Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ammonia-induced stress response in liver disease progression and hepatic encephalopathy

Abstract

Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.

Key points

  • Ammonia accumulates in patients with liver dysfunction owing to its increased production and impaired detoxification by urea cycle enzymes and glutamine synthetase.

  • In addition to the central role of hyperammonaemia in the pathogenesis of hepatic encephalopathy, elevated blood ammonia levels have been shown to contribute to progression of hepatic fibrosis in steatotic liver disease, sarcopenia, immune dysfunction and cancer.

  • Ammonia produces its deleterious effects through direct and indirect effects on cells, including but not limited to pH changes, altered metabolism, potassium homeostasis disruption, mitochondrial dysfunction, oxidative stress, inflammation, compromised oxygen homeostasis and dysregulation of neurotransmission.

  • The presence of hyperammonaemia is critical for the diagnosis of hepatic encephalopathy and the prognosis of patients with compensated and decompensated cirrhosis and liver failure.

  • Current and emerging therapies for hyperammonaemia are based on new insights into inter-organ ammonia trafficking and metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The inter-organ metabolism of ammonia, including sites of action of different drugs.
Fig. 2: The effect of ammonia on intracellular pH.
Fig. 3: The downstream effects of interactions between ammonia and inflammatory pathways known to induce neurological alterations in hepatic encephalopathy.
Fig. 4: The direct effects of ammonia on cells, beyond pH changes.
Fig. 5: Measuring ammonia levels.
Fig. 6: Proposed algorithm for the diagnosis of hepatic encephalopathy in hospitalized patients with cirrhosis and the assessment of stable outpatients with cirrhosis for primary and secondary prophylaxis.
Fig. 7: Potential molecules and compounds able to therapeutically target ammonia in MASLD.

Similar content being viewed by others

References

  1. Karlsen, T. H. et al. The EASL-Lancet Liver Commission: protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet 399, 61–116 (2022).

    Article  PubMed  Google Scholar 

  2. Haussinger, D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem. J. 267, 281–290 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. European Association for the Study of the Liver EASL Clinical Practice Guidelines on the management of hepatic encephalopathy. J. Hepatol. 77, 807–824 (2022).

    Article  Google Scholar 

  4. Haussinger, D. et al. Hepatic encephalopathy. Nat. Rev. Dis. Prim. 8, 43 (2022).

    Article  PubMed  Google Scholar 

  5. Arroyo, V. et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J. Hepatol. 74, 670–685 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 79, 1542–1556 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Gallego-Durán, R. et al. Liver injury in non-alcoholic fatty liver disease is associated with urea cycle enzyme dysregulation. Sci. Rep. 12, 3418 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lemberg, A. & Fernández, M. A. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann. Hepatol. 8, 95–102 (2009).

    Article  PubMed  Google Scholar 

  9. Jalan, R. et al. Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. J. Hepatol. 64, 823–833 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Hadi, R. et al. Utility of glutamine synthetase immunohistochemistry in identifying features of regressed cirrhosis. Mod. Pathol. 33, 448–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Bromberg, P. A., Robin, E. D. & Forkner, C. E. Jr. The existence of ammonia in blood in vivo with observations on the significance of the NH4+-NH3 system. J. Clin. Invest. 39, 332–341 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moser, H. Electrophysiological evidence for ammonium as a substitute for potassium in activating the sodium pump in a crayfish sensory neuron. Can. J. Physiol. Pharmacol. 65, 141–145 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Aickin, C. C., Deisz, R. A. & Lux, H. D. Ammonium action on post-synaptic inhibition in crayfish neurones: implications for the mechanism of chloride extrusion. J. Physiol. 329, 319–339 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kelly, T., Kafitz, K. W., Roderigo, C. & Rose, C. R. Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 57, 921–934 (2009).

    Article  PubMed  Google Scholar 

  15. Bakouh, N., Benjelloun, F., Cherif-Zahar, B. & Planelles, G. The challenge of understanding ammonium homeostasis and the role of the Rh glycoproteins. Transfus. Clin. Biol. 13, 139–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Weiner, I. D. & Verlander, J. W. Ammonia transport in the kidney by Rhesus glycoproteins. Am. J. Physiol. Ren. Physiol. 306, F1107–F1120 (2014).

    Article  CAS  Google Scholar 

  17. Allen, W. J. & Collinson, I. A molecular dual carriageway. Elife 9, e61148 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grishin, D. V., Kasap, E. Y., Izotov, A. A. & Lisitsa, A. V. Multifaceted ammonia transporters. All Life 13, 486–497 (2020).

    Article  CAS  Google Scholar 

  19. Saparov, S. M., Liu, K., Agre, P. & Pohl, P. Fast and selective ammonia transport by aquaporin-8. J. Biol. Chem. 282, 5296–5301 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Capiglioni, A. M., Capitani, M. C., Marrone, J. & Marinelli, R. A. Adenoviral transfer of human aquaporin-8 gene to mouse liver improves ammonia-derived ureagenesis. Cells 12, 1535 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rose, C. F. et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J. Hepatol. 73, 1526–1547 (2020).

    Article  PubMed  Google Scholar 

  22. Zhu, R. et al. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut-liver-brain axis. Biosci. Rep. 43, BSR20222524 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brown, H., Brown, M. E., Michelson, P. & McDermott, W. V. Jr. Urea-cycle enzymes in liver disease. JAMA 199, 35–36 (1967).

    Article  CAS  PubMed  Google Scholar 

  24. Ziki, R. A. & Colnot, S. Glutamine metabolism, a double agent combating or fuelling hepatocellular carcinoma. JHEP Rep. 6, 101077 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frieg, B., Gorg, B., Gohlke, H. & Haussinger, D. Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biol. Chem. 402, 1063–1072 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Paluschinski, M. et al. Characterization of the scavenger cell proteome in mouse and rat liver. Biol. Chem. 402, 1073–1085 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Qvartskhava, N. et al. Hyperammonemia in gene-targeted mice lacking functional hepatic glutamine synthetase. Proc. Natl Acad. Sci. USA 112, 5521–5526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gebhardt, R. & Reichen, J. Changes in distribution and activity of glutamine synthetase in carbon tetrachloride-induced cirrhosis in the rat: potential role in hyperammonemia. Hepatology 20, 684–691 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Olde Damink, S. W. et al. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36, 1163–1171 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Olde Damink, S. W. et al. Kidney plays a major role in ammonia homeostasis after portasystemic shunting in patients with cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G189–G194 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Mpabanzi, L. et al. Fluxomics reveals cellular and molecular basis of increased renal ammoniagenesis. NPJ Syst. Biol. Appl. 8, 49 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jalan, R. & Kapoor, D. Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. Clin. Sci. 106, 467–474 (2004).

    Article  CAS  Google Scholar 

  33. Jalan, R. & Kapoor, D. Enhanced renal ammonia excretion following volume expansion in patients with well compensated cirrhosis of the liver. Gut 52, 1041–1045 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holecek, M. Muscle amino acid and adenine nucleotide metabolism during exercise and in liver cirrhosis: speculations on how to reduce the harmful effects of ammonia. Metabolites 12, 971 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He, Y. et al. Glutamine synthetase in muscle is required for glutamine production during fasting and extrahepatic ammonia detoxification. J. Biol. Chem. 285, 9516–9524 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Collao, N. et al. The role of L-type amino acid transporter 1 (Slc7a5) during in vitro myogenesis. Am. J. Physiol. Cell Physiol. 323, C595–C605 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Oliveira, N. M. et al. Different dehydration levels and their impact on blood ammonia, cognitive-motor performance, and muscle damage in acclimated runners. J. Sports Med. Phys. Fit. 62, 1716–1722 (2022).

    CAS  Google Scholar 

  38. Babij, P., Matthews, S. M. & Rennie, M. J. Changes in blood ammonia, lactate and amino acids in relation to workload during bicycle ergometer exercise in man. Eur. J. Appl. Physiol. Occup. Physiol. 50, 405–411 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Lowenstein, J. M. Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol. Rev. 52, 382–414 (1972).

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigo, R. et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 139, 675–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Hernandez-Rabaza, V. et al. Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. J. Neuroinflammation 13, 41 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Albrecht, J. in Handbook of Neurochemistry and Molecular Neurobiology: Amino Acids and Peptides in the Nervous System (eds Lajtha, A., Oja, S. S., Schousboe, A. & Saransaari, P.) 261–276 (Springer, 2007).

  43. Erceg, S. et al. Role of extracellular cGMP and of hyperammonemia in the impairment of learning in rats with chronic hepatic failure. Therapeutic implications. Neurochem. Int. 48, 441–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Monfort, P., Muñoz, M.-D. & Felipo, V. Molecular mechanisms of the alterations in NMDA receptor-dependent long-term potentiation in hyperammonemia. Metab. Brain Dis. 20, 265–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Montoliu, C. et al. Activation of soluble guanylate cyclase by nitric oxide in lymphocytes correlates with minimal hepatic encephalopathy in cirrhotic patients. J. Mol. Med. 85, 237–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Braissant, O. Current concepts in the pathogenesis of urea cycle disorders. Mol. Genet. Metab. 100, S3–S12 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Jones, E. A. Ammonia, the GABA neurotransmitter system, and hepatic encephalopathy. Metab. Brain Dis. 17, 275–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Leke, R. et al. Synthesis of neurotransmitter GABA via the neuronal tricarboxylic acid cycle is elevated in rats with liver cirrhosis consistent with a high GABAergic tone in chronic hepatic encephalopathy. J. Neurochem. 117, 824–832 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Pierzchala, K. et al. Lessons on brain edema in HE: from cellular to animal models and clinical studies. Metab. Brain Dis. 39, 403–437 (2024).

    Article  PubMed  Google Scholar 

  50. Cudalbu, C. & Taylor-Robinson, S. D. Brain edema in chronic hepatic encephalopathy. J. Clin. Exp. Hepatol. 9, 362–382 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bosoi, C. R. & Rose, C. F. Brain edema in acute liver failure and chronic liver disease: similarities and differences. Neurochem. Int. 62, 446–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Zielińska, M., Albrecht, J. & Popek, M. Dysregulation of astrocytic glutamine transport in acute hyperammonemic brain edema. Front. Neurosci. 16, 874750 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Skowrońska, M. & Albrecht, J. Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem. Int. 62, 731–737 (2013).

    Article  PubMed  Google Scholar 

  54. Jayakumar, A. R., Rama Rao, K. V. & Norenberg, M. D. Neuroinflammation in hepatic encephalopathy: mechanistic aspects. J. Clin. Exp. Hepatol. 5, S21–S28 (2015).

    Article  PubMed  Google Scholar 

  55. Llansola, M. et al. NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab. Brain Dis. 22, 321–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Kaminsky, Y. & Kosenko, E. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide. Brain Res. 1294, 193–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Reinehr, R. et al. Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55, 758–771 (2007).

    Article  PubMed  Google Scholar 

  58. Rose, C., Kresse, W. & Kettenmann, H. Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J. Biol. Chem. 280, 20937–20944 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Hadjihambi, A. et al. Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease. Hepatology 65, 1306–1318 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Raimondo, J. V. et al. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system. Front. Cell Neurosci. 7, 202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rangroo Thrane, V. et al. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat. Med. 19, 1643–1648 (2013).

    Article  PubMed  Google Scholar 

  62. Fan, P. & Szerb, J. C. Effects of ammonium ions on synaptic transmission and on responses to quisqualate and N-methyl-d-aspartate in hippocampal CA1 pyramidal neurons in vitro. Brain Res. 632, 225–231 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Allert, N., Köller, H. & Siebler, M. Ammonia-induced depolarization of cultured rat cortical astrocytes. Brain Res. 782, 261–270 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Cooper, A. J. & Plum, F. Biochemistry and physiology of brain ammonia. Physiol. Rev. 67, 440–519 (1987).

    Article  CAS  PubMed  Google Scholar 

  66. Norenberg, M. D. & Martinez-Hernandez, A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161, 303–310 (1979).

    Article  CAS  PubMed  Google Scholar 

  67. Limón, I. D., Angulo-Cruz, I., Sánchez-Abdon, L. & Patricio-Martínez, A. Disturbance of the glutamate-glutamine cycle, secondary to hepatic damage, compromises memory function. Front. Neurosci. 15, 578922 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rivera-Mancía, S. et al. In vitro inhibition of brain phosphate-activated glutaminase by ammonia and manganese. J. Trace Elem. Med. Biol. 62, 126625 (2020).

    Article  PubMed  Google Scholar 

  69. Drews, L. et al. Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner. Dis. Model Mech. 13, dmm047134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lai, J., Murthy, C. R., Cooper, A., Hertz, E. & Hertz, L. Differential effects of ammonia and β-methylene-dl-aspartate on metabolism of glutamate and related amino acids by astrocytes and neurons in primary culture. Neurochem. Res. 14, 377–389 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Iversen, P. et al. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy: a PET study with [11C] acetate in humans. Front. Neurosci. 8, 353 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dhanda, S., Sunkaria, A., Halder, A. & Sandhir, R. Mitochondrial dysfunctions contribute to energy deficits in rodent model of hepatic encephalopathy. Metab. brain Dis. 33, 209–223 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Angelova, P. R. et al. Hyperammonaemia induces mitochondrial dysfunction and neuronal cell death. JHEP Rep. 4, 100510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Waniewski, R. A. Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J. Neurochem. 58, 167–174 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Albrecht, J., Wysmyk‐Cybula, U. & Rafalowska, U. Na+/K+‐ATPase activity and GABA uptake in astroglial cell‐enriched fractions and synaptosomes derived from rats in the early stage of experimental hepatogenic encephalopathy. Acta Neurol. Scand. 72, 317–320 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Heidari, R. Brain mitochondria as potential therapeutic targets for managing hepatic encephalopathy. Life Sci. 218, 65–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Murthy, C. R., Rama Rao, K., Bai, G. & Norenberg, M. D. Ammonia‐induced production of free radicals in primary cultures of rat astrocytes. J. Neurosci. Res. 66, 282–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Braissant, O. et al. Longitudinal neurometabolic changes in the hippocampus of a rat model of chronic hepatic encephalopathy. J. Hepatol. 71, 505–515 (2019).

    Article  PubMed  Google Scholar 

  79. Dombro, R. S., Hutson, D. G. & Norenberg, M. D. The action of ammonia on astrocyte glycogen and glycogenolysis. Mol. Chem. Neuropathol. 19, 259–268 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Liskowsky, D. R., Norenberg, L.-O. B. & Norenberg, M. D. Effect of ammonia on cyclic AMP production in primary astrocyte cultures. Brain Res. 386, 386–388 (1986).

    Article  CAS  PubMed  Google Scholar 

  81. Hadjihambi, A. et al. Abnormal brain oxygen homeostasis in an animal model of liver disease. JHEP Rep. 4, 100509 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Khot, S. & Tirschwell, D. L. Long-term neurological complications after hypoxic-ischemic encephalopathy. Semin. Neurol. 26, 422–431 (2006).

    Article  PubMed  Google Scholar 

  83. Hosford, P. S. & Gourine, A. V. What is the key mediator of the neurovascular coupling response? Neurosci. Biobehav. Rev. 96, 174–181 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Clément, M. A. et al. Bile-duct ligation renders the brain susceptible to hypotension-induced neuronal degeneration: implications of ammonia. J. Neurochem. 157, 561–573 (2021).

    Article  PubMed  Google Scholar 

  85. Sørensen, M. et al. Low cerebral energy metabolism in hepatic encephalopathy reflects low neuronal energy demand. Role of ammonia-induced increased GABAergic tone. Anal. Biochem. 654, 114766 (2022).

    Article  PubMed  Google Scholar 

  86. Wright, G. et al. Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology 45, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Balasubramaniyan, V. et al. Ammonia reduction with ornithine phenylacetate restores brain eNOS activity via the DDAH-ADMA pathway in bile duct-ligated cirrhotic rats. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G145–G152 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Hadjihambi, A. et al. Impaired brain glymphatic flow in experimental hepatic encephalopathy. J. Hepatol. 70, 40–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Natale, G. et al. Glymphatic system as a gateway to connect neurodegeneration from periphery to CNS. Front. Neurosci. 15, 639140 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Harrison, I. F. et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 143, 2576–2593 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sepehrinezhad, A., Larsen, F. S., Ahmadabad, R. A., Shahbazi, A. & Negah, S. S. The glymphatic system may play a vital role in the pathogenesis of hepatic encephalopathy: a narrative review. Cells 12, 979 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rodrigo, R. et al. Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications. Neurochem. Int. 55, 113–118 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Hermenegildo, C., Monfort, P. & Felipo, V. Activation of N‐methyl‐d‐aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31, 709–715 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Hermenegildo, C. et al. Chronic hyperammonemia impairs the glutamate–nitric oxide–cyclic GMP pathway in cerebellar neurons in culture and in the rat in vivo. Eur. J. Neurosci. 10, 3201–3209 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Cauli, O., Mansouri, M. T., Agusti, A. & Felipo, V. Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology 136, 1359–1367.e2 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Skowrońska, M. & Albrecht, J. Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox. Res. 21, 236–244 (2012).

    Article  PubMed  Google Scholar 

  98. Curzon, G., Kantamaneni, B. D., Fernando, J., Woods, M. S. & Cavanagh, J. Effects of chronic porto‐caval anastomosis on brain tryptophan, tyrosine and 5‐hydroxytryptamine. J. Neurochem. 24, 1065–1070 (1975).

    Article  CAS  PubMed  Google Scholar 

  99. Jessy, J., Mans, A., DeJoseph, M. R. & Hawkins, R. A. Hyperammonaemia causes many of the changes found after portacaval shunting. Biochem. J. 272, 311–317 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. James, J. H., Jeppsson, B., Ziparo, V. & Fischer, J. Hyperammonaemia, plasma aminoacid imbalance, and blood-brain aminoacid transport: a unified theory of portal-systemic encephalopathy. Lancet 314, 772–775 (1979).

    Article  Google Scholar 

  101. Dhanda, S. & Sandhir, R. Role of dopaminergic and serotonergic neurotransmitters in behavioral alterations observed in rodent model of hepatic encephalopathy. Behav. Brain Res. 286, 222–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Rose, C. F. Ammonia: more than a neurotoxin? Liver Int. 34, 649–651 (2014).

    Article  PubMed  Google Scholar 

  103. Dasarathy, S. et al. Ammonia toxicity: from head to toe? Metab. Brain Dis. 32, 529–538 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Jalan, R. Novel approaches and therapeutics in acute-on-chronic liver failure. Liver Transpl. 22, 14–19 (2016).

    Article  PubMed  Google Scholar 

  105. Shawcross, D. L. et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 48, 1202–1212 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Elfsmark, L., Agren, L., Akfur, C. & Jonasson, S. Ammonia exposure by intratracheal instillation causes severe and deteriorating lung injury and vascular effects in mice. Inhal. Toxicol. 34, 145–158 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Bein, K. et al. Genetic determinants of ammonia-induced acute lung injury in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 320, L41–L62 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Bento, L. M., Fagian, M. M., Vercesi, A. E. & Gontijo, J. A. Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats. Nephrol. Dial. Transpl. 22, 2817–2823 (2007).

    Article  CAS  Google Scholar 

  109. Bing, O. H. L. Hypothesis: role for ammonia neutralization in the prevention and reversal of heart failure. Am. J. Physiol. Heart Circ. Physiol. 314, H1049–H1052 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vierling, J. M. et al. Fasting blood ammonia predicts risk and frequency of hepatic encephalopathy episodes in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 14, 903–906.e1 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Shalimar et al. Prognostic role of ammonia in patients with cirrhosis. Hepatology 70, 982–994 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Romero-Gomez, M. Non-alcoholic steatohepatitis. Med. Clin. 159, 388–395 (2022).

    Article  Google Scholar 

  113. Buzzetti, E., Pinzani, M. & Tsochatzis, E. A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65, 1038–1048 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease – meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  115. Singh, S. et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 13, 643–654 (2015).

    Article  PubMed  Google Scholar 

  116. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  117. Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61, 1547–1554 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 65, 1557–1565 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Ampuero, J. et al. Significant fibrosis predicts new-onset diabetes mellitus and arterial hypertension in patients with NASH. J. Hepatol. 73, 17–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Adams, L. A., Anstee, Q. M., Tilg, H. & Targher, G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 66, 1138–1153 (2017).

    Article  PubMed  Google Scholar 

  121. Rojas, A., Garcia-Lozano, M. R., Gil-Gomez, A., Romero-Gomez, M. & Ampuero, J. Glutaminolysis-ammonia-urea cycle axis, non-alcoholic fatty liver disease progression and development of novel therapies. J. Clin. Transl. Hepatol. 10, 356–362 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. De Chiara, F. et al. Urea cycle dysregulation in non-alcoholic fatty liver disease. J. Hepatol. 69, 905–915 (2018).

    Article  PubMed  Google Scholar 

  123. Thomsen, K. L. et al. Experimental nonalcoholic steatohepatitis compromises ureagenesis, an essential hepatic metabolic function. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G295–G301 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Berndt, N. et al. Functional consequences of metabolic zonation in murine livers: insights for an old story. Hepatology 73, 795–810 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Mishra, S. et al. Dysregulated cellular redox status during hyperammonemia causes mitochondrial dysfunction and senescence by inhibiting sirtuin-mediated deacetylation. Aging Cell 22, e13852 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ghallab, A. et al. Spatio-temporal multiscale analysis of western diet-fed mice reveals a translationally relevant sequence of events during NAFLD progression. Cells 10, 2516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Du, K. et al. Increased glutaminolysis marks active scarring in nonalcoholic steatohepatitis progression. Cell Mol. Gastroenterol. Hepatol. 10, 1–21 (2020).

    Article  PubMed  Google Scholar 

  128. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. De Chiara, F. et al. Ammonia scavenging prevents progression of fibrosis in experimental nonalcoholic fatty liver disease. Hepatology 71, 874–892 (2020).

    Article  PubMed  Google Scholar 

  130. Wang, Z. X. et al. Limited role for hyperammonemia in the progression of diet-induced nonalcoholic steatohepatitis. J. Dig. Dis. 24, 408–418 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Simon, J. et al. Targeting hepatic glutaminase 1 ameliorates non-alcoholic steatohepatitis by restoring very-low-density lipoprotein triglyceride assembly. Cell Metab. 31, 605–622.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Thomsen, K. L. et al. Ammonia: a novel target for the treatment of non-alcoholic steatohepatitis. Med. Hypotheses 113, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Wu, T. et al. Discovery of a carbamoyl phosphate synthetase 1-deficient HCC subtype with therapeutic potential through integrative genomic and experimental analysis. Hepatology 74, 3249–3268 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, Y. et al. β-Catenin activation reprograms ammonia metabolism to promote senescence resistance in hepatocellular carcinoma. Cancer Res. 84, 1643–1658 (2024).

    Article  CAS  PubMed  Google Scholar 

  135. Spinelli, J. B. et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358, 941–946 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lie, S., Wang, T., Forbes, B., Proud, C. G. & Petersen, J. The ability to utilise ammonia as nitrogen source is cell type specific and intricately linked to GDH, AMPK and mTORC1. Sci. Rep. 9, 1461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Cheng, C. et al. Ammonia stimulates SCAP/Insig dissociation and SREBP-1 activation to promote lipogenesis and tumour growth. Nat. Metab. 4, 575–588 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cheng, C. et al. Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth. Cancer Cell 28, 569–581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tang, K. et al. Ammonia detoxification promotes CD8+ T cell memory development by urea and citrulline cycles. Nat. Immunol. 24, 162–173 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Lee, J. S. et al. Urea cycle dysregulation generates clinically relevant genomic and biochemical signatures. Cell 174, 1559–1570.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang, Q. et al. Deficiency in SLC25A15, a hypoxia-responsive gene, promotes hepatocellular carcinoma by reprogramming glutamine metabolism. J. Hepatol. 80, 293–308 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. Markus, C. & Metz, M. Comparison of plasma ammonia results from seven different automated platforms in use throughout Central Australia. Clin. Biochem. 50, 331–335 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Tranah, T. H. et al. Plasma ammonia levels predict hospitalisation with liver-related complications and mortality in clinically stable outpatients with cirrhosis. J. Hepatol. 77, 1554–1563 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. DeMorrow, S., Cudalbu, C., Davies, N., Jayakumar, A. R. & Rose, C. F. 2021 ISHEN guidelines on animal models of hepatic encephalopathy. Liver Int. 41, 1474–1488 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Imbert-Bismut, F. et al. Transportation and handling of blood samples prior to ammonia measurement in the real life of a large university hospital. Clin. Chim. Acta 510, 522–530 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Hashim, I. A. & Cuthbert, J. A. Elevated ammonia concentrations: potential for pre-analytical and analytical contributing factors. Clin. Biochem. 47, 233–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Goldstein, B. N., Wesler, J., Nowacki, A. S., Reineks, E. & Natowicz, M. R. Investigations of blood ammonia analysis: test matrices, storage, and stability. Clin. Biochem. 50, 537–539 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Favresse, J. et al. Preanalytics of ammonia: stability, transport and temperature of centrifugation. Clin. Chem. Lab. Med. 56, e65–e68 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Bajaj, J. S. et al. Important unresolved questions in the management of hepatic encephalopathy: an ISHEN consensus. Am. J. Gastroenterol. 115, 989–1002 (2020).

    Article  PubMed  Google Scholar 

  150. Eriksen, P. L., Djernes, L., Vilstrup, H. & Ott, P. Clearance and production of ammonia quantified in humans by constant ammonia infusion – the effects of cirrhosis and ammonia-targeting treatments. J. Hepatol. 79, 340–348 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Kramer, L. et al. Partial pressure of ammonia versus ammonia in hepatic encephalopathy. Hepatology 31, 30–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. Venturini, I. et al. Ammonia and endogenous benzodiazepine-like compounds in the pathogenesis of hepatic encephalopathy. Scand. J. Gastroenterol. 36, 423–425 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Vilstrup, H. et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology 60, 715–735 (2014).

    Article  PubMed  Google Scholar 

  154. Zhao, L. et al. Prognostic role of ammonia in critical care patients without known hepatic disease. Front. Med. 7, 589825 (2020).

    Article  Google Scholar 

  155. Verma, N. et al. Dynamic assessments of hepatic encephalopathy and ammonia levels predict mortality in acute-on-chronic liver failure. Hepatol. Int. 15, 970–982 (2021).

    Article  PubMed  Google Scholar 

  156. Rahimi, R. S. et al. Efficacy and safety of ornithine phenylacetate for treating overt hepatic encephalopathy in a randomized trial. Clin. Gastroenterol. Hepatol. 19, 2626–2635.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Pereira, K. et al. Current diagnosis and management of post-transjugular intrahepatic portosystemic shunt refractory hepatic encephalopathy. Liver Int. 35, 2487–2494 (2015).

    Article  PubMed  Google Scholar 

  158. Nomura, F. et al. Effect of intrahepatic portal-systemic shunting on hepatic ammonia extraction in patients with cirrhosis. Hepatology 20, 1478–1481 (1994).

    Article  CAS  PubMed  Google Scholar 

  159. Shalimar et al. Persistent or incident hyperammonemia is associated with poor outcomes in acute decompensation and acute-on-chronic liver failure. JGH Open. 4, 843–850 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ballester, M. P. et al. Development and validation of the AMMON-OHE model to predict risk of overt hepatic encephalopathy occurrence in outpatients with cirrhosis. J. Hepatol. 79, 967–976 (2023).

    Article  PubMed  Google Scholar 

  161. Tapper, E. B., Jiang, Z. G. & Patwardhan, V. R. Refining the ammonia hypothesis: a physiology-driven approach to the treatment of hepatic encephalopathy. Mayo Clin. Proc. 90, 646–658 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Sawhney, I. M. et al. Visual and auditory evoked responses in acute severe hepatitis. J. Gastroenterol. Hepatol. 12, 554–559 (1997).

    Article  CAS  PubMed  Google Scholar 

  163. Ventura-Cots, M. et al. Duration of the acute hepatic encephalopathy episode determines survival in cirrhotic patients. Ther. Adv. Gastroenterol. 11, 1756283X17743419 (2018).

    Article  Google Scholar 

  164. Balcar, L. et al. Impact of ammonia levels on outcome in clinically stable outpatients with advanced chronic liver disease. JHEP Rep. 5, 100682 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Bischoff, S. C. et al. ESPEN practical guideline: clinical nutrition in liver disease [Spanish]. Nutr. Hosp. 39, 434–472 (2022).

    PubMed  Google Scholar 

  166. Hepburn, C. & von Roenn, N. Nutrition in liver disease – a review. Curr. Gastroenterol. Rep. 25, 242–249 (2023).

    Article  PubMed  Google Scholar 

  167. Cordoba, J. et al. Normal protein diet for episodic hepatic encephalopathy: results of a randomized study. J. Hepatol. 41, 38–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Tandon, P., Montano-Loza, A. J., Lai, J. C., Dasarathy, S. & Merli, M. Sarcopenia and frailty in decompensated cirrhosis. J. Hepatol. 75, S147–S162 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. West, J., Gow, P. J., Testro, A., Chapman, B. & Sinclair, M. Exercise physiology in cirrhosis and the potential benefits of exercise interventions: a review. J. Gastroenterol. Hepatol. 36, 2687–2705 (2021).

    Article  PubMed  Google Scholar 

  170. Zabulica, M. et al. Correction of a urea cycle defect after ex vivo gene editing of human hepatocytes. Mol. Ther. 29, 1903–1917 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Makris, G. et al. Expression and function of the urea cycle in widely-used hepatic cellular models. J. Inherit. Metab. Dis. https://doi.org/10.1002/jimd.12701 (2024).

  172. Romero-Gomez, M. Pharmacotherapy of hepatic encephalopathy in cirrhosis. Expert. Opin. Pharmacother. 11, 1317–1327 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Dumitrascu, D. L. et al. Update on the role of rifaximin in digestive diseases. J. Gastrointestin Liver Dis. 32, 92–109 (2023).

    Article  PubMed  Google Scholar 

  174. Rajpurohit, S., Musunuri, B., Shailesh, Basthi Mohan, P. & Shetty, S. Novel drugs for the management of hepatic encephalopathy: still a long journey to travel. J. Clin. Exp. Hepatol. 12, 1200–1214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hong, A. S., Tun, K. M., Hong, J. M., Batra, K. & Ohning, G. Fecal microbiota transplantation in decompensated cirrhosis: a systematic review on safety and efficacy. Antibiotics 11, 838 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gao, J., Nie, R., Chang, H., Yang, W. & Ren, Q. A meta-analysis of microbiome therapies for hepatic encephalopathy. Eur. J. Gastroenterol. Hepatol. 35, 927–937 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Wibawa, I. D. N., Mariadi, I. K., Shalim, C. P. & Sindhughosa, D. A. Efficacy of probiotics in the treatment of minimal hepatic encephalopathy: a systematic review and meta-analysis. Clin. Exp. Hepatol. 9, 146–153 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Killer, J. et al. Lactulose in combination with soybean lecithin has a cryoprotective effect on probiotic taxa of bifidobacteria and Lactobacillaceae. Lett. Appl. Microbiol. 76, ovad008 (2023).

    Article  PubMed  Google Scholar 

  179. Ghabril, M. et al. Glycerol phenylbutyrate in patients with cirrhosis and episodic hepatic encephalopathy: a pilot study of safety and effect on venous ammonia concentration. Clin. Pharmacol. Drug. Dev. 2, 278–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Snehavardhan, P., Lal, B. B., Sood, V., Khanna, R. & Alam, S. Efficacy and safety of sodium benzoate in the management of hyperammonemia in decompensated chronic liver disease of the childhood-a double-blind randomized controlled trial. J. Pediatr. Gastroenterol. Nutr. 70, 165–170 (2020).

    Article  PubMed  Google Scholar 

  181. Jain, A. et al. L-ornithine L-aspartate in acute treatment of severe hepatic encephalopathy: a double-blind randomized controlled trial. Hepatology 75, 1194–1203 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Safadi, R. et al. Pharmacokinetics/pharmacodynamics of L-ornithine phenylacetate in overt hepatic encephalopathy and the effect of plasma ammonia concentration reduction on clinical outcomes. Clin. Transl. Sci. 15, 1449–1459 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Harrison, S. A. et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N. Engl. J. Med. 390, 497–509 (2024).

    Article  PubMed  Google Scholar 

  184. Delgado, T. C., de Las Heras, J. & Martinez-Chantar, M. L. Understanding gut-liver axis nitrogen metabolism in fatty liver disease. Front. Endocrinol. 13, 1058101 (2022).

    Article  Google Scholar 

  185. Du, K. et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology 154, 1465–1479.e13 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Li, B. et al. Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine 39, 239–254 (2019).

    Article  PubMed  Google Scholar 

  187. Jalan, R., Wright, G., Davies, N. A. & Hodges, S. J. l-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med. Hypotheses 69, 1064–1069 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Jover-Cobos, M. et al. Ornithine phenylacetate targets alterations in the expression and activity of glutamine synthase and glutaminase to reduce ammonia levels in bile duct ligated rats. J. Hepatol. 60, 545–553 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Canbay, A. & Sowa, J. P. l-Ornithine l-aspartate (LOLA) as a novel approach for therapy of non-alcoholic fatty liver disease. Drugs 79, 39–44 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pichon, C. et al. Impact of l-ornithine l-aspartate on non-alcoholic steatohepatitis-associated hyperammonemia and muscle alterations. Front. Nutr. 9, 1051157 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  191. de Freitas, L. B. R. et al. Ornithine aspartate and vitamin-E combination has beneficial effects on cardiovascular risk factors in an animal model of nonalcoholic fatty liver disease in rats. Biomolecules 12, 1773 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Craven, L. et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am. J. Gastroenterol. 115, 1055–1065 (2020).

    Article  PubMed  Google Scholar 

  193. Xue, L., Deng, Z., Luo, W., He, X. & Chen, Y. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial. Front. Cell Infect. Microbiol. 12, 759306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Witjes, J. J. et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol. Commun. 4, 1578–1590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Massafra, V. et al. Farnesoid X receptor activation promotes hepatic amino acid catabolism and ammonium clearance in mice. Gastroenterology 152, 1462–1476.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Abdel-Razik, A. et al. Rifaximin in nonalcoholic fatty liver disease: hit multiple targets with a single shot. Eur. J. Gastroenterol. Hepatol. 30, 1237–1246 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Wilson, K. F., Erickson, J. W., Antonyak, M. A. & Cerione, R. A. Rho GTPases and their roles in cancer metabolism. Trends Mol. Med. 19, 74–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Matés, J. M. et al. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr. Mol. Med. 13, 514–534 (2013).

    Article  PubMed  Google Scholar 

  199. Kennan, A. L. Glutamine synthetase activity in rat liver after portacaval shunt. Endocrinology 74, 805–806 (1964).

    Article  CAS  PubMed  Google Scholar 

  200. Shambaugh, G. E.3rd Urea biosynthesis I. The urea cycle and relationships to the citric acid cycle. Am. J. Clin. Nutr. 30, 2083–2087 (1977).

    Article  CAS  PubMed  Google Scholar 

  201. Meijer, A. J., Lamers, W. H. & Chamuleau, R. A. Nitrogen metabolism and ornithine cycle function. Physiol. Rev. 70, 701–748 (1990).

    Article  CAS  PubMed  Google Scholar 

  202. Brown, G. W. Jr. & Cohen, P. P. Comparative biochemistry of urea synthesis. I. Methods for the quantitative assay of urea cycle enzymes in liver. J. Biol. Chem. 234, 1769–1774 (1959).

    Article  CAS  PubMed  Google Scholar 

  203. Brown, G. W., Brown, W. R. Jr. & Cohen, P. P. Comparative biochemistry of urea synthesis. II. Levels of urea cycle enzymes in metamorphosing Rana catesbeiana tadpoles. J. Biol. Chem. 234, 1775–1780 (1959).

    Article  CAS  PubMed  Google Scholar 

  204. Brown, G. J. Jr. & Cohen, P. P. Comparative biochemistry of urea synthesis. 3. Activities of urea-cycle enzymes in various higher and lower vertebrates. Biochem. J. 75, 82–91 (1960).

    Article  CAS  PubMed  Google Scholar 

  205. Clemmesen, J. O., Larsen, F. S., Kondrup, J., Hansen, B. A. & Ott, P. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29, 648–653 (1999).

    Article  CAS  PubMed  Google Scholar 

  206. Jalan, R., Olde Damink, S. W., Hayes, P. C., Deutz, N. E. & Lee, A. Pathogenesis of intracranial hypertension in acute liver failure: inflammation, ammonia and cerebral blood flow. J. Hepatol. 41, 613–620 (2004).

    Article  CAS  PubMed  Google Scholar 

  207. Kundra, A., Jain, A., Banga, A., Bajaj, G. & Kar, P. Evaluation of plasma ammonia levels in patients with acute liver failure and chronic liver disease and its correlation with the severity of hepatic encephalopathy and clinical features of raised intracranial tension. Clin. Biochem. 38, 696–699 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Bhatia, V., Singh, R. & Acharya, S. K. Predictive value of arterial ammonia for complications and outcome in acute liver failure. Gut 55, 98–104 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Bernal, W. et al. Arterial ammonia and clinical risk factors for encephalopathy and intracranial hypertension in acute liver failure. Hepatology 46, 1844–1852 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Niranjan-Azadi, A. M. et al. Ammonia level and mortality in acute liver failure: a single-center experience. Ann. Transpl. 21, 479–483 (2016).

    Article  CAS  Google Scholar 

  211. Jalan, R. & Rose, C. F. Heretical thoughts into hepatic encephalopathy. J. Hepatol. 77, 539–548 (2022).

    Article  PubMed  Google Scholar 

  212. Ong, J. P. et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am. J. Med. 114, 188–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  213. Nicolao, F. et al. Role of determination of partial pressure of ammonia in cirrhotic patients with and without hepatic encephalopathy. J. Hepatol. 38, 441–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  214. Patwardhan, V. R. et al. Serum ammonia is associated with transplant-free survival in hospitalized patients with acutely decompensated cirrhosis [corrected]. J. Clin. Gastroenterol. 50, 345–350 (2016).

    Article  PubMed  Google Scholar 

  215. Sawhney, R. et al. Role of ammonia, inflammation, and cerebral oxygenation in brain dysfunction of acute-on-chronic liver failure patients. Liver Transpl. 22, 732–742 (2016).

    Article  PubMed  Google Scholar 

  216. Ravi, S., Bade, K. S., Hasanin, M. & Singal, A. K. Ammonia level at admission predicts in-hospital mortality for patients with alcoholic hepatitis. Gastroenterol. Rep. 5, 232–236 (2017).

    Google Scholar 

  217. Hu, C. et al. Serum ammonia is a strong prognostic factor for patients with acute-on-chronic liver failure. Sci. Rep. 10, 16970 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Chiriac, S. et al. Role of ammonia in predicting the outcome of patients with acute-on-chronic liver failure. World J. Clin. Cases 9, 552–564 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Gregorios, J. B., Mozes, L. W., Norenberg, L. O. & Norenberg, M. D. Morphologic effects of ammonia on primary astrocyte cultures. I. Light microscopic studies. J. Neuropathol. Exp. Neurol. 44, 397–403 (1985).

    Article  CAS  PubMed  Google Scholar 

  220. Gregorios, J. B., Mozes, L. W. & Norenberg, M. D. Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies. J. Neuropathol. Exp. Neurol. 44, 404–414 (1985).

    Article  CAS  PubMed  Google Scholar 

  221. Bjerring, P. N., Gluud, L. L. & Larsen, F. S. Cerebral blood flow and metabolism in hepatic encephalopathy – a meta-analysis. J. Clin. Exp. Hepatol. 8, 286–293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Qiu, J. et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism. Proc. Natl Acad. Sci. USA 110, 18162–18167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Bellar, A., Welch, N. & Dasarathy, S. Exercise and physical activity in cirrhosis: opportunities or perils. J. Appl. Physiol. 128, 1547–1567 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Kim, Y. Emerging treatment options for sarcopenia in chronic liver disease. Life 11, 250 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. McDaniel, J. et al. Hyperammonemia results in reduced muscle function independent of muscle mass. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G163–G170 (2016).

    Article  PubMed  Google Scholar 

  226. Wiechetek, M., Breves, G. & Höller, H. Effects of increased blood ammonia concentrations on the concentrations of some metabolites in rat tissues. Q. J. Exp. Physiol. 66, 423–429 (1981).

    Article  CAS  PubMed  Google Scholar 

  227. Aamann, L. et al. Progressive resistance training prevents loss of muscle mass and strength in bile duct-ligated rats. Liver Int. 39, 676–683 (2019).

    Article  CAS  PubMed  Google Scholar 

  228. Nachit, M. et al. Muscle fat content is strongly associated with NASH: a longitudinal study in patients with morbid obesity. J. Hepatol. 75, 292–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Chen, L., Fan, Z. & Lv, G. Associations of muscle mass and grip strength with severe NAFLD: a prospective study of 333,295 UK Biobank participants. J. Hepatol. 77, 1453–1454 (2022).

    Article  PubMed  Google Scholar 

  230. Bhanji, R. A. et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol. Int. 12, 377–386 (2018).

    Article  PubMed  Google Scholar 

  231. Nardelli, S. et al. Muscle alterations are associated with minimal and overt hepatic encephalopathy in patients with liver cirrhosis. Hepatology 70, 1704–1713 (2019).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Manuel Romero-Gómez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Lorenzo Ridola and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallego-Durán, R., Hadjihambi, A., Ampuero, J. et al. Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol (2024). https://doi.org/10.1038/s41575-024-00970-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-024-00970-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing