Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of metastatic colorectal cancer

Subjects

Abstract

Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.

Key points

  • Despite metastatic disease being the main cause of death in colorectal cancer (CRC), its molecular basis remains poorly characterized, which hinders the development of therapeutic strategies.

  • Data support the view that most driver events necessary for metastatic dissemination are acquired early during cancer evolution; however, mutations in oncogenes and tumour suppressor genes influence metastatic disease progression.

  • Tumour cell plasticity is pervasive and necessary for metastatic progression; tumour cells co-opt different cell states during metastatic dissemination, relapse, outgrowth and therapy resistance.

  • Metastases show either an immune-excluded or an immune-desert phenotype, implying a major role of the immune system in shaping metastatic CRC; different metastases from the same patient might exhibit distinct immune environments.

  • A holistic view of immune evasion mechanisms in metastases is lacking, and emerging evidence suggests that metastases of different organs co-opt distinct tumour microenvironments and respond differently to immune therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Staging and clinical evolution of CRC.
Fig. 2: Tumour cell plasticity in CRC.
Fig. 3: Determinants of the CRC immune environment.

Similar content being viewed by others

References

  1. Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M. & Wallace, M. B. Colorectal cancer. Lancet 394, 1467–1480 (2019).

    Article  PubMed  Google Scholar 

  2. Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A. & Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 73, 233–254 (2023).

    Article  PubMed  Google Scholar 

  3. Douillard, J.-Y. et al. Panitumumab–FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 369, 1023–1034 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Cervantes, A. et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 10–32 (2022).

    Article  PubMed  Google Scholar 

  6. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Lannagan, T. R., Jackstadt, R., Leedham, S. J. & Sansom, O. J. Advances in colon cancer research: in vitro and animal models. Curr. Opin. Genet. Dev. 66, 50–56 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Tilg, H., Adolph, T. E., Gerner, R. R. & Moschen, A. R. The intestinal microbiota in colorectal cancer. Cancer Cell 33, 954–964 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Kuipers, E. J. et al. Colorectal cancer. Nat. Rev. Dis. Prim. 1, 15065 (2015).

    Article  PubMed  Google Scholar 

  13. Li, J., Ma, X., Chakravarti, D., Shalapour, S. & DePinho, R. A. Genetic and biological hallmarks of colorectal cancer. Genes. Dev. 38, 787–820 (2021).

    Article  Google Scholar 

  14. Rahbari, N. N. et al. Time of metastasis and outcome in colorectal cancer. Ann. Surg. 269, 494–502 (2019).

    Article  PubMed  Google Scholar 

  15. Chen, K., Collins, G., Wang, H. & Toh, J. W. T. Pathological features and prognostication in colorectal cancer. Curr. Oncol. 28, 5356–5383 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gustavsson, B. et al. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer 14, 1–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Kopetz, S. et al. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J. Clin. Oncol. 27, 3677–3683 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pastorino, U. et al. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. J. Thorac. Cardiovasc. Surg. 113, 37–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Lipsyc, M. & Yaeger, R. Impact of somatic mutations on patterns of metastasis in colorectal cancer. J. Gastrointest. Oncol. 6, 645–649 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Yaeger, R. et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 33, 125–136.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moertel, C. G. et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N. Engl. J. Med. 322, 352–358 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Varghese, A. Chemotherapy for stage II colon cancer. Clin. Colon. Rectal Surg. 28, 256–261 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. André, T. et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J. Clin. Oncol. 33, 4176–4187 (2015).

    Article  PubMed  Google Scholar 

  24. Tie, J. et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N. Engl. J. Med. 386, 2261–2272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kotani, D. et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat. Med. 29, 127–134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Birkbak, N. J. & McGranahan, N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37, 8–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martínez-Jiménez, F. et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 618, 333–341 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holch, J. W., Ricard, I., Stintzing, S., Modest, D. P. & Heinemann, V. The relevance of primary tumour location in patients with metastatic colorectal cancer: a meta-analysis of first-line clinical trials. Eur. J. Cancer 70, 87–98 (2017).

    Article  PubMed  Google Scholar 

  34. Sartore-Bianchi, A. et al. Central nervous system as possible site of relapse in ERBB2-positive metastatic colorectal cancer. JAMA Oncol. 6, 927 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Strickler, J. H., Yoshino, T., Graham, R. P., Siena, S. & Bekaii-Saab, T. Diagnosis and treatment of ERBB2-positive metastatic colorectal cancer. JAMA Oncol. 8, 760 (2022).

    Article  PubMed  Google Scholar 

  36. Schell, M. J. et al. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nat. Commun. 7, 1–12 (2016).

    Article  Google Scholar 

  37. Elez, E. et al. RNF43 mutations predict response to anti-BRAF/EGFR combinatory therapies in BRAFV600E metastatic colorectal cancer. Nat. Med. 28, 2162–2170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parsons, M. J., Tammela, T. & Dow, L. E. WNT as a driver and dependency in cancer. Cancer Discov. 11, 2413–2429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muzny, D. M. et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  CAS  Google Scholar 

  40. Fujii, M. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Fumagalli, A. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc. Natl Acad. Sci. USA 114, E2357–E2364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17, 1225–1227 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Van De Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. O’Rourke, K. P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Roper, J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35, 569–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457–462 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naxerova, K. et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 357, 55–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reiter, J. G. et al. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nat. Genet. 52, 692–700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ryser, M. D., Min, B. H., Siegmund, K. D. & Shibata, D. Spatial mutation patterns as markers of early colorectal tumor cell mobility. Proc. Natl Acad. Sci. USA 115, 5774–5779 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bretthauer, M. et al. Effect of colonoscopy screening on risks of colorectal cancer and related death. N. Engl. J. Med. 387, 1547–1556 (2022).

    Article  PubMed  Google Scholar 

  56. Dang, H. X. et al. The clonal evolution of metastatic colorectal cancer. Sci. Adv. 6, eaay9691 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kok, S. Y. et al. Malignant subclone drives metastasis of genetically and phenotypically heterogenous cell clusters through fibrotic niche generation. Nat. Commun. 12, 863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheung, K. J. & Ewald, A. J. A collective route to metastasis: seeding by tumor cell clusters. Science 352, 167–169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Comen, E., Norton, L. & Massagué, J. Clinical implications of cancer self-seeding. Nat. Rev. Clin. Oncol. 8, 369–377 (2011).

    Article  PubMed  Google Scholar 

  60. Campbell, K. et al. Collective cell migration and metastases induced by an epithelial-to-mesenchymal transition in Drosophila intestinal tumors. Nat. Commun. 10, 2311 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cañellas-Socias, A. et al. Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells. Nature 611, 603–613 (2022).

    Article  PubMed  Google Scholar 

  62. Massagué, J. & Ganesh, K. Metastasis-initiating cells and ecosystems. Cancer Discov. 11, 971–994 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. André, T. et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J. Clin. Oncol. 27, 3109–3116 (2009).

    Article  PubMed  Google Scholar 

  64. Nors, J., Iversen, L. H., Erichsen, R., Gotschalck, K. A. & Andersen, C. L. Incidence of recurrence and time to recurrence in stage I to III colorectal cancer. JAMA Oncol. 10, 54–62 (2024).

    Article  PubMed  Google Scholar 

  65. Engstrand, J., Strömberg, C., Nilsson, H., Freedman, J. & Jonas, E. Synchronous and metachronous liver metastases in patients with colorectal cancer – towards a clinically relevant definition. World J. Surg. Oncol. 17, 228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mizuno, T. et al. SMAD4 gene mutation predicts poor prognosis in patients undergoing resection for colorectal liver metastases. Eur. J. Surg. Oncol. 44, 684–692 (2018).

    Article  PubMed  Google Scholar 

  67. Álvarez-Varela, A. et al. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. Nat. Cancer 3, 1052–1070 (2022).

    Article  PubMed  Google Scholar 

  68. Gerstberger, S., Jiang, Q. & Ganesh, K. Metastasis. Cell 186, 1564–1579 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith, H. A. & Kang, Y. Determinants of organotropic metastasis. Annu. Rev. Cancer Biol. 1, 403–423 (2017).

    Article  Google Scholar 

  70. Font-Clos, F., Zapperi, S. & La Porta, C. A. M. Blood flow contributions to cancer metastasis. iScience 23, 101073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Denève, E. et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin. Chem. 59, 1384–1392 (2013).

    Article  PubMed  Google Scholar 

  72. Tsilimigras, D. I. et al. Liver metastases. Nat. Rev. Dis. Prim. 7, 27 (2021).

    Article  PubMed  Google Scholar 

  73. Riihimaki, M., Hemminki, A., Sundquist, J. & Hemminki, K. Patterns of metastasis in colon and rectal cancer. Sci. Rep. 6, 29765 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wei, Q. et al. Multiregion whole-exome sequencing of matched primary and metastatic tumors revealed genomic heterogeneity and suggested polyclonal seeding in colorectal cancer metastasis. Ann. Oncol. 28, 2135–2141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gassmann, P., Hemping-Bovenkerk, A., Mees, S. T. & Haier, J. Metastatic tumor cell arrest in the liver-lumen occlusion and specific adhesion are not exclusive. Int. J. Colorectal Dis. 24, 851–858 (2009).

    Article  PubMed  Google Scholar 

  76. Haier, J., Korb, T., Hotz, B., Spiegel, H.-U. & Senninger, N. An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J. Gastrointest. Surg. 7, 507–515 (2003).

    Article  PubMed  Google Scholar 

  77. Brodt, P. et al. Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int. J. Cancer 71, 612–619 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Khatib, A.-M., Fallavollita, L., Wancewicz, E. V., Monia, B. P. & Brodt, P. Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res. 62, 5393–5398 (2002).

    CAS  PubMed  Google Scholar 

  79. Nakamori, S. et al. Involvement of carbohydrate antigen sialyl Lewisx in colorectal cancer metastasis. Dis. Colon. Rectum 40, 420–431 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Timmers, M. et al. Interactions between rat colon carcinoma cells and Kupffer cells during the onset of hepatic metastasis. Int. J. Cancer 112, 793–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Matsumura, H. et al. Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage. Int. J. Oncol. 45, 2303–2310 (2014).

    Article  PubMed  Google Scholar 

  82. Urosevic, J. et al. Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH. Nat. Cell Biol. 16, 685–694 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Sonoshita, M. et al. Promotion of colorectal cancer invasion and metastasis through activation of NOTCH–DAB1–ABL–RHOGEF protein TRIO. Cancer Discov. 5, 198–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Sonoshita, M. et al. Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell 19, 125–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Giannou, A. D. et al. Tissue resident iNKT17 cells facilitate cancer cell extravasation in liver metastasis via interleukin-22. Immunity 56, 125–142.e12 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Franko, J. et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase III trials N9741 and N9841. J. Clin. Oncol. 30, 263–267 (2012).

    Article  PubMed  Google Scholar 

  87. Franko, J. et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 17, 1709–1719 (2016).

    Article  PubMed  Google Scholar 

  88. Bootsma, S., Bijlsma, M. F. & Vermeulen, L. The molecular biology of peritoneal metastatic disease. EMBO Mol. Med. 15, e15914 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Enblad, M., Graf, W. & Birgisson, H. Risk factors for appendiceal and colorectal peritoneal metastases. Eur. J. Surg. Oncol. 44, 997–1005 (2018).

    Article  PubMed  Google Scholar 

  90. Demuytere, J., Ernst, S., van Ovost, J., Cosyns, S. & Ceelen, W. The tumor immune microenvironment in peritoneal carcinomatosis. Int. Rev. Cell Mol. Biol. 371, 63–95 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Lenos, K. J. et al. Molecular characterization of colorectal cancer related peritoneal metastatic disease. Nat. Commun. 13, 4443 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Laoukili, J. et al. Peritoneal metastases from colorectal cancer belong to Consensus Molecular Subtype 4 and are sensitised to oxaliplatin by inhibiting reducing capacity. Br. J. Cancer 126, 1824–1833 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Househam, J. et al. Phenotypic plasticity and genetic control in colorectal cancer evolution. Nature 611, 744–753 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Joanito, I. et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat. Genet. 54, 963–975 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Lenos, K. J. et al. Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nat. Cell Biol. 20, 1193–1202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Medema, J. P. & Vermeulen, L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474, 318–326 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. De Sousa e Melo, F. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017).

    Article  PubMed  Google Scholar 

  99. Fumagalli, A. et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell 26, 569–578.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Heinz, M. C. et al. Liver colonization by colorectal cancer metastases requires YAP-controlled plasticity at the micrometastatic stage. Cancer Res. 82, 1953–1968 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ganesh, K. et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nat. Cancer 1, 28–45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Barry, E. R. et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106–110 (2013).

    Article  PubMed  Google Scholar 

  105. Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ohara, T. E., Colonna, M. & Stappenbeck, T. S. Adaptive differentiation promotes intestinal villus recovery. Dev. Cell 57, 166–179.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nusse, Y. M. et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559, 109–113 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pikkupeura, L. M. et al. Transcriptional and epigenomic profiling identifies YAP signaling as a key regulator of intestinal epithelium maturation. Sci. Adv. 9, eadf9460 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Guiu, J. et al. Tracing the origin of adult intestinal stem cells. Nature 570, 107–111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mustata, R. C. et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 5, 421–432 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Ohta, Y. et al. Cell-matrix interface regulates dormancy in human colon cancer stem cells. Nature 608, 784–794 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Solé, L. et al. P53 wild-type colorectal cancer cells that express a fetal gene signature are associated with metastasis and poor prognosis. Nat. Commun. 13, 2866 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lupo, B. et al. Colorectal cancer residual disease at maximal response to EGFR blockade displays a druggable Paneth cell-like phenotype. Sci. Transl. Med. 12, eaax8313 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Leach, J. D. G. et al. Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis. Nat. Commun. 12, 3464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Martinez-Ordoñez, A. et al. Hyaluronan driven by epithelial aPKC deficiency remodels the microenvironment and creates a vulnerability in mesenchymal colorectal cancer. Cancer Cell 41, 252–271.e9 (2023).

    Article  PubMed  Google Scholar 

  117. Vasquez, E. G. et al. Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell Stem Cell 29, 1213–1228.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Ramos Zapatero, M. et al. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 186, 5606–5619.e24 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Moorman, A. R. et al. Progressive plasticity during colorectal cancer metastasis. Preprint at bioRxiv https://doi.org/10.1101/2023.08.18.553925 (2023).

  120. Qin, X. et al. An oncogenic phenoscape of colonic stem cell polarization. Cell 186, 5554–5568.e18 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Azzolin, L. et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Cheung, P. et al. Regenerative reprogramming of the intestinal stem cell state via Hippo signaling suppresses metastatic colorectal cancer. Cell Stem Cell 27, 590–604.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Latacz, E. et al. Histopathological growth patterns of liver metastasis: updated consensus guidelines for pattern scoring, perspectives and recent mechanistic insights. Br. J. Cancer 127, 988–1013 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Frentzas, S. et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat. Med. 22, 1294–1302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nierop, P. M. H. et al. Preoperative systemic chemotherapy alters the histopathological growth patterns of colorectal liver metastases. J. Pathol. Clin. Res. 8, 48–64 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Rubbia-Brandt, L. et al. Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery. Ann. Oncol. 18, 299–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Messaoudi, N. et al. Prognostic implications of adaptive immune features in MMR-proficient colorectal liver metastases classified by histopathological growth patterns. Br. J. Cancer 126, 1329–1338 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stremitzer, S. et al. Immune phenotype and histopathological growth pattern in patients with colorectal liver metastases. Br. J. Cancer 122, 1518–1524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liang, J. Y. et al. Histopathological growth patterns correlate with the immunoscore in colorectal cancer liver metastasis patients after hepatectomy. Cancer Immunol. Immunother. 69, 2623–2634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Liu, Y. et al. Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell 40, 424–437.e5 (2022).

    Article  PubMed  Google Scholar 

  132. Che, L. H. et al. A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy. Cell Discov. 7, 80 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang, F. et al. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. Sci. Adv. 9, eadf5464 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Friedman, E. et al. High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol. Biomark. Prev. 4, 549–554 (1995).

    CAS  Google Scholar 

  135. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P. & De Carvalho, D. D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9, 4692 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tauriello, D. V. F., Sancho, E. & Batlle, E. Overcoming TGFβ-mediated immune evasion in cancer. Nat. Rev. Cancer 22, 25–44 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Krishnamurty, A. T. et al. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148–154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nicolas-Boluda, A. & Donnadieu, E. Obstacles to T cell migration in the tumor microenvironment. Comp. Immunol. Microbiol. Infect. Dis. 63, 22–30 (2019).

    Article  PubMed  Google Scholar 

  143. Wolf, K., Müller, R., Borgmann, S., Bröcker, E.-B. & Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sadjadi, Z., Zhao, R., Hoth, M., Qu, B. & Rieger, H. Migration of cytotoxic T lymphocytes in 3D collagen matrices. Biophys. J. 119, 2141–2152 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shen, Y. et al. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell 37, 800–817.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Linares, J. et al. Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes colorectal cancer progression and resistance to therapy. Nat. Commun. 14, 746 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Lee, H. O. et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat. Genet. 52, 594–603 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Kobayashi, H. et al. The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology 162, 890–906 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Heichler, C. et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut 69, 1269–1282 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Koncina, E. et al. IL1R1+ cancer-associated fibroblasts drive tumor development and immunosuppression in colorectal cancer. Nat. Commun. 14, 4251 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kobayashi, H. et al. The balance of stromal BMP signaling mediated by GREM1 and ISLR drives colorectal carcinogenesis. Gastroenterology 160, 1224–1239.e30 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Khaliq, A. M. et al. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol. 23, 113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nicolas, A. M. et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell 40, 168–184.e13 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Bhattacharjee, S. et al. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Invest. 131, e146987 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hu, X. et al. Prediction of hepatic metastasis and relapse in colorectal cancers based on concordance analyses with liver fibrosis scores. Clin. Transl. Med. 9, e13 (2020).

    Article  Google Scholar 

  160. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Dolcetti, R. et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am. J. Pathol. 154, 1805–1813 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Popat, S., Hubner, R. & Houlston, R. S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 23, 609–618 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Overman, M. J. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 18, 1182–1191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. André, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    Article  PubMed  Google Scholar 

  168. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Chalabi, M. et al. Neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: the NICHE-2 study [abstract LBA7]. Ann. Oncol. 33 (Suppl. 7), S1389 (2022).

    Article  Google Scholar 

  170. Cercek, A. et al. PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N. Engl. J. Med. 386, 2363–2376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Galon, J. J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Pagès, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    Article  PubMed  Google Scholar 

  174. Pagès, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    Article  PubMed  Google Scholar 

  175. Mlecnik, B. et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci. Transl. Med. 8, 327ra26 (2016).

    Article  PubMed  Google Scholar 

  176. Berghoff, A. S. et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology 5, e1057388 (2016).

    Article  PubMed  Google Scholar 

  177. Mlecnik, B. et al. Integrative analyses of colorectal cancer show Immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Hurtado, C. G., Wan, F., Housseau, F. & Sears, C. L. Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer. Gastroenterology 155, 1706–1715 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Van den Eynde, M. et al. The link between the multiverse of immune microenvironments in metastases and the survival of colorectal cancer patients. Cancer Cell 34, 1012–1026.e3 (2018).

    Article  PubMed  Google Scholar 

  180. Angelova, M. et al. Evolution of metastases in space and time under immune selection. Cell 175, 751–765.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Crisafulli, G. et al. Temozolomide treatment alters mismatch repair and boosts mutational burden in tumor and blood of colorectal cancer patients. Cancer Discov. 12, 1656–1675 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Amodio, V. et al. Genetic and pharmacological modulation of DNA mismatch repair heterogeneous tumors promotes immune surveillance. Cancer Cell 41, 196–209.e5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Revel, M., Sautès-Fridman, C., Fridman, W.-H. & Roumenina, L. T. C1q+ macrophages: passengers or drivers of cancer progression. Trends Cancer 8, 517–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Sathe, A. et al. Colorectal cancer metastases in the liver establish immunosuppressive spatial networking between tumor-associated SPP1+ macrophages and fibroblasts. Clin. Cancer Res. 29, 244–260 (2023).

    Article  CAS  PubMed  Google Scholar 

  186. Qi, J. et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ozato, Y. et al. Spatial and single-cell transcriptomics decipher the cellular environment containing HLA-G+ cancer cells and SPP1+ macrophages in colorectal cancer. Cell Rep. 42, 111929 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Zheng, W. et al. Tumor-associated neutrophils in colorectal cancer development, progression and immunotherapy. Cancers 14, 4755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Singhal, S. et al. Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30, 120–135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Ogawa, R. et al. Loss of Smad4 promotes colorectal cancer progression by recruiting tumor-associated neutrophils via the CXCL1/8–CXCR2 axis. Clin. Cancer Res. 25, 2887–2899 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Yamamoto, T. et al. Loss of SMAD4 promotes lung metastasis of colorectal cancer by accumulation of CCR1+ tumor-associated neutrophils through CCL15-CCR1 axis. Clin. Cancer Res. 23, 833–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Jackstadt, R. et al. Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 36, 319–336.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lepsenyi, M. et al. CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells. Clin. Exp. Metastasis 38, 401–410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Liao, W. et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell 35, 559–572.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Germann, M. et al. Neutrophils suppress tumor‐infiltrating T cells in colon cancer via matrix metalloproteinase‐mediated activation of TGFβ. EMBO Mol. Med. 12, e10681 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Tian, S. et al. Tumour-associated neutrophils secrete AGR2 to promote colorectal cancer metastasis via its receptor CD98hc–xCT. Gut 71, 2489–2501 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Itatani, Y. et al. Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Proc. Natl Acad. Sci. USA 117, 21598–21608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Yahagi, M. et al. Smoking is a risk factor for pulmonary metastasis in colorectal cancer. Colorectal Dis. 19, O322–O328 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Bertocchi, A. et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell 39, 708–724.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Peuker, K. et al. Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat. Med. 22, 506–515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Roelands, J. et al. An integrated tumor, immune and microbiome atlas of colon cancer. Nat. Med. 29, 1273–1286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Peuker, K. et al. Microbiota-dependent activation of the myeloid calcineurin-NFAT pathway inhibits B7H3- and B7H4-dependent anti-tumor immunity in colorectal cancer. Immunity 55, 701–717.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Sahin, I. H., Ciombor, K. K., Diaz, L. A., Yu, J. & Kim, R. Immunotherapy for microsatellite stable colorectal cancers: challenges and novel therapeutic avenues. Am. Soc. Clin. Oncol. Educ. Book. 42, 242–253 (2022).

    Article  Google Scholar 

  209. Fukuoka, S. et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J. Clin. Oncol. 38, 2053–2061 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Fakih, M. et al. Immunotherapy response in microsatellite stable metastatic colorectal cancer is influenced by site of metastases. Eur. J. Cancer 196, 113437 (2024).

    Article  CAS  PubMed  Google Scholar 

  211. Chen, E. X. et al. Liver metastases and immune checkpoint inhibitor efficacy in patients with refractory metastatic colorectal cancer: a secondary analysis of a randomized clinical trial. JAMA Netw. Open. 6, e2346094 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Yu, J. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 27, 152–164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lee, J. C. et al. Regulatory T cell control of systemic immunity and immunotherapy response in liver metastasis. Sci. Immunol. 5, eaba0759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bando, H., Ohtsu, A. & Yoshino, T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 20, 306–322 (2023).

    Article  CAS  PubMed  Google Scholar 

  215. Lote, H., Starling, N., Pihlak, R. & Gerlinger, M. Advances in immunotherapy for MMR proficient colorectal cancer. Cancer Treat. Rev. 111, 102480 (2022).

    Article  PubMed  Google Scholar 

  216. Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Huang, A. C. et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat. Med. 25, 454–461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Derksen, J. W. G. et al. The Prospective Dutch Colorectal Cancer (PLCRC) cohort: real-world data facilitating research and clinical care. Sci. Rep. 11, 3923 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Meguid, R. A., Slidell, M. B., Wolfgang, C. L., Chang, D. C. & Ahuja, N. Is there a difference in survival between right- versus left-sided colon cancers? Ann. Surg. Oncol. 15, 2388–2394 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Alese, O. B. et al. Predictive and prognostic effects of primary tumor size on colorectal cancer survival. Front. Oncol. 11, 728076 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Liu, Y. et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33, 721–735.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Birgin, E. et al. Prognostic value of disease-free interval in colorectal cancer: is it time? Eur. J. Surg. Oncol. 48, 2032–2038 (2022).

    Article  PubMed  Google Scholar 

  224. Väyrynen, V. et al. Incidence and management of patients with colorectal cancer and synchronous and metachronous colorectal metastases: a population-based study. BJS Open. 4, 685–692 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Hugen, N., van de Velde, C. J. H., de Wilt, J. H. W. & Nagtegaal, I. D. Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann. Oncol. 25, 651–657 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. De Sousa E Melo, F. et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 19, 614–618 (2013).

    Article  PubMed  Google Scholar 

  227. Marisa, L. et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 10, e1001453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Sadanandam, A. et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 19, 619–625 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Piskol, R. et al. A clinically applicable gene-expression classifier reveals intrinsic and extrinsic contributions to consensus molecular subtypes in primary and metastatic colon cancer. Clin. Cancer Res. 25, 4431–4442 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Eide, P. W. et al. Metastatic heterogeneity of the consensus molecular subtypes of colorectal cancer. NPJ Genom. Med. 6, 59 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Moosavi, S. H. et al. De novo transcriptomic subtyping of colorectal cancer liver metastases in the context of tumor heterogeneity. Genome Med. 13, 143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Gengenbacher, N., Singhal, M. & Augustin, H. G. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat. Rev. Cancer 17, 751–765 (2017).

    Article  CAS  PubMed  Google Scholar 

  235. Jackstadt, R. & Sansom, O. J. Mouse models of intestinal cancer. J. Pathol. 238, 141–151 (2016).

    Article  PubMed  Google Scholar 

  236. Amirkhah, R. et al. MmCMS: mouse models’ consensus molecular subtypes of colorectal cancer. Br. J. Cancer 128, 1333–1343 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Fumagalli, A. et al. A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression. Nat. Protoc. 13, 235–247 (2018).

    Article  CAS  PubMed  Google Scholar 

  238. Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of all members of the Batlle Laboratory. E.B. receives support from ERC (ERC AdvG 884623), AGAUR-SGR1278, Spanish Ministry of Science PID2020-119917RB-I00, IMI-PERSIST-SEQ, and AECC (GEACC19006BAT).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. E.B. and A.C.-S. contributed substantially to conceptualization of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Adrià Cañellas-Socias or Eduard Batlle.

Ethics declarations

Competing interests

E.B. is author in a patent related to TGFβ inhibitors. E.B. is author in a patent describing bispecific antibodies to target cancer stem cells. The laboratory of E.B. has received research funding from MERUS and INCYTE. E.B. has received honoraria for consulting from Genentech. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Florian Greten, Jacco van Rheenen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NCT03026140: https://clinicaltrials.gov/study/NCT03026140

NCT04165772: https://clinicaltrials.gov/study/NCT04165772

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cañellas-Socias, A., Sancho, E. & Batlle, E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol (2024). https://doi.org/10.1038/s41575-024-00934-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-024-00934-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing