Review Article | Published:

DNA-based memory devices for recording cellular events


Measuring biological data across time and space is critical for understanding complex biological processes and for various biosurveillance applications. However, such data are often inaccessible or difficult to directly obtain. Less invasive, more robust and higher-throughput biological recording tools are needed to profile cells and their environments. DNA-based cellular recording is an emerging and powerful framework for tracking intracellular and extracellular biological events over time across living cells and populations. Here, we review and assess DNA recorders that utilize CRISPR nucleases, integrases and base-editing strategies, as well as recombinase and polymerase-based methods. Quantitative characterization, modelling and evaluation of these DNA-recording modalities can guide their design and implementation for specific application areas.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Antebi, Y. E., Nandagopal, N. & Elowitz, M. B. An operational view of intercellular signaling pathways. Curr. Opin. Syst. Biol. 1, 16–24 (2017).

  2. 2.

    Masel, J. & Siegal, M. L. Robustness: mechanisms and consequences. Trends Genet. 25, 395–403 (2009).

  3. 3.

    Purvis, J. E. & Lahav, G. Encoding and decoding cellular information through signaling dynamics. Cell 152, 945–956 (2013).

  4. 4.

    Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage in DNA. Science 337, 1628 (2012).

  5. 5.

    Goldman, N. et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77–80 (2013).

  6. 6.

    Erlich, Y. & Zielinski, D. DNA Fountain enables a robust and efficient storage architecture. Science 355, 950–954 (2017).

  7. 7.

    Grass, R. N., Heckel, R., Puddu, M., Paunescu, D. & Stark, W. J. Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew. Chem. Int. Ed. 54, 2552–2555 (2015).

  8. 8.

    van der Woude, M. W. & Baumler, A. J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17, 581–611 (2004).

  9. 9.

    Marraffini, L. A. CRISPR-Cas immunity in prokaryotes. Nature 526, 55–61 (2015).

  10. 10.

    Nemazee, D. Receptor editing in lymphocyte development and central tolerance. Nat. Rev. Immunol. 6, 728–740 (2006).

  11. 11.

    Medhekar, B. & Miller, J. F. Diversity-generating retroelements. Curr. Opin. Microbiol. 10, 388–395 (2007).

  12. 12.

    Haselkorn, R. Developmentally regulated gene rearrangements in prokaryotes. Annu. Rev. Genet. 26, 113–130 (1992).

  13. 13.

    Nowacki, M., Shetty, K. & Landweber, L. F. RNA-mediated epigenetic programming of genome rearrangements. Annu. Rev. Genomics Hum. Genet. 12, 367–389 (2011).

  14. 14.

    Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–353 (2017).

  15. 15.

    Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

  16. 16.

    Keung, A. J., Joung, J. K., Khalil, A. S. & Collins, J. J. Chromatin regulation at the frontier of synthetic biology. Nat. Rev. Genet. 16, 159–171 (2015).

  17. 17.

    Burrill, D. R. & Silver, P. A. Making cellular memories. Cell 140, 13–18 (2010).

  18. 18.

    Newby, G. A. et al. A genetic tool to track protein aggregates and control prion inheritance. Cell 171, 966–979 (2017).

  19. 19.

    Woodworth, M. B., Girskis, K. M. & Walsh, C. A. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18, 230–244 (2017).

  20. 20.

    Camilli, A. & Mekalanos, J. J. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 18, 671–683 (1995).

  21. 21.

    Ceroni, F. et al. Burden-driven feedback control of gene expression. Nat. Methods 15, 387–393 (2018).

  22. 22.

    Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic Notch receptors. Cell 167, 419–432 (2016).

  23. 23.

    Ostrov, N. et al. A modular yeast biosensor for low-cost point-of-care pathogen detection. Sci. Adv. 3, e1603221 (2017).

  24. 24.

    Taylor, N. D. et al. Engineering an allosteric transcription factor to respond to new ligands. Nat. Methods 13, 177–183 (2016).

  25. 25.

    Schmidl, S. R., Sheth, R. U., Wu, A. & Tabor, J. J. Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS Synth. Biol. 3, 820–831 (2014).

  26. 26.

    Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000).

  27. 27.

    Lim, W. A. Designing customized cell signalling circuits. Nat. Rev. Mol. Cell Biol. 11, 393–403 (2010).

  28. 28.

    Isaacs, F. J., Dwyer, D. J. & Collins, J. J. RNA synthetic biology. Nat. Biotechnol. 24, 545–554 (2006).

  29. 29.

    Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925–939 (2014).

  30. 30.

    Wroblewska, L. et al. Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat. Biotechnol. 33, 839–841 (2015).

  31. 31.

    Sheth, R. U., Yim, S. S., Wu, F. L. & Wang, H. H. Multiplex recording of cellular events over time on CRISPR biological tape. Science 358, 1457–1461 (2017). By utilizing a copy-number-inducible plasmid, the CRISPR–Cas integrase system is utilized to record and reconstruct temporally changing biological signals.

  32. 32.

    Landry, B. P., Palanki, R., Dyulgyarov, N., Hartsough, L. A. & Tabor, J. J. Phosphatase activity tunes two-component system sensor detection threshold. Nat. Commun. 9, 1433 (2018).

  33. 33.

    Brophy, J. A. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

  34. 34.

    Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

  35. 35.

    Rubens, J. R., Selvaggio, G. & Lu, T. K. Synthetic mixed-signal computation in living cells. Nat. Commun. 7, 11658 (2016).

  36. 36.

    Bashor, C. J., Helman, N. C., Yan, S. & Lim, W. A. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319, 1539–1543 (2008).

  37. 37.

    Liu, Y. et al. Directing cellular information flow via CRISPR signal conductors. Nat. Methods 13, 938–944 (2016).

  38. 38.

    Nielsen, A. A. K. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

  39. 39.

    Olson, E. J. & Tabor, J. J. Post-translational tools expand the scope of synthetic biology. Curr. Opin. Chem. Biol. 16, 300–306 (2012).

  40. 40.

    Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).

  41. 41.

    Deribe, Y. L., Pawson, T. & Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 17, 666–672 (2010).

  42. 42.

    Pham, T. M. et al. A single-molecule approach to DNA replication in Escherichia coli cells demonstrated that DNA polymerase III is a major determinant of fork speed. Mol. Microbiol. 90, 584–596 (2013).

  43. 43.

    Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

  44. 44.

    Kim, H. & Kim, J.-S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

  45. 45.

    Wirth, D. et al. Road to precision: recombinase-based targeting technologies for genome engineering. Curr. Opin. Biotechnol. 18, 411–419 (2007).

  46. 46.

    Grindley, N. D. F., Whiteson, K. L. & Rice, P. A. Mechanisms of site-specific recombination. Annu. Rev. Biochem. 75, 567–605 (2006).

  47. 47.

    Yang, L. et al. Permanent genetic memory with >1-byte capacity. Nat. Methods 11, 1261–1266 (2014).

  48. 48.

    Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1, 62–71 (2015).

  49. 49.

    Bonnet, J., Subsoontorn, P. & Endy, D. Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc. Natl Acad. Sci. USA 109, 8884–8889 (2012).

  50. 50.

    Fernandez-Rodriguez, J., Yang, L., Gorochowski, T. E., Gordon, D. B. & Voigt, C. A. Memory and combinatorial logic based on DNA inversions: dynamics and evolutionary stability. ACS Synth. Biol. 4, 1361–1372 (2015).

  51. 51.

    Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

  52. 52.

    Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl Med. 7, 289ra83 (2015).

  53. 53.

    Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. Amplifying genetic logic gates. Science 340, 599–603 (2013).

  54. 54.

    Siuti, P., Yazbek, J. & Lu, T. K. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 31, 448–452 (2013).

  55. 55.

    Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S. & Lu, T. K. Synthetic recombinase-based state machines in living cells. Science 353, aad8559 (2016). Recombinase-based genetic circuits are formalized in a computer science state machine framework, enabling the design of synthetic circuits that discriminate the ordering of chemical inputs.

  56. 56.

    Hsiao, V., Hori, Y., Rothemund, P. W. & Murray, R. M. A population-based temporal logic gate for timing and recording chemical events. Mol. Syst. Biol. 12, 869–814 (2016).

  57. 57.

    Weinberg, B. H. et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 35, 453–462 (2017).

  58. 58.

    Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014). A framework for writing genomic addresses utilizing ssDNA recombination is demonstrated, enabling recording of input signal intensity and duration and interfacing with host responses in E. coli.

  59. 59.

    Tang, W. & Liu, D. R. Rewritable multi-event analog recording in bacterial and mammalian cells. Science 360, eaap8992 (2018). The authors develop base-editing approaches for cellular recording applications in both E. coli and mammalian cells.

  60. 60.

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

  61. 61.

    Farzadfard, F. et al. Single-nucleotide-resolution computing and memory in living cells. Preprint at bioRxiv (2018).

  62. 62.

    Gaudelli, N. M. et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

  63. 63.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

  64. 64.

    Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

  65. 65.

    Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

  66. 66.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

  67. 67.

    Lieber, M. R. The mechanism of human nonhomologous DNA end joining. J. Biol. Chem. 283, 1–5 (2008).

  68. 68.

    McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016). Cas9-nuclease-based stochastic editing of target arrays is utilized to reconstruct the lineage of cells and zebrafish embryos.

  69. 69.

    Schmidt, S. T., Zimmerman, S. M., Wang, J., Kim, S. K. & Quake, S. R. Quantitative analysis of synthetic cell lineage tracing using nuclease barcoding. ACS Synth. Biol. 6, 936–942 (2017).

  70. 70.

    Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single cells. Nature 541, 107–111 (2017). Cas9-nuclease-based stochastic editing of target arrays is combined with smFISH spatial readouts to reconstruct spatial lineage and could be applied to reconstruct spatiotemporal gene expression.

  71. 71.

    Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

  72. 72.

    Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93, 1156–1160 (1996).

  73. 73.

    Bibikova, M., Beumer, K., Trautman, J. K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

  74. 74.

    Miller, J. C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

  75. 75.

    Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

  76. 76.

    Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

  77. 77.

    Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).

  78. 78.

    Kalhor, R., Mali, P. & Church, G. M. Rapidly evolving homing CRISPR barcodes. Nat. Methods 14, 195–200 (2016). The authors couple recursive editing of single-guide RNA sequences to an in situ sequencing readout for spatial lineage tracing applications.

  79. 79.

    Perli, S. D., Cui, C. H. & Lu, T. K. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science 353, aag0511 (2016). The authors demonstrate recursive editing of single-guide RNA sequences, allowing for recording of signal intensity and duration in mammalian cells.

  80. 80.

    Glaser, J. I. et al. Statistical analysis of molecular signal recording. PLOS Comput. Biol. 9, e1003145 (2013). The authors propose a statistical framework for temporal recording of ion concentration utilizing polymerase directional writing.

  81. 81.

    Zamft, B. M. et al. Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing. PLOS ONE 7, e43876 (2012).

  82. 82.

    Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

  83. 83.

    Jackson, S. A. et al. CRISPR-Cas: adapting to change. Science 356, eaal5056 (2017).

  84. 84.

    Sternberg, S. H., Richter, H., Charpentier, E. & Qimron, U. Adaptation in CRISPR-Cas systems. Mol. Cell 61, 797–808 (2016).

  85. 85.

    Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. Molecular recordings by directed CRISPR spacer acquisition. Science 353, aaf1175 (2016). In this work, the CRISPR–Cas integrase system is utilized to record the temporal ordering of oligonucleotide sequences electroporated into cell populations.

  86. 86.

    Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 547, 345–349 (2017). CRISPR–Cas-integrase-based oligonucleotide recordings are scaled to store an animated frame in the genomes of living bacteria.

  87. 87.

    Shur, A. & Murray, R. M. Proof of concept continuous event logging in living cells. Preprint at bioRxiv (2018).

  88. 88.

    Kluesner, M. et al. EditR: a novel base editing quantification software using Sanger sequencing. Preprint at bioRxiv (2017).

  89. 89.

    Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

  90. 90.

    Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017).

  91. 91.

    Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

  92. 92.

    Gaudet, M., Fara, A.-G., Beritognolo, I. & Sabatti, M. Allele-specific PCR in SNP genotyping. Methods Mol. Biol. 578, 415–424 (2009).

  93. 93.

    Didenko, V. V. DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. Biotechniques 31, 1106–1116 (2001).

  94. 94.

    Lee, J.-H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

  95. 95.

    Chen, X., Sun, Y.-C., Church, G. M., Lee, J.-H. & Zador, A. M. Efficient in situ barcode sequencing using padlock probe-based BaristaSeq. Nucleic Acids Res. 46, e22 (2018).

  96. 96.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

  97. 97.

    Kunkel, T. A. & Bebenek, R. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000).

  98. 98.

    Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

  99. 99.

    Gudbergsdottir, S. et al. Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. Mol. Microbiol. 79, 35–49 (2010).

  100. 100.

    Weller, G. R. et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 1686–1689 (2002).

  101. 101.

    Pitcher, R. S., Wilson, T. E. & Doherty, A. J. New insights into NHEJ repair processes in prokaryotes. Cell Cycle 4, 675–678 (2005).

  102. 102.

    Nuñez, J. K., Bai, L., Harrington, L. B., Hinder, T. L. & Doudna, J. A. CRISPR immunological memory requires a host factor for specificity. Mol. Cell 62, 824–833 (2016).

  103. 103.

    Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–837 (2013).

  104. 104.

    Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

  105. 105.

    Nivala, J., Shipman, S. L. & Church, G. M. Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration. Nat. Microbiol. 3, 310–318 (2018).

  106. 106.

    Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 40, 181–115 (2018).

  107. 107.

    Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J. & van Oudenaarden, A. Whole-organism clone tracing using single-cell sequencing. Nature 556, 108–112 (2018).

  108. 108.

    Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars. Nat. Biotechnol. 36, 469–473 (2018).

  109. 109.

    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol. 14, e1002533 (2016).

  110. 110.

    Abel, S. et al. Sequence tag–based analysis of microbial population dynamics. Nat. Methods 12, 223–226 (2015).

  111. 111.

    Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

  112. 112.

    Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

  113. 113.

    Kording, K. P. Of toasters and molecular ticker tapes. PLOS Comput. Biol. 7, e1002291 (2011).

  114. 114.

    Marblestone, A. H. et al. Physical principles for scalable neural recording. Front. Comput. Neurosci. 7, 137 (2013).

  115. 115.

    Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

  116. 116.

    Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).

  117. 117.

    Balázsi, G., van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910–925 (2011).

  118. 118.

    Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15, 453–464 (2017).

  119. 119.

    Leonard, S. P. et al. Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synth. Biol. 7, 1279–1290 (2018).

  120. 120.

    Gupta, S., Bram, E. E. & Weiss, R. Genetically programmable pathogen sense and destroy. ACS Synth. Biol. 2, 715–723 (2013).

  121. 121.

    Hwang, I. Y. et al. Reprogramming microbes to be pathogen-seeking killers. ACS Synth. Biol. 3, 228–237 (2014).

  122. 122.

    Tauriainen, S., Karp, M., Chang, W. & Virta, M. Luminescent bacterial sensor for cadmium and lead. Biosens. Bioelectron. 13, 931–938 (1998).

  123. 123.

    Stocker, J. et al. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ. Sci. Technol. 37, 4743–4750 (2003).

  124. 124.

    Antunes, M. S. et al. Programmable ligand detection system in plants through a synthetic signal transduction pathway. PLOS ONE 6, e16292 (2011).

  125. 125.

    Belkin, S. et al. Remote detection of buried landmines using a bacterial sensor. Nat. Biotechnol. 35, 308–310 (2017).

  126. 126.

    Gooch, J., Daniel, B., Abbate, V. & Frascione, N. Taggant materials in forensic science: a review. Trends Analyt. Chem. 83, 49–54 (2016).

  127. 127.

    Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).

  128. 128.

    Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl Med. 7, 289ra84 (2015).

  129. 129.

    Daeffler, K. N. M. et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Systems Biol. 13, 923 (2017).

  130. 130.

    Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017).

  131. 131.

    Landry, B. P. & Tabor, J. J. Engineering diagnostic and therapeutic gut bacteria. Microbiol. Spectr. (2017).

  132. 132.

    Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

  133. 133.

    Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

  134. 134.

    Tschirhart, T. et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 8, 14030 (2017).

  135. 135.

    Ghadessy, F. J. et al. Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution. Nat. Biotechnol. 22, 755–759 (2004).

  136. 136.

    Heler, R. et al. Mutations in Cas9 enhance the rate of acquisition of viral spacer sequences during the CRISPR-Cas immune response. Mol. Cell 64, 168–175 (2016).

  137. 137.

    Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

  138. 138.

    Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

  139. 139.

    Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

  140. 140.

    Silas, S. et al. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351, aad4234 (2016).

  141. 141.

    Clark, J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 16, 9677–9686 (1988).

  142. 142.

    Zyrina, N. V., Antipova, V. N. & Zheleznaya, L. A. Ab initiosynthesis by DNA polymerases. FEMS Microbiol. Lett. 351, 1–6 (2014).

  143. 143.

    Lee, H. H. et al. Enzymatic DNA synthesis for digital information storage. Preprint at bioRxiv (2018).

  144. 144.

    Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).

  145. 145.

    Zhang, Y. et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551, 644–647 (2017).

Download references


The authors apologize to colleagues whose work could not be cited owing to space limitations. H.H.W. acknowledges funding from the US National Institutes of Health (1R01AI132403-01), the US Office of Naval Research (N00014-17-1-2353, N00014-15-1-2704), the US National Science Foundation (NSF; MCB-1453219) and the Burroughs Wellcome Fund Pathogenesis of Infectious Disease (PATH; 1016691). R.U.S. is supported by a Fannie and John Hertz Foundation Fellowship and an NSF Graduate Research Fellowship (DGE-11-44155).

Reviewer information

Nature Reviews Genetics thanks T. Fulga, Y. Liu and Y. Michaels for their contribution to the peer review of this work.

Author information

Both authors contributed to all aspects of the manuscript.

Correspondence to Harris H. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Cas1–Cas2 CRISPR integrase

Conserved machinery in CRISPR immune systems mediating integration of short spacers from intracellular DNA sources into genomic arrays in a directional manner.

Site-specific recombinase systems

Systems composed of a recombinase enzyme and flanking target recognition sites around a target sequence. These systems enable inversion, excision or integration of the target sequence on the basis of the orientation of recognition sites.

Recombinase state machine

(RSM). A fixed-address writer encompassing a formalized architecture of genetic programmes created from combinations of three orthogonal recombinase systems.

Synthetic cellular recorder integrating biological events

(SCRIBE). A single-stranded DNA (ssDNA)-recombination-based flexible writing approach.


A bacterial reverse transcriptase system that produces a molecule that is a hybrid of RNA and single-stranded DNA (ssDNA) called multicopy ssDNA (msDNA).


(mammalian SCRIBE). A Cas9-nuclease-based stochastic writing approach.

CRISPR-mediated analog multi-event recording apparatus

(CAMERA). A base-editing-based flexible writing approach.

Base editing

A Cas9-based genome engineering approach in which a catalytically dead Cas9 (dCas9) with no nuclease activity is linked to a deaminase (dCas9-BE), enabling single-base-pair genomic mutation at desired locations.

Catalytically dead Cas9

(dCas9). A modified version of Cas9 that lacks endonuclease activity via engineered point mutations. It can be linked to other effector domains for diverse sequence-specific genome engineering applications.


CRISPR-associated protein 9; a genome engineering nuclease tool enabling cleavage of desired genomic sites specified by a single-guide RNA (sgRNA).

Non-homologous end joining

(NHEJ). An endogenous pathway enabling repair of double-strand breaks (DSBs).

Self-targeting gRNA

(stgRNA). A single-guide RNA (sgRNA) that is targeted to its own sequence, which enables stochastic sequence evolution over time.

Directional writers

DNA writing relying on directional addition of single or multiple base pairs.

DNA polymerase

A type of enzyme that replicates DNA polymers on the basis of an existing template DNA by serial addition of individual nucleotides.

Temporal recording in arrays by CRISPR expansion

(TRACE). A Cas1–Cas2-based CRISPR spacer acquisition system to record biological signals over time.

Fluorescence resonance energy transfer

(FRET). A biochemical mechanism of energy transfer between two chromophores that can be utilized for sequence-specific DNA detection applications.

Memory by engineered mutagenesis with optical in situ readout

(MEMOIR). A Cas9-nuclease-based stochastic writing approach with spatial readout by single-molecule RNA fluorescence in situ hybridization (smFISH).

Genome editing of synthetic target arrays for lineage tracing

(GESTALT). A Cas9-nuclease-based stochastic writing approach enabling large-scale lineage tracing applications.

Terminal deoxynucleotidyl transferases

(TdTs). DNA polymerases that can add nucleotides to DNA without a template.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Components of cellular memory.
Fig. 2: Examples of DNA-recording devices.
Fig. 3: Applications of DNA-based biological recorders.