long nuclear-retained non-coding RNAs and allele-specific higher-order chromatin organization at imprinted snoRNA gene arrays. J. Cell Sci. 123, 70–83 (2010).

    CAS  PubMed  Google Scholar 

  71. 71.

    Cavaille, J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. Wiley Interdiscip. Rev. RNA 8, e1417 (2017).

    Google Scholar 

  72. 72.

    Wright, C. et al. Altered expression of histamine signaling genes in autism spectrum disorder. Transl Psychiatry 7, e1126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Qin, Y. et al. SNORA74B gene silencing inhibits gallbladder cancer cells by inducing PHLPP and suppressing Akt/mTOR signaling. Oncotarget 8, 19980–19996 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Kelleher, R. J. 3rd & Bear, M. F. The autistic neuron: troubled translation? Cell 135, 401–406 (2008).

    CAS  PubMed  Google Scholar 

  75. 75.

    Geisler, S. & Coller, J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol. 14, 699–712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Necsulea, A. et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635–640 (2014).

    CAS  PubMed  Google Scholar 

  78. 78.

    Ng, S. Y., Johnson, R. & Stanton, L. W. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 31, 522–533 (2012).

    CAS  PubMed  Google Scholar 

  79. 79.

    Ramos, A. D. et al. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 16, 439–447 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Ziats, M. N. & Rennert, O. M. Aberrant expression of long noncoding RNAs in autistic brain. J. Mol. Neurosci. 49, 589–593 (2013).

    CAS  PubMed  Google Scholar 

  81. 81.

    Wong, R. W. & Guillaud, L. The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev. 15, 147–156 (2004).

    CAS  PubMed  Google Scholar 

  82. 82.

    Turner, C. A., Akil, H., Watson, S. J. & Evans, S. J. The fibroblast growth factor system and mood disorders. Biol. Psychiatry 59, 1128–1135 (2006).

    CAS  PubMed  Google Scholar 

  83. 83.

    Kerin, T. et al. A noncoding RNA antisense to moesin at 5p14.1 in autism. Sci. Transl Med. 4, 128ra40 (2012).

    PubMed  Google Scholar 

  84. 84.

    Velmeshev, D., Magistri, M. & Faghihi, M. A. Expression of non-protein-coding antisense RNAs in genomic regions related to autism spectrum disorders. Mol. Autism 4, 32 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Gudenas, B. L., Srivastava, A. K. & Wang, L. Integrative genomic analyses for identification and prioritization of long non-coding RNAs associated with autism. PLOS ONE 12, e0178532 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    CAS  PubMed  Google Scholar 

  87. 87.

    Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Raj, B. & Blencowe, B. J. Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron 87, 14–27 (2015).

    CAS  PubMed  Google Scholar 

  89. 89.

    Norris, A. D. & Calarco, J. A. Emerging roles of alternative pre-mRNA splicing regulation in neuronal development and function. Front. Neurosci. 6, 122 (2012).

    CAS  Google Scholar 

  90. 90.

    Vuong, C. K., Black, D. L. & Zheng, S. The neurogenetics of alternative splicing. Nat. Rev. Neurosci. 17, 265–281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Darnell, R. B. RNA protein interaction in neurons. Annu. Rev. Neurosci. 36, 243–270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Zhou, Y. D., F. & Mao, Y. Control of CNS functions by RNA-binding proteins in neurological diseases. Curr. Pharmacol. Rep. 4, 301–313 (2018).

    CAS  PubMed  Google Scholar 

  93. 93.

    Didiot, M. C. et al. The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic Acids Res. 36, 4902–4912 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Zhou, L. T. et al. A novel role of fragile X mental retardation protein in pre-mRNA alternative splicing through RNA-binding protein 14. Neuroscience 349, 64–75 (2017).

    CAS  PubMed  Google Scholar 

  95. 95.

    Jeffery, L. & Nakielny, S. Components of the DNA methylation system of chromatin control are RNA-binding proteins. J. Biol. Chem. 279, 49479–49487 (2004).

    CAS  PubMed  Google Scholar 

  96. 96.

    Young, J. I. et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc. Natl Acad. Sci. USA 102, 17551–17558 (2005).

    CAS  PubMed  Google Scholar 

  97. 97.

    Cheng, T. L. et al. Regulation of mRNA splicing by MeCP2 via epigenetic modifications in the brain. Sci. Rep. 7, 42790 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Osenberg, S. et al. Activity-dependent aberrations in gene expression and alternative splicing in a mouse model of Rett syndrome. Proc. Natl Acad. Sci. USA 115, E5363–E5372 (2018).

    CAS  PubMed  Google Scholar 

  99. 99.

    Fogel, B. L. et al. RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum. Mol. Genet. 21, 4171–4186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Lovci, M. T. et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434–1442 (2013).

    CAS  Google Scholar 

  101. 101.

    Weyn-Vanhentenryck, S. M. et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 6, 1139–1152 (2014). Analysis of RBFOX-bound RNAs reveals an enrichment of RBFOX-dependent alternative spicing events in ASD-associated or ASD-causing genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Martin, C. L. et al. Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 869–876 (2007).

    CAS  PubMed  Google Scholar 

  103. 103.

    Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007). A systematic analysis of copy number variants uncovers their association with ASD.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Davis, L. K. et al. Rare inherited A2BP1 deletion in a proband with autism and developmental hemiparesis. Am. J. Med. Genet. A 158A, 1654–1661 (2012).

    CAS  PubMed  Google Scholar 

  105. 105.

    Lee, J. A. et al. Cytoplasmic Rbfox1 regulates the expression of synaptic and autism-related genes. Neuron 89, 113–128 (2016). Transcriptomic analysis reveals differential binding of RBFOX1 to distinct sets of cytoplasmic and nuclear mRNAs. Cytoplasmic RBFOX1 target mRNAs are enriched in ASD-associated genes.

    CAS  PubMed  Google Scholar 

  106. 106.

    Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Gehman, L. T. et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat. Genet. 43, 706–711 (2011).

    CAS  PubMed  Google Scholar 

  108. 108.

    Jeste, S. S. & Geschwind, D. H. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat. Rev. Neurol. 10, 74–81 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Irimia, M. et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159, 1511–1523 (2014). Transcriptomic analysis defines a microexon splicing programme regulated by the SRRM4 alternative splicing factor. SRRM4 is downregulated and microexons are preferentially skipped in over one-third of post-mortem brain samples from idiopathic ASD cases analysed.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Pan, Q. et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol. Cell 16, 929–941 (2004).

    CAS  PubMed  Google Scholar 

  111. 111.

    Li, Y. I., Sanchez-Pulido, L., Haerty, W. & Ponting, C. P. RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts. Genome Res. 25, 1–13 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Quesnel-Vallieres, M., Irimia, M., Cordes, S. P. & Blencowe, B. J. Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes Dev. 29, 746–759 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Ataman, B. et al. Evolution of Osteocrin as an activity-regulated factor in the primate brain. Nature 539, 242–247 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Ustianenko, D., Weyn-Vanhentenryck, S. M. & Zhang, C. Microexons: discovery, regulation, and function. Wiley Interdiscip. Rev. RNA 8, e1418 (2017).

    Google Scholar 

  115. 115.

    Rusconi, F. et al. LSD1 neurospecific alternative splicing controls neuronal excitability in mouse models of epilepsy. Cerebral Cortex 25, 2729–2740 (2014).

    PubMed  Google Scholar 

  116. 116.

    Fuccillo, M. V. Striatal circuits as a common node for autism pathophysiology. Front. Neurosci. 10, 27 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Cohen, S. et al. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 72, 72–85 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Suhl, J. A. et al. A 3ʹ untranslated region variant in FMR1 eliminates neuronal activity-dependent translation of FMRP by disrupting binding of the RNA-binding protein HuR. Proc. Natl Acad. Sci. USA 112, E6553–E6561 (2015).

    CAS  PubMed  Google Scholar 

  119. 119.

    Abrahams, B. S. et al. SFARI gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4, 36 (2013).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Takata, A., Ionita-Laza, I., Gogos, J. A., Xu, B. & Karayiorgou, M. De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia. Neuron 89, 940–947 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Corominas, R. et al. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nat. Commun. 5, 3650 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. Science 352, 600–604 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Takata, A., Matsumoto, N. & Kato, T. Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci. Nat. Commun. 8, 14519 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

    PubMed Central  Google Scholar 

  126. 126.

    Kim, Y. S. et al. Prevalence of autism spectrum disorders in a total population sample. Am. J. Psychiatry 168, 904–912 (2011).

    PubMed  Google Scholar 

  127. 127.

    Jeong, H. & Tiwari, V. K. Exploring the complexity of cortical development using single-cell transcriptomics. Front. Neurosci. 12, 31 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Wang, P., Zhao, D., Lachman, H. M. & Zheng, D. Enriched expression of genes associated with autism spectrum disorders in human inhibitory neurons. Transl Psychiatry 8, 13 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Reddy, K. S. Cytogenetic abnormalities and fragile-X syndrome in autism spectrum disorder. BMC Med. Genet. 6, 3 (2005).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Fernandez, E., Rajan, N. & Bagni, C. The FMRP regulon: from targets to disease convergence. Front. Neurosci. 7, 191 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    The Dutch-Belgian Fragile X Consortium. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23–33 (1994).

    Google Scholar 

  132. 132.

    Halevy, T., Czech, C. & Benvenisty, N. Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Rep. 4, 37–46 (2015).

    CAS  Google Scholar 

  133. 133.

    Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    CAS  PubMed  Google Scholar 

  134. 134.

    Richards, C., Jones, C., Groves, L., Moss, J. & Oliver, C. Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. Lancet Psychiatry 2, 909–916 (2015).

    PubMed  Google Scholar 

  135. 135.

    Lyst, M. J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat. Neurosci. 16, 898–902 (2013).

    CAS  PubMed  Google Scholar 

  136. 136.

    Kyle, S. M., Saha, P. K., Brown, H. M., Chan, L. C. & Justice, M. J. MeCP2 co-ordinates liver lipid metabolism with the NCoR1/HDAC3 corepressor complex. Hum. Mol. Genet. 25, 3029–3041 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Kyle, S. M., Vashi, N. & Justice, M. J. Rett syndrome: a neurological disorder with metabolic components. Open Biol. 8, 170216 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Lin, P. et al. Transcriptome analysis of human brain tissue identifies reduced expression of complement complex C1Q genes in Rett syndrome. BMC Genomics 17, 427 (2016).

    CAS  PubMed  Google Scholar 

  139. 139.

    Gogliotti, R. G. et al. Total RNA sequencing of Rett syndrome autopsy samples identifies the M4 muscarinic receptor as a novel therapeutic target. J. Pharmacol. Exp. Ther. 365, 291–300 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Bennett, J. A., Germani, T., Haqq, A. M. & Zwaigenbaum, L. Autism spectrum disorder in Prader-Willi syndrome: a systematic review. Am. J. Med. Genet. A 167A, 2936–2944 (2015).

    PubMed  Google Scholar 

  141. 141.

    Depienne, C. et al. Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders. Biol. Psychiatry 66, 349–359 (2009).

  142. 142.

    Buiting, K. Prader-Willi syndrome and Angelman syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 154C, 365–376 (2010).

    CAS  PubMed  Google Scholar 

  143. 143.

    Ding, F. et al. SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLOS ONE 3, e1709 (2008).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Qi, Y. et al. Snord116 is critical in the regulation of food intake and body weight. Sci. Rep. 6, 18614 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Dindot, S. V., Antalffy, B. A., Bhattacharjee, M. B. & Beaudet, A. L. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17, 111–118 (2008).

    CAS  PubMed  Google Scholar 

  146. 146.

    Ellegood, J. et al. Neuroanatomical phenotypes are consistent with autism-like behavioral phenotypes in the 15q11-13 duplication mouse model. Autism Res. 8, 545–555 (2015).

    PubMed  Google Scholar 

  147. 147.

    Nakatani, J. et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137, 1235–1246 (2009).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Bochukova, E. G. et al. A transcriptomic signature of the hypothalamic response to fasting and BDNF deficiency in Prader-Willi syndrome. Cell Rep. 22, 3401–3408 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Germain, N. D. et al. Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Mol. Autism 5, 44 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Chow, M. L. et al. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLOS Genet. 8, e1002592 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Gupta, S. et al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 5, 5748 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Canadian Institutes of Health Research (CIHR) grants to S.P.C. and B.J.B. and by a Simons Foundation grant to B.J.B. M.Q.-V. was supported by a CIHR scholarship and an Ontario Graduate Scholarship. B.J.B. holds the University of Toronto Banbury Chair in Medical Research.

Reviewer information

Nature Reviews Genetics thanks G. Konopka and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

All authors researched data for the article, provided substantial contribution to discussions of the content and reviewed or edited the manuscript before submission. M.Q.-V., S.P.C. and B.J.B. wrote the article.

Corresponding authors

Correspondence to Mathieu Quesnel-Vallières or Sabine P. Cordes or Benjamin J. Blencowe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GeneCard: www.genecards.org

Glossary

Glutamate signalling

Molecular pathway that includes the excitatory neurotransmitter glutamate and its synaptic receptors; largely responsible for driving neuronal activity.

Excitatory-to-inhibitory imbalance

Change in the ratio between excitatory (primarily glutamate) and inhibitory (primarily GABA) synaptic transmission that regulates normal brain activity and behaviour.

Glutamatergic neurons

Glutamate-expressing neurons that potentiate neuronal activity.

GABAergic neurons

GABA-expressing neurons that act as inhibitors of neuronal activity.

Corticogenesis

Process during which neural stem cells proliferate and differentiate into glial cells and neurons to generate the cortex during brain development.

Interneurons

GABAergic interneurons are a type of inhibitory neuron that filters neuronal activity and maintains the excitatory-to-inhibitory balance.

Cerebral organoids

Tissues grown in vitro from embryonic stem cells or induced pluripotent stem cells under conditions that promote the generation of differentiated, cortex-like structures (including neurons) to model brain development.

Cortical layering

Anatomical distribution of neurons into six molecularly distinct layers in the cortex during brain development; this layering is conserved in mammals.

Cassette exons

Exons that can be skipped or included in mRNA transcripts through alternative splicing.

Splicing quantitative trait loci

Genomic regions that are associated with variations in splicing patterns.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quesnel-Vallières, M., Weatheritt, R.J., Cordes, S.P. et al. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat Rev Genet 20, 51–63 (2019). https://doi.org/10.1038/s41576-018-0066-2

Download citation

Further reading