Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Key points
-
Fermented foods provide a unique combination of beneficial microorganisms and bioactive compounds that can contribute to gastrointestinal health in a variety of ways.
-
A better understanding of fermented foods, their associated gastrointestinal health benefits and the underlying mechanisms has benefited from a greater appreciation of the unique biological and chemical composition of different fermented foods.
-
Fermentation can be utilized to reduce or even remove undesirable compounds present in food substrates, such as FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) or gluten, to aid patients with intolerances that influence the gut.
-
Fermented foods represent a safe way for increased microbial exposure with a view to improving gut health and potentially reducing the risk of chronic gut disease.
-
Further research into fermented foods, especially involving randomized and controlled human trials, is required.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
18 December 2023
In the version of this article initially published, exponent values did not appear in Table 1, footnote b, and are now restored in the HTML and PDF versions of the article.
References
Afzaal, M. et al. Nutritional and ethnomedicinal scenario of Koumiss: a concurrent review. Food Sci. Nutr. 9, 6421–6428 (2021).
Kim, B. H. & Gadd, G. M. Prokaryotic Metabolism and Physiology 2nd edn (Cambridge Univ. Press, 2019).
Mackowiak, P. A. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front. Public. Health 1, 52 (2013).
Tamang, J. P. et al. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 19, 184–217 (2020).
Marco, M. L. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 18, 196–208 (2021).
Marco, M. L. et al. Health benefits of fermented foods: microbiota and beyond. Curr. Opin. Biotechnol. 44, 94–102 (2017).
Obafemi, Y. D. et al. African fermented foods: overview, emerging benefits, and novel approaches to microbiome profiling. NPJ Sci. Food 6, 15 (2022).
Jimenez, M. E., O’Donovan, C. M., Ullivarri, M. F. D. & Cotter, P. D. Microorganisms present in artisanal fermented food from South America. Front. Microbiol. 13, 941866 (2022).
Rezac, S., Kok, C. R., Heermann, M. & Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 9, 1785 (2018).
Gänzle, M. The periodic table of fermented foods: limitations and opportunities. Appl. Microbiol. Biotechnol. 106, 2815–2826 (2022).
Dimidi, E., Cox, S. R., Rossi, M. & Whelan, K. Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients 11, 1806 (2019).
Venturini Copetti, M. Yeasts and molds in fermented food production: an ancient bioprocess. Curr. Opin. Food Sci. 25, 57–61 (2019).
Blandino, A., Al-Aseeri, M. E., Pandiella, S. S., Cantero, D. & Webb, C. Cereal-based fermented foods and beverages. Food Res. Int. 36, 527–543 (2003).
Leeuwendaal, N. K., Stanton, C., O’Toole, P. W. & Beresford, T. P. Fermented foods, health and the gut microbiome. Nutrients 14, 1527 (2022).
Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).
Leech, J. et al. Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants. mSystems 5, e00522-20 (2020).
Pasolli, E. et al. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nat. Commun. 11, 2610 (2020).
Aslam, H. et al. Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety. Nutr. Neurosci. 23, 659–671 (2020).
Li, K. J., Burton-Pimentel, K. J., Vergères, G., Feskens, E. J. M. & Brouwer-Brolsma, E. M. Fermented foods and cardiometabolic health: definitions, current evidence, and future perspectives. Front. Nutr. 9, 976020 (2022).
Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153.e14 (2021).
Zhang, X.-F. et al. Fermented foods and metabolic outcomes in diabetes and prediabetes: a systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2023.2213770 (2023).
Melini, F., Melini, V., Luziatelli, F., Ficca, A. G. & Ruzzi, M. Health-promoting components in fermented foods: an up-to-date systematic review. Nutrients 11, 1189 (2019).
Gänzle, M. G. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. 37, 2–10 (2014).
Joye, I. Protein digestibility of cereal products. Foods 8, 199 (2019).
Chandra-Hioe, M. V., Wong, C. H. & Arcot, J. The potential use of fermented chickpea and faba bean flour as food ingredients. Plant. Foods Hum. Nutr. 71, 90–95 (2016).
Shekib, L. A. Nutritional improvement of lentils, chick pea, rice and wheat by natural fermentation. Plant. Foods Hum. Nutr. 46, 201–205 (1994).
Poutanen, K., Flander, L. & Katina, K. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol. 26, 693–699 (2009).
Deniz, E., Mora, L., Aristoy, M. C., Candoğan, K. & Toldrá, F. Free amino acids and bioactive peptides profile of Pastırma during its processing. Food Res. Int. 89, 194–201 (2016).
Shang, Y.-F. et al. Effect of lactic acid bacteria fermentation on tannins removal in Xuan Mugua fruits. Food Chem. 274, 118–122 (2019).
Jiménez, N., Esteban-Torres, M., Mancheño, J. M., de Las Rivas, B. & Muñoz, R. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl. Env. Microbiol. 80, 2991–2997 (2014).
García Méndez, M. G. et al. Application of lactic acid bacteria in fermentation processes to obtain tannases using agro-industrial wastes. Fermentation 7, 48 (2021).
Gorbach, S. L. Lactic acid bacteria and human health. Ann. Med. 22, 37–41 (1990).
Gänzle, M. G. & Salovaara, H. in Lactic Acid Bacteria (eds Vinderola, G., Ouwehand, A., Salminen, S, & von Wright, A.) 199–213 (CRC, 2019).
Katina, K. et al. Fermentation-induced changes in the nutritional value of native or germinated rye. J. Cereal Sci. 46, 348–355 (2007).
François, I. E. et al. Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br. J. Nutr. 108, 2229–2242 (2012).
Walton, G. E., Lu, C., Trogh, I., Arnaut, F. & Gibson, G. R. A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutr. J. 11, 36 (2012).
Gänzle, M. G., Loponen, J. & Gobbetti, M. Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci. Technol. 19, 513–521 (2008).
Wang, D. et al. The changes occurring in proteins during processing and storage of fermented meat products and their regulation by lactic acid bacteria. Foods 11, 2427 (2022).
Gobbetti, M., Rizzello, C. G., Di Cagno, R. & De Angelis, M. How the sourdough may affect the functional features of leavened baked goods. Food Microbiol. 37, 30–40 (2014).
Gobbetti, M., Cagno, R. D. & De Angelis, M. Functional microorganisms for functional food quality. Crit. Rev. Food Sci. Nutr. 50, 716–727 (2010).
Nyyssölä, A., Ellilä, S., Nordlund, E. & Poutanen, K. Reduction of FODMAP content by bioprocessing. Trends Food Sci. Technol. 99, 257–272 (2020).
Xu, Y., Li, L., Xia, W., Zang, J. & Gao, P. The role of microbes in free fatty acids release and oxidation in fermented fish paste. LWT 101, 323–330 (2018).
Savaiano, D. A. Lactose digestion from yogurt: mechanism and relevance. Am. J. Clin. Nutr. 99, 1251S–1255S (2014).
Kurosawa, Y. et al. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci. Rep. 5, 11601 (2015).
Lee, B. H., Lai, Y. S. & Wu, S. C. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea. J. Food Drug. Anal. 23, 750–757 (2015).
Weng, Y., Yao, J., Sparks, S. & Wang, K. Y. Nattokinase: an oral antithrombotic agent for the prevention of cardiovascular disease. Int. J. Mol. Sci. 18, 523 (2017).
Fujita, M. et al. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. Biol. Pharm. Bull. 18, 1387–1391 (1995).
Fujita, M. et al. Transport of nattokinase across the rat intestinal tract. Biol. Pharm. Bull. 18, 1194–1196 (1995).
Fujita, M. et al. Antihypertensive effects of continuous oral administration of nattokinase and its fragments in spontaneously hypertensive rats. Biol. Pharm. Bull. 34, 1696–1701 (2011).
Jensen, G. S., Lenninger, M., Ero, M. P. & Benson, K. F. Consumption of nattokinase is associated with reduced blood pressure and von Willebrand factor, a cardiovascular risk marker: results from a randomized, double-blind, placebo-controlled, multicenter North American clinical trial. Integr. Blood Press. Control. 9, 95–104 (2016).
Ero, M. P., Ng, C. M., Mihailovski, T., Harvey, N. R. & Lewis, B. H. A pilot study on the serum pharmacokinetics of nattokinase in humans following a single, oral, daily dose. Altern. Ther. Health Med. 19, 16–19 (2013).
Zhou, X., Liu, L. & Zeng, X. Research progress on the utilisation of embedding technology and suitable delivery systems for improving the bioavailability of nattokinase: a review. Food Struct. 30, 100219 (2021).
Tamura, M. et al. Effects of a high-γ-polyglutamic acid-containing natto diet on liver lipids and cecal microbiota of adult female mice. Biosci. Microbiota Food Health 40, 176–185 (2021).
Kono, K. et al. Fluctuations in intestinal microbiota following ingestion of natto powder containing Bacillus subtilis var. natto SONOMONO spores: considerations using a large-scale intestinal microflora database. Nutrients 14, 3839 (2022).
Mitsui, N. et al. Effect of natto including Bacillus subtilis K-2 (spore) on defecation and fecal microbiota, and safety of excessive ingestion in healthy volunteers. Jpn. Pharmacol. Ther. 34, 135 (2006).
Martinez-Villaluenga, C., Peñas, E. & Frias, J. in Fermented Foods in Health and Disease Prevention (eds Frias, J., Martinez-Villaluenga, C. & Peñas, E) 23–47 (Academic Press, 2017).
Chaudhary, A., Bhalla, S., Patiyal, S., Raghava, G. P. S. & Sahni, G. FermFooDb: a database of bioactive peptides derived from fermented foods. Heliyon 7, e06668 (2021).
Chai, K. F., Voo, A. Y. H. & Chen, W. N. Bioactive peptides from food fermentation: a comprehensive review of their sources, bioactivities, applications, and future development. Compr. Rev. Food Sci. Food Saf. 19, 3825–3885 (2020).
Guo, Q., Chen, P. & Chen, X. Bioactive peptides derived from fermented foods: preparation and biological activities. J. Funct. Foods 101, 105422 (2023).
Murray, B. A. & FitzGerald, R. J. Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr. Pharm. Des. 13, 773–791 (2007).
López-Fandiño, R., Otte, J. & van Camp, J. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int. Dairy. J. 16, 1277–1293 (2006).
Gouda, A. S., Adbelruhman, F. G., Sabbah Alenezi, H. & Mégarbane, B. Theoretical benefits of yogurt-derived bioactive peptides and probiotics in COVID-19 patients–a narrative review and hypotheses. Saudi J. Biol. Sci. 28, 5897–5905 (2021).
Nakamura, T. et al. Casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro improves central blood pressure and arterial stiffness in hypertensive subjects: a randomized, double-blind, placebo-controlled trial. Atherosclerosis 219, 298–303 (2011).
Jäkälä, P. & Vapaatalo, H. Antihypertensive peptides from milk proteins. Pharmaceuticals 3, 251–272 (2010).
Tonolo, F. et al. Identification of new peptides from fermented milk showing antioxidant properties: mechanism of action. Antioxidants 9, 177 (2020).
Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).
Hegarty, J. W., Guinane, C. M., Ross, R. P., Hill, C. & Cotter, P. D. Bacteriocin production: a relatively unharnessed probiotic trait? F1000Res 5, 2587 (2016).
Simons, A., Alhanout, K. & Duval, R. E. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 8, 639 (2020).
Bali, V., Panesar, P. S., Bera, M. B. & Kennedy, J. F. Bacteriocins: recent trends and potential applications. Crit. Rev. Food Sci. Nutr. 56, 817–834 (2016).
Donia, M. S. & Fischbach, M. A. Small molecules from the human microbiota. Science 349, 1254766 (2015).
Dobson, A., Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocin production: a probiotic trait. Appl. Env. Microbiol. 78, 1–6 (2012).
Heeney, D. D. et al. Lactobacillus plantarum bacteriocin is associated with intestinal and systemic improvements in diet-induced obese mice and maintains epithelial barrier integrity in vitro. Gut Microbes 10, 382–397 (2019).
Huang, F. et al. Bacteriocins: potential for human health. Oxid. Med. Cell. Longev. 2021, 5518825 (2021).
Dicks, L. M. T., Dreyer, L., Smith, C. & van Staden, A. D. A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut-blood barrier? Front. Microbiol. 9, 2297 (2018).
Teng, K. et al. Food and gut originated bacteriocins involved in gut microbe-host interactions. Crit. Rev. Microbiol. 49, 515–527 (2022).
Shirako, S. et al. Pyroglutamyl leucine, a peptide in fermented foods, attenuates dysbiosis by increasing host antimicrobial peptide. NPJ Sci. Food 3, 18 (2019).
Sato, K., Shirako, S. & Wada, S. in Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Heatlth (eds Bagchi, D. & Ohia, S. E.) 255–265 (Academic Press, 2022).
Sato, K. et al. Identification of a hepatoprotective peptide in wheat gluten hydrolysate against D-galactosamine-induced acute hepatitis in rats. J. Agric. Food Chem. 61, 6304–6310 (2013).
Wada, S. et al. Ingestion of low dose pyroglutamyl leucine improves dextran sulfate sodium-induced colitis and intestinal microbiota in mice. J. Agric. Food Chem. 61, 8807–8813 (2013).
Plaisancié, P. et al. A novel bioactive peptide from yoghurts modulates expression of the gel-forming MUC2 mucin as well as population of goblet cells and Paneth cells along the small intestine. J. Nutr. Biochem. 24, 213–221 (2013).
Wall, R. et al. in: Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease (eds Lyte, M. & Cryan, J. F.) 221–239 (Springer, 2014).
Ahmed, H. et al. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes 14, 2102878 (2022).
Spichak, S. et al. Mining microbes for mental health: determining the role of microbial metabolic pathways in human brain health and disease. Neurosci. Biobehav. Rev. 125, 698–761 (2021).
Salman, S., Yılmaz, C., Gökmen, V. & Özdemir, F. Effects of fermentation time and shooting period on amino acid derivatives and free amino acid profiles of tea. LWT 137, 110481 (2021).
Briguglio, M. et al. Dietary neurotransmitters: a narrative review on current knowledge. Nutrients 10, 591 (2018).
Jang, M. et al. Genetic background behind the amino acid profiles of fermented soybeans produced by four Bacillus spp. J. Microbiol. Biotechnol. 31, 447–455 (2021).
Herraiz, T. Tetrahydro-beta-carbolines, potential neuroactive alkaloids, in chocolate and cocoa. J. Agric. Food Chem. 48, 4900–4904 (2000).
Baranowska, I. & Płonka, J. Simultaneous determination of biogenic amines and methylxanthines in foodstuff – sample preparation with HPLC-DAD-FL analysis. Food Anal. Methods 8, 963–972 (2015).
Yılmaz, C. & Gökmen, V. Determination of tryptophan derivatives in kynurenine pathway in fermented foods using liquid chromatography tandem mass spectrometry. Food Chem. 243, 420–427 (2018).
Yılmaz, C. & Gökmen, V. Kinetic evaluation of the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using Saccharomyces pastorianus and Saccharomyces cerevisiae. Food Chem. 297, 124975 (2019).
Yılmaz, C. & Gökmen, V. Formation of amino acid derivatives in white and red wines during fermentation: effects of non-Saccharomyces yeasts and Oenococcus oeni. Food Chem. 343, 128415 (2021).
Rodriguez-Naranjo, M. I., Gil-Izquierdo, A., Troncoso, A. M., Cantos-Villar, E. & Garcia-Parrilla, M. C. Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chem. 126, 1608–1613 (2011).
Cui, Y., Miao, K., Niyaphorn, S. & Qu, X. Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review. Int. J. Mol. Sci. 21, 995 (2020).
Yılmaz, C. & Gökmen, V. Neuroactive compounds in foods: occurrence, mechanism and potential health effects. Food Res. Int. 128, 108744 (2020).
Turska, M. et al. Presence of kynurenic acid in alcoholic beverages–is this good news, or bad news? Med. Hypotheses 122, 200–205 (2019).
Loh, L. X., Ng, D. H. J., Toh, M., Lu, Y. & Liu, S. Q. Targeted and nontargeted metabolomics of amino acids and bioactive metabolites in probiotic-fermented unhopped beers using liquid chromatography high-resolution mass spectrometry. J. Agric. Food Chem. 69, 14024–14036 (2021).
Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. 108, 16050–16055 (2011).
Breit, S., Kupferberg, A., Rogler, G. & Hasler, G. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front. Psychiatry 9, 44 (2018).
Nakamura, U. et al. Dietary gamma-aminobutyric acid (GABA) induces satiation by enhancing the postprandial activation of vagal afferent nerves. Nutrients 14, 2492 (2022).
Hepsomali, P., Groeger, J. A., Nishihira, J. & Scholey, A. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review. Front. Neurosci. 14, 923 (2020).
Kim, B. et al. A review of fermented foods with beneficial effects on brain and cognitive function. Prev. Nutr. Food Sci. 21, 297–309 (2016).
León-Ponte, M., Ahern, G. P. & O’Connell, P. J. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109, 3139–3146 (2007).
Besser, M. J., Ganor, Y. & Levite, M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFα or both. J. Neuroimmunol. 169, 161–171 (2005).
Dionisio, L., José De Rosa, M., Bouzat, C. & Esandi Mdel, C. An intrinsic GABAergic system in human lymphocytes. Neuropharmacology 60, 513–519 (2011).
Miyajima, M. Amino acids: key sources for immunometabolites and immunotransmitters. Int. Immunol. 32, 435–446 (2020).
Levite, M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr. Opin. Pharmacol. 8, 460–471 (2008).
Ruth, M. R. & Field, C. J. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J. Anim. Sci. Biotechnol. 4, 27 (2013).
Spano, G. et al. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 64, S95–S100 (2010).
Linares, D. M. et al. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem. 197, 658–663 (2016).
Shalaby, A. R. Significance of biogenic amines to food safety and human health. Food Res. Int. 29, 675–690 (1996).
Del Rio, B. et al. The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Sci. Rep. 9, 120 (2019).
ten Brink, B., Damink, C., Joosten, H. M. L. J. & Huis in ‘t Veld, J. H. J. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11, 73–84 (1990).
Warthesen, J. J., Scanlan, R. A., Bills, D. D. & Libbey, L. M. Formation of heterocyclic N-nitrosamines from the reaciton of nitrite and selected primary diamines and amino acids. J. Agric. Food Chem. 23, 898–902 (1975).
Lyte, M. The biogenic amine tyramine modulates the adherence of Escherichia coli O157:H7 to intestinal mucosa. J. Food Prot. 67, 878–883 (2004).
Crittenden, R. G., Martinez, N. R. & Playne, M. J. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int. J. Food Microbiol. 80, 217–222 (2003).
Saubade, F., Hemery, Y. M., Guyot, J. P. & Humblot, C. Lactic acid fermentation as a tool for increasing the folate content of foods. Crit. Rev. Food Sci. Nutr. 57, 3894–3910 (2017).
LeBlanc, J. G. et al. B-group vitamin production by lactic acid bacteria–current knowledge and potential applications. J. Appl. Microbiol. 111, 1297–1309 (2011).
Russo, P. et al. Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Appl. Microbiol. Biotechnol. 98, 3691–3700 (2014).
Hossain, K. S., Amarasena, S. & Mayengbam, S. B vitamins and their roles in gut health. Microorganisms 10, 1168 (2022).
Williams, E. A., Rumsey, R. D. & Powers, H. J. Cytokinetic and structural responses of the rat small intestine to riboflavin depletion. Br. J. Nutr. 75, 315–324 (1996).
Williams, E. A., Powers, H. J. & Rumsey, R. D. Morphological changes in the rat small intestine in response to riboflavin depletion. Br. J. Nutr. 73, 141–146 (1995).
Lee, E. S., Corfe, B. M. & Powers, H. J. Riboflavin depletion of intestinal cells in vitro leads to impaired energy generation and enhanced oxidative stress. Eur. J. Nutr. 52, 1513–1521 (2013).
Williams, E. A., Rumsey, R. D. & Powers, H. J. An investigation into the reversibility of the morphological and cytokinetic changes seen in the small intestine of riboflavin deficient rats. Gut 39, 220 (1996).
Zironi, E. et al. Determination of vitamin B12 in dairy products by ultra performance liquid chromatography-tandem mass spectrometry. Ital. J. Food Saf. 3, 4513 (2014).
Chamlagain, B., Edelmann, M., Kariluoto, S., Ollilainen, V. & Piironen, V. Ultra-high performance liquid chromatographic and mass spectrometric analysis of active vitamin B12 in cells of Propionibacterium and fermented cereal matrices. Food Chem. 166, 630–638 (2015).
Yongsmith, B., Kitpreechavanich, V., Tangjitjaroenkun, J. & Krusong, W. in: Functional Properties of Traditional Foods (eds Kristberg K. & Semih Ö.) 17–37 (Springer, 2016).
Berg, N. O., Dahlqvist, A., Lindberg, T., Lindstrand, K. & Nordén, Å. Morphology, dipeptidases and disaccharidases of small intestinal mucosa in vitamin B12 and folic acid deficiency. Scand. J. Haematol. 9, 167–173 (1972).
Bressenot, A. et al. Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats. Br. J. Nutr. 109, 667–677 (2013).
Manoury, E., Jourdon, K., Boyaval, P. & Fourcassié, P. Quantitative measurement of vitamin K2 (menaquinones) in various fermented dairy products using a reliable high-performance liquid chromatography method. J. Dairy. Sci. 96, 1335–1346 (2013).
Fu, X. et al. Multiple vitamin K forms exist in dairy foods. Curr. Dev. Nutr. 1, e000638 (2017).
Tarvainen, M., Fabritius, M. & Yang, B. Determination of vitamin K composition of fermented food. Food Chem. 275, 515–522 (2019).
Yanagisawa, Y. & Sumi, H. Natto Bacillus contains a large amount of water-soluble vitamin K (menaquinone-7). J. Food Biochem. 29, 267–277 (2005).
Lai, Y., Masatoshi, H., Ma, Y., Guo, Y. & Zhang, B. Role of vitamin K in intestinal health. Front. Immunol. 12, 791565 (2022).
Şanlier, N., Gökcen, B. B. & Sezgin, A. C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 59, 506–527 (2019).
Rousseau, S., Kyomugasho, C., Celus, M., Hendrickx, M. E. G. & Grauwet, T. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Crit. Rev. Food Sci. Nutr. 60, 826–843 (2020).
Nkhata, S. G., Ayua, E., Kamau, E. H. & Shingiro, J. B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 6, 2446–2458 (2018).
Ahmed, M. I., Xu, X., Sulieman, A. A., Na, Y. & Mahdi, A. A. The effect of fermentation time on in vitro bioavailability of iron, zinc, and calcium of kisra bread produced from koreeb (Dactyloctenium aegyptium) seeds flour. Microchem. J. 154, 104644 (2020).
Diaz de Barboza, G., Guizzardi, S. & Tolosa de Talamoni, N. Molecular aspects of intestinal calcium absorption. World J. Gastroenterol. 21, 7142–7154 (2015).
Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).
Samtiya, M., Aluko, R. E., Puniya, A. K. & Dhewa, T. Enhancing micronutrients bioavailability through fermentation of plant-based foods: a concise review. Fermentation 7, 63 (2021).
Guéguen, L. & Pointillart, A. The bioavailability of dietary calcium. J. Am. Coll. Nutr. 19, 119S–136S (2000).
Smith, T. M., Kolars, J. C., Savaiano, D. A. & Levitt, M. D. Absorption of calcium from milk and yogurt. Am. J. Clin. Nutr. 42, 1197–1200 (1985).
Voidarou, C. et al. Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues. Foods 10, 69 (2021).
Gänzle, M. G. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2, 106–117 (2015).
Penna, A. L. B., Paula, A., Casarotti, S. N., Diamantino, V. & Silva, L. Overview of the functional lactic acid bacteria in the fermented milk products. Benef. Microbes Fermented Funct. Foods 1, 100–154 (2015).
Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front. Cell Infect. Microbiol. 2, 86 (2012).
Kahlert, S. et al. Physiological concentration of exogenous lactate reduces antimycin a triggered oxidative stress in intestinal epithelial cell line IPEC-1 and IPEC-J2 in vitro. PLoS ONE 11, e0153135 (2016).
Sales, K. M. & Reimer, R. A. Unlocking a novel determinant of athletic performance: the role of the gut microbiota, short-chain fatty acids, and “biotics” in exercise. J. Sport. Health Sci. 12, 36–44 (2023).
Belenguer, A. et al. Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl. Env. Microbiol. 73, 6526–6533 (2007).
Jung, S., Hwang, H. & Lee, J.-H. Effect of lactic acid bacteria on phenyllactic acid production in kimchi. Food Control. 106, 106701 (2019).
Peters, A. et al. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet. 15, e1008145 (2019).
Sales-Campos, H., Souza, P. R., Peghini, B. C., da Silva, J. S. & Cardoso, C. R. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 13, 201–210 (2013).
Shekari, S. et al. Association between dietary intake of fatty acids and colorectal cancer, a case-control study. Front. Nutr. 9, 856408 (2022).
Butler, L. M. et al. Plasma fatty acids and risk of colon and rectal cancers in the Singapore Chinese Health Study. NPJ Precis. Oncol. 1, 38 (2017).
Kaewkod, T., Bovonsombut, S. & Tragoolpua, Y. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 7, 700 (2019).
Asano, T., Yuasa, K., Kunugita, K., Teraji, T. & Mitsuoka, T. Effects of gluconic acid on human faecal bacteria. Microb. Ecol. Health Dis. 7, 247–256 (1994).
Dufresne, C. & Farnworth, E. Tea, kombucha, and health: a review. Food Res. Int. 33, 409–421 (2000).
Jayabalan, R., Marimuthu, S. & Swaminathan, K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem. 102, 392–398 (2007).
Kuivanen, J., Sugai-Guérios, M. H., Arvas, M. & Richard, P. A novel pathway for fungal D-glucuronate catabolism contains an L-idonate forming 2-keto-L-gulonate reductase. Sci. Rep. 6, 26329 (2016).
Chakravorty, S. et al. Kombucha tea fermentation: microbial and biochemical dynamics. Int. J. Food Microbiol. 220, 63–72 (2016).
Bhattacharya, S., Manna, P., Gachhui, R. & Sil, P. C. D-saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling. Toxicol. Appl. Pharmacol. 267, 16–29 (2013).
Wang, Y. et al. Hepatoprotective effects of kombucha tea: identification of functional strains and quantification of functional components. J. Sci. Food Agric. 94, 265–272 (2014).
Diez, T. & Cabezas, J. A. Properties of two molecular forms of β-glucuronidase from the mollusc Littorina littorea L. Eur. J. Biochem. 93, 301–311 (1979).
Wang, K., Gan, X., Tang, X., Wang, S. & Tan, H. Determination of D-saccharic acid-1,4-lactone from brewed kombucha broth by high-performance capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 878, 371–374 (2010).
Yang, Z. et al. Symbiosis between microorganisms from kombucha and kefir: potential significance to the enhancement of kombucha function. Appl. Biochem. Biotechnol. 160, 446–455 (2010).
Kim, D. H. & Jin, Y. H. Intestinal bacterial β-glucuronidase activity of patients with colon cancer. Arch. Pharm. Res. 24, 564–567 (2001).
Steinkraus, K. H., Shapiro, K. B., Hotchkiss, J. H. & Mortlock, R. P. Investigations into the antibiotic activity of tea fungus/kombucha beverage. Acta Biotechnol. 16, 199–205 (1996).
Sreeramulu, G., Zhu, Y. & Knol, W. Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem. 48, 2589–2594 (2000).
Lim, J., Henry, C. J. & Haldar, S. Vinegar as a functional ingredient to improve postprandial glycemic control – human intervention findings and molecular mechanisms. Mol. Nutr. Food Res. 60, 1837–1849 (2016).
Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).
Vinderola, G. et al. Fermented foods: a perspective on their role in delivering biotics. Front. Microbiol. 14, 1196239 (2023).
Salmerón, I. Fermented cereal beverages: from probiotic, prebiotic and synbiotic towards nanoscience designed healthy drinks. Lett. Appl. Microbiol. 65, 114–124 (2017).
Apolinar-Valiente, R. et al. Oligosaccharides of cabernet sauvignon, syrah and monastrell red wines. Food Chem. 179, 311–317 (2015).
Nemoto, H. et al. Effects of fermented brown rice on the intestinal environments in healthy adult. J. Med. Invest. 58, 235–245 (2011).
Schwab, C., Mastrangelo, M., Corsetti, A. & Gänzle, M. Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chem. 85, 679–684 (2008).
Salazar, N., Gueimonde, M., de los Reyes-Gavilán, C. G. & Ruas-Madiedo, P. Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit. Rev. Food Sci. Nutr. 56, 1440–1453 (2016).
Hidalgo-Cantabrana, C. et al. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics Antimicrob. Proteins 4, 227–237 (2012).
Castellone, V. et al. Eating fermented: health benefits of LAB-fermented foods. Foods 10, 2639 (2021).
Lynch, K. M., Zannini, E., Coffey, A. & Arendt, E. K. Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization, and health benefits. Annu. Rev. Food Sci. Technol. 9, 155–176 (2018).
Moran, A. P. Microbial Glycobiology: Structures, Relevance and Applications (Elsevier, 2009).
Smitinont, T. et al. Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization. Int. J. Food Microbiol. 51, 105–111 (1999).
Sanni, A. I., Onilude, A. A., Ogunbanwo, S. T., Fadahunsi, I. F. & Afolabi, R. O. Production of exopolysaccharides by lactic acid bacteria isolated from traditional fermented foods in Nigeria. Eur. Food Res. Technol. 214, 405–407 (2002).
Patel, A., Prajapati, J. B., Holst, O. & Ljungh, A. Determining probiotic potential of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented food products. Food Biosci. 5, 27–33 (2014).
Seo, E.-S. et al. Synthesis of thermo- and acid-stable novel oligosaccharides by using dextransucrase with high concentration of sucrose. Enzym. Microb. Technol. 40, 1117–1123 (2007).
Tieking, M. & Gänzle, M. G. Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci. Technol. 16, 79–84 (2005).
Liu, C. F. et al. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric. 91, 2284–2291 (2011).
Oerlemans, M. M. P., Akkerman, R., Ferrari, M., Walvoort, M. T. C. & de Vos, P. Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. J. Funct. Foods 76, 104289 (2021).
Živković, M. et al. EPS-SJ exopolisaccharide produced by the strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 is involved in adhesion to epithelial intestinal cells and decrease on E. coli association to Caco-2 cells. Front. Microbiol. 7, 286 (2016).
Vinderola, G., Perdigón, G., Duarte, J., Farnworth, E. & Matar, C. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36, 254–260 (2006).
Kook, S.-Y., Lee, Y., Jeong, E.-C. & Kim, S. Immunomodulatory effects of exopolysaccharides produced by Bacillus licheniformis and Leuconostoc mesenteroides isolated from Korean kimchi. J. Funct. Foods 54, 211–219 (2019).
Zhou, X. et al. Exopolysaccharides from Lactobacillus plantarum NCU116 regulate intestinal barrier function via STAT3 signaling pathway. J. Agric. Food Chem. 66, 9719–9727 (2018).
Lim, J. et al. Antiobesity effect of exopolysaccharides isolated from kefir grains. J. Agric. Food Chem. 65, 10011–10019 (2017).
Zhang, Z. et al. Isolated exopolysaccharides from Lactobacillus rhamnosus GG alleviated adipogenesis mediated by TLR2 in mice. Sci. Rep. 6, 36083 (2016).
Choi, S. S. et al. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol. 42, 452–458 (2006).
Kim, Y., Oh, S., Yun, H. S., Oh, S. & Kim, S. H. Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett. Appl. Microbiol. 51, 123–130 (2010).
Ismail, B. & Nampoothiri, K. M. Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Biologia 68, 1041–1047 (2013).
Wang, J., Zhao, X., Tian, Z., Yang, Y. & Yang, Z. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet kefir. Carbohydr. Polym. 125, 16–25 (2015).
Zhou, J., Liu, X., Jiang, H. & Dong, M. Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis. Food Microbiol. 26, 770–775 (2009).
Maeda, H., Zhu, X., Omura, K., Suzuki, S. & Kitamura, S. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors 22, 197–200 (2004).
Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).
Gaur, G. & Gänzle, M. G. Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: novel insights into metabolic pathways and functional metabolites. Curr. Res. Food Sci. 6, 100448 (2023).
Del Rio, D. et al. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 18, 1818–1892 (2013).
Leonard, W., Zhang, P., Ying, D. & Fang, Z. Hydroxycinnamic acids on gut microbiota and health. Compr. Rev. Food Sci. Food Saf. 20, 710–737 (2021).
Leonard, W., Zhang, P., Ying, D., Adhikari, B. & Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 49, 107763 (2021).
Leonard, W., Zhang, P., Ying, D. & Fang, Z. Lignanamides: sources, biosynthesis and potential health benefits – a minireview. Crit. Rev. Food Sci. Nutr. 61, 1404–1414 (2021).
Senger, D. R., Li, D., Jaminet, S.-C. & Cao, S. Activation of the Nrf2 cell defense pathway by ancient foods: disease prevention by important molecules and microbes lost from the modern western diet. PLoS ONE 11, e0148042 (2016).
Cardoso, R. R. et al. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int. 128, 108782 (2020).
Namal Senanayake, S. P. J. Green tea extract: chemistry, antioxidant properties and food applications–a review. J. Funct. Foods 5, 1529–1541 (2013).
Tanaka, T. & Kouno, I. Oxidation of tea catechins: chemical structures and reaction mechanism. Food Sci. Technol. Res. 9, 128–133 (2003).
Corrêa, T. A. F., Rogero, M. M., Hassimotto, N. M. A. & Lajolo, F. M. The two-way polyphenols-microbiota interactions and their effects on obesity and related metabolic diseases. Front. Nutr. 6, 188 (2019).
Ozdal, T. et al. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8, 78 (2016).
Selma, M. V., Espin, J. C. & Tomas-Barberan, F. A. Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem. 57, 6485–6501 (2009).
Tombola, F. et al. Plant polyphenols inhibit VacA, a toxin secreted by the gastric pathogen Helicobacter pylori. FEBS Lett. 543, 184–189 (2003).
Moreno-Indias, I. et al. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct. 7, 1775–1787 (2016).
Puupponen‐Pimiä, R. et al. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 98, 991–1000 (2005).
Saw, C. L. et al. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food Chem. Toxicol. 72, 303–311 (2014).
Tolonen, M. et al. Plant-derived biomolecules in fermented cabbage. J. Agric. Food Chem. 50, 6798–6803 (2002).
Kim, D. & Han, G. D. in Wheat and Rice In Disease Prevention and Health: Benefits, Risks and Mechanisms of Whole Grains in Health Promotion (eds Watson, R. R., Preedy, V. R. & Zibadi, S.) 467–480 (Elsevier, 2014).
Li, W. et al. Effects of co-fermentation on the release of ferulic acid and the rheological properties of whole wheat dough. J. Cereal Sci. 111, 103669 (2023).
Kudou, S. et al. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric. Biol. Chem. 55, 2227–2233 (1991).
Al-Nakkash, L. & Kubinski, A. Soy isoflavones and gastrointestinal health. Curr. Nutr. Rep. 9, 193–201 (2020).
Wang, L.-j et al. Influences of processing and NaCl supplementation on isoflavone contents and composition during douchi manufacturing. Food Chem. 101, 1247–1253 (2007).
Chiou, R. Y. & Cheng, S. L. Isoflavone transformation during soybean koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl. J. Agric. Food Chem. 49, 3656–3660 (2001).
Lee, Y.-W., Kim, J.-D., Zheng, J. & Row, K. H. Comparisons of isoflavones from Korean and Chinese soybean and processed products. Biochem. Eng. J. 36, 49–53 (2007).
Nakajima, N., Nozaki, N., Ishihara, K., Ishikawa, A. & Tsuji, H. Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isoflavone-enriched tempeh. J. Biosci. Bioeng. 100, 685–687 (2005).
Izumi, T. et al. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130, 1695–1699 (2000).
Marhuenda-Muñoz, M. et al. Microbial phenolic metabolites: which molecules actually have an effect on human health? Nutrients 11, 2725 (2019).
Choi, Y. H., Lee, W. H., Park, K. Y. & Zhang, L. p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn. J. Cancer Res. 91, 164–173 (2000).
Li, Y. & Sarkar, F. H. Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin. Cancer Res. 8, 2369–2377 (2002).
Miękus, K. & Madeja, Z. Genistein inhibits the contact-stimulated migration of prostate cancer cells. Cell. Mol. Biol. Lett. 12, 348–361 (2007).
Gänzle, M. G. Food fermentations for improved digestibility of plant foods – an essential ex situ digestion step in agricultural societies? Curr. Opin. Food Sci. 32, 124–132 (2020).
Barac, A. in Clinically Relevant Mycoses: A Practical Approach (ed. Presterl, E.) 213–225 (Springer, 2019).
Adebiyi, J. A., Kayitesi, E., Adebo, O. A., Changwa, R. & Njobeh, P. B. Food fermentation and mycotoxin detoxification: an African perspective. Food Control. 106, 106731 (2019).
Joint FAO/WHO Expert Committee on Food Additives, World Health Organization & Food and Agriculture Organization of the United Nations. Evaluation of certain food additives and contaminants: thirty-fifth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization (1990).
Wei, C. et al. Progress in the distribution, toxicity, control, and detoxification of patulin: a review. Toxicon 184, 83–93 (2020).
Moss, M. O. & Long, M. T. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit. Contam. 19, 387–399 (2002).
Benkerroum, N. Chronic and acute toxicities of aflatoxins: mechanisms of action. Int. J. Environ. Res. Public Health 17, 423 (2020).
Frisvad, J. C., Samson, R. A. & Smedsgaard, J. Emericella astellata, a new producer of aflatoxin B1, B2 and sterigmatocystin. Lett. Appl. Microbiol. 38, 440–445 (2004).
Frisvad, J. C. & Samson, R. A. Emericella venezuelensis, a new species with stellate ascospores producing sterigmatocystin and aflatoxin B1. Syst. Appl. Microbiol. 27, 672–680 (2004).
Nazhand, A., Durazzo, A., Lucarini, M., Souto, E. B. & Santini, A. Characteristics, occurrence, detection and detoxification of aflatoxins in foods and feeds. Foods 9, 644 (2020).
Williams, J. H. et al. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 80, 1106–1122 (2004).
Gong, Y. Y. et al. Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: cross sectional study. BMJ 325, 20 (2002).
Martínez, M. P., Magnoli, A. P., González Pereyra, M. L. & Cavaglieri, L. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon 172, 1–7 (2019).
Taheur, F. B. et al. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. Int. J. Food Microbiol. 251, 1–7 (2017).
Saladino, F., Luz, C., Manyes, L., Fernández-Franzón, M. & Meca, G. In vitro antifungal activity of lactic acid bacteria against mycotoxigenic fungi and their application in loaf bread shelf life improvement. Food Control. 67, 273–277 (2016).
Bouhet, S. et al. The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci. 77, 165–171 (2004).
Mokoena, M. P., Chelule, P. K. & Gqaleni, N. Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. J. Food Prot. 68, 2095–2099 (2005).
Nyamete, F. A., Mourice, B. & Mugula, J. K. Fumonisin B1 reduction in lactic acid bacteria fermentation of maize porridges. Tanzan. J. Agric. Sci. 15, 13–20 (2016).
Lomer, M. C., Parkes, G. C. & Sanderson, J. D. Review article: lactose intolerance in clinical practice–myths and realities. Aliment. Pharmacol. Ther. 27, 93–103 (2008).
Martini, M. C., Bollweg, G. L., Levitt, M. D. & Savaiano, D. A. Lactose digestion by yogurt beta-galactosidase: influence of pH and microbial cell integrity. Am. J. Clin. Nutr. 45, 432–436 (1987).
Gilliland, S. E. & Kim, H. S. Effect of viable starter culture bacteria in yogurt on lactose utilization in humans. J. Dairy. Sci. 67, 1–6 (1984).
Noh, D. O. & Gilliland, S. E. Influence of bile on β-galactosidase activity of component species of yogurt starter cultures. J. Dairy. Sci. 77, 3532–3537 (1994).
Marteau, P. et al. Effect of the microbial lactase (EC 3.2.1.23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. Br. J. Nutr. 64, 71–79 (1990).
Kolars, J. C., Levitt, M. D., Aouji, M. & Savaiano, D. A. Yogurt–an autodigesting source of lactose. N. Engl. J. Med. 310, 1–3 (1984).
Kotz, C. M., Furne, J. K., Savaiano, D. A. & Levitt, M. D. Factors affecting the ability of a high β-galactosidase yogurt to enhance lactose absorption. J. Dairy. Sci. 77, 3538–3544 (1994).
Pochart, P., Dewit, O., Desjeux, J. F. & Bourlioux, P. Viable starter culture, beta-galactosidase activity, and lactose in duodenum after yogurt ingestion in lactase-deficient humans. Am. J. Clin. Nutr. 49, 828–831 (1989).
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 2976) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 8, 1763 (2010).
Hertzler, S. R. & Clancy, S. M. Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. J. Am. Diet. Assoc. 103, 582–587 (2003).
Suri, S. et al. Considerations for development of lactose-free food. J. Nutr. Intermed. Metab. 15, 27–34 (2019).
Palsson, O. S. et al. Development and validation of the Rome IV diagnostic questionnaire for adults. Gastroenterology 150, 1481–1491 (2016).
van Lanen, A.-S., de Bree, A. & Greyling, A. Efficacy of a low-FODMAP diet in adult irritable bowel syndrome: a systematic review and meta-analysis. Eur. J. Nutr. 60, 3505–3522 (2021).
Black, C. J., Staudacher, H. M. & Ford, A. C. Efficacy of a low FODMAP diet in irritable bowel syndrome: systematic review and network meta-analysis. Gut 71, 1117–1126 (2022).
Iacovou, M., Tan, V., Muir, J. G. & Gibson, P. R. The low FODMAP diet and its application in East and Southeast Asia. J. Neurogastroenterol. Motil. 21, 459–470 (2015).
Struyf, N., Laurent, J., Verspreet, J., Verstrepen, K. J. & Courtin, C. M. Saccharomyces cerevisiae and Kluyveromyces marxianus cocultures allow reduction of fermentable oligo-, di-, and monosaccharides and polyols levels in whole wheat bread. J. Agric. Food Chem. 65, 8704–8713 (2017).
Andersson, R., Fransson, G., Tietjen, M. & Åman, P. Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J. Agric. Food Chem. 57, 2004–2008 (2009).
Laatikainen, R. et al. Randomised clinical trial: low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Aliment. Pharmacol. Ther. 44, 460–470 (2016).
Lebwohl, B., Sanders, D. S. & Green, P. H. R. Coeliac disease. Lancet 391, 70–81 (2018).
Caio, G. et al. Celiac disease: a comprehensive current review. BMC Med. 17, 142 (2019).
Singh, P. et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 16, 823–836.e2 (2018).
Roberts, S. E. et al. Systematic review and meta-analysis: the incidence and prevalence of paediatric coeliac disease across Europe. Aliment. Pharmacol. Ther. 54, 109–128 (2021).
Makharia, G. K. et al. The global burden of coeliac disease: opportunities and challenges. Nat. Rev. Gastroenterol. Hepatol. 19, 313–327 (2022).
Engström, N., Sandberg, A.-S. & Scheers, N. Sourdough fermentation of wheat flour does not prevent the interaction of transglutaminase 2 with α2-gliadin or gluten. Nutrients 7, 2134–2144 (2015).
Mandile, R. et al. Lack of immunogenicity of hydrolysed wheat flour in patients with coeliac disease after a short‐term oral challenge. Aliment. Pharmacol. Ther. 46, 440–446 (2017).
Di Cagno, R. et al. Gluten-free sourdough wheat baked goods appear safe for young celiac patients: a pilot study. J. Pediatr. Gastroenterol. Nutr. 51, 777–783 (2010).
Greco, L. et al. Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin. Gastroenterol. Hepatol. 9, 24–29 (2011).
Di Cagno, R. et al. Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl. Environ. Microbiol. 70, 1088–1096 (2004).
Vagadia, B. H., Vanga, S. K. & Raghavan, V. Inactivation methods of soybean trypsin inhibitor–a review. Trends Food Sci. Technol. 64, 115–125 (2017).
Adeyemo, S. M. & Onilude, A. A. Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Niger. Food J. 31, 84–90 (2013).
Shi, L., Mu, K., Arntfield, S. D. & Nickerson, M. T. Changes in levels of enzyme inhibitors during soaking and cooking for pulses available in Canada. J. Food Sci. Technol. 54, 1014–1022 (2017).
Kumar, A. et al. Phytic acid: blessing in disguise, a prime compound required for both plant and human nutrition. Food Res. Int. 142, 110193 (2021).
Gibson, R. S., Raboy, V. & King, J. C. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr. Rev. 76, 793–804 (2018).
Larsson, M. & Sandberg, A. S. Phytate reduction in bread containing oat flour, oat bran or rye bran. J. Cereal Sci. 14, 141–149 (1991).
Yadav, S. & Khetarpaul, N. Indigenous legume fermentation: effect on some antinutrients and in-vitro digestibility of starch and protein. Food Chem. 50, 403–406 (1994).
Ikenaga, T. et al. Effect of phytic acid on postprandial serum uric acid level in healthy volunteers: a randomized, double-blind, crossover study. Nucleosides Nucleotides Nucleic Acids 39, 504–517 (2020).
Yoon, J. H., Thompson, L. U. & Jenkins, D. J. The effect of phytic acid on in vitro rate of starch digestibility and blood glucose response. Am. J. Clin. Nutr. 38, 835–842 (1983).
Luzzatto, L. & Arese, P. Favism and glucose-6-phosphate dehydrogenase deficiency. N. Engl. J. Med. 378, 60–71 (2018).
Multari, S., Stewart, D. & Russell, W. R. Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Compr. Rev. Food Sci. Food Saf. 14, 511–522 (2015).
Rizzello, C. G. et al. Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Sci. Rep. 6, 32452 (2016).
Panter, K. E. in: Veterinary Toxicology 3rd edn (ed. Gupta, R. C.) 935–940 (Academic Press, 2018).
Cressey, P. & Reeve, J. Metabolism of cyanogenic glycosides: a review. Food Chem. Toxicol. 125, 225–232 (2019).
Nzwalo, H. & Cliff, J. Konzo: from poverty, cassava, and cyanogen intake to toxico-nutritional neurological disease. PLoS Negl. Trop. Dis. 5, e1051 (2011).
Panghal, A., Munezero, C., Sharma, P. & Chhikara, N. Cassava toxicity, detoxification and its food applications: a review. Toxin Rev. 40, 1–16 (2021).
Adamafio, N. A., Sakyiamah, M. & Tettey, J. Fermentation in cassava (Manihot esculenta Crantz) pulp juice improves nutritive value of cassava peel. Afr. J. Biochem. Res. 4, 51–56 (2010).
Lei, V., Amoa-Awua, W. K. A. & Brimer, L. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Int. J. Food Microbiol. 53, 169–184 (1999).
Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).
Mukherjee, A., Gómez-Sala, B., O’Connor, E. M., Kenny, J. G. & Cotter, P. D. Global regulatory frameworks for fermented foods: a review. Front. Nutr. 9, 902642 (2022).
Strachan, D. P. Hay fever, hygiene, and household size. Br. Med. J. 299, 1259 (1989).
Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).
Bach, J.-F. Revisiting the hygiene hypothesis in the context of autoimmunity. Front. Immunol. 11, 615192 (2021).
Guarner, F. et al. Mechanisms of disease: the hygiene hypothesis revisited. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 275–284 (2006).
Rook, G. A. W. Hygiene hypothesis and autoimmune diseases. Clin. Rev. Allergy Immunol. 42, 5–15 (2012).
Sonnenburg, J. L. & Sonnenburg, E. D. Vulnerability of the industrialized microbiota. Science 366, eaaw9255 (2019).
Marco, M. L. et al. Should there be a recommended daily intake of microbes. J. Nutr. 150, 3061–3067 (2020).
Masood, M. I., Qadir, M. I., Shirazi, J. H. & Khan, I. U. Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol. 37, 91–98 (2011).
Lang, J. M., Eisen, J. A. & Zivkovic, A. M. The microbes we eat: abundance and taxonomy of microbes consumed in a day’s worth of meals for three diet types. PeerJ 2, e659 (2014).
Codex Alimentarius. Standard for fermented milks. Standard CXS 243-2003. FAO (2022).
Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).
Galimberti, A. et al. Fermented food products in the era of globalization: tradition meets biotechnology innovations. Curr. Opin. Biotechnol. 70, 36–41 (2021).
Hill, C. et al. Positive health outcomes associated with live microbe intake from foods, including fermented foods, assessed using the NHANES database. J. Nutr. 153, 1143–1149 (2023).
Marco, M. L. et al. A classification system for defining and estimating dietary intake of live microbes in US adults and children. J. Nutr. 152, 1729–1736 (2022).
Nicklaus, S. et al. The protective effect of cheese consumption at 18 months on allergic diseases in the first 6 years. Allergy 74, 788–798 (2019).
Park, S. & Bae, J.-H. Fermented food intake is associated with a reduced likelihood of atopic dermatitis in an adult population (Korean National Health and Nutrition Examination Survey 2012-2013). Nutr. Res. 36, 125–133 (2016).
Celik, V., Beken, B., Yazicioglu, M., Ozdemir, P. G. & Sut, N. Do traditional fermented foods protect against infantile atopic dermatitis. Pediatr. Allergy Immunol. 30, 540–546 (2019).
Yılmaz, İ., Dolar, M. E. & Özpınar, H. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: a randomized controlled trial. Turkish J. Gastroenterol. 30, 242 (2019).
del Campo, R. et al. Scarce evidence of yogurt lactic acid bacteria in human feces after daily yogurt consumption by healthy volunteers. Appl. Environ. Microbiol. 71, 547–549 (2005).
Mater, D. D. G. et al. Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiol. Lett. 250, 185–187 (2005).
Elli, M. et al. Survival of yogurt bacteria in the human gut. Appl. Environ. Microbiol. 72, 5113–5117 (2006).
Oozeer, R. et al. Survival of Lactobacillus casei in the human digestive tract after consumption of fermented milk. Appl. Environ. Microbiol. 72, 5615–5617 (2006).
Bove, P. et al. Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiol. Res. 168, 351–359 (2013).
Vesa, T., Pochart, P. & Marteau, P. Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Aliment. Pharmacol. Ther. 14, 823–828 (2000).
Lavermicocca, P. et al. Study of adhesion and survival of lactobacilli and bifidobacteria on table olives with the aim of formulating a new probiotic food. Appl. Environ. Microbiol. 71, 4233–4240 (2005).
Saxelin, M. et al. Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese. Int. J. Food Microbiol. 144, 293–300 (2010).
Derrien, M. & van Hylckama Vlieg, J. E. T. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 23, 354–366 (2015).
Roselli, M. et al. Colonization ability and impact on human gut microbiota of foodborne microbes from traditional or probiotic-added fermented foods: a systematic review. Front. Nutr. 8, 689084 (2021).
Culp, E. J. & Goodman, A. L. Cross-feeding in the gut microbiome: ecology and mechanisms. Cell Host Microbe 31, 485–499 (2023).
Henriques, S. F. et al. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat. Commun. 11, 4236 (2020).
Graber Joseph, R. & Breznak John, A. Folate cross-feeding supports symbiotic homoacetogenic spirochetes. Appl. Environ. Microbiol. 71, 1883–1889 (2005).
Liu, Y., Wang, J. & Wu, C. Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. Front. Nutr. 8, 634897 (2022).
Zhang, J. S. et al. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells. J. Dairy. Sci. 102, 6802–6819 (2019).
Zhang, Y. et al. Inhibition of Shigella sonnei-induced epithelial barrier disruption by surface-layer associated proteins of lactobacilli from Chinese fermented food. J. Dairy. Sci. 101, 1834–1842 (2018).
Park, J.-S., Joe, I., Rhee, P. D., Jeong, C.-S. & Jeong, G. A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis. J. Microbiol. 55, 304–310 (2017).
Liu, Y.-W., Su, Y.-W., Ong, W.-K., Cheng, T.-H. & Tsai, Y.-C. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. Int. Immunopharmacol. 11, 2159–2166 (2011).
Sharma, B. R., Jayant, D., Rajshee, K., Singh, Y. & Halami, P. M. Distribution and diversity of nisin producing LAB in fermented food. Curr. Microbiol. 78, 3430–3438 (2021).
Ghadimi, D. et al. Molecular identification of potential Th1/Th2 responses-modulating bacterial genes using suppression subtractive DNA hybridization. Immunobiology 219, 208–217 (2014).
Chen, Y. et al. Lactobacillus plantarum Lp2 improved LPS-induced liver injury through the TLR-4/MAPK/NFκB and Nrf2-HO-1/CYP2E1 pathways in mice. Food Nutr. Res.66, https://doi.org/10.29219/fnr.v66.5459 (2022).
Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).
Yeşilyurt, N., Yılmaz, B., Ağagündüz, D. & Capasso, R. Involvement of probiotics and postbiotics in the immune system modulation. Biologics 1, 89–110 (2021).
Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).
Zoetendal, E. G. et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6, 1415–1426 (2012).
Zaccaria, E. et al. Endogenous small intestinal microbiome determinants of transient colonisation efficiency by bacteria from fermented dairy products: a randomised controlled trial. Microbiome 11, 43 (2023).
Fujisawa, T., Shinohara, K., Kishimoto, Y. & Terada, A. Effect of miso soup containing Natto on the composition and metabolic activity of the human faecal flora. Microb. Ecol. Health Dis. 18, 79–84 (2006).
McNulty, N. P. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 3, 106ra106 (2011).
Taylor, B. C. et al. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. mSystems 5, e00901-19 (2020).
Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).
Nielsen, E. S. et al. Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurisation–a pilot study. Food Funct. 9, 5323–5335 (2018).
Bourrie, B. C. T., Cotter, P. D. & Willing, B. P. Traditional kefir reduces weight gain and improves plasma and liver lipid profiles more successfully than a commercial equivalent in a mouse model of obesity. J. Funct. Foods 46, 29–37 (2018).
Bourrie, B. C. T. et al. Kefir microbial composition is a deciding factor in the physiological impact of kefir in a mouse model of obesity. Br. J. Nutr. 125, 129–138 (2020).
Bourrie, B. C. T. et al. Consumption of the cell-free or heat-treated fractions of a pitched kefir confers some but not all positive impacts of the corresponding whole kefir. Front. Microbiol. 13, 1056526 (2022).
Bourrie, B. et al. Consumption of kefir made with traditional microorganisms resulted in greater improvements in LDL cholesterol and plasma markers of inflammation in males when compared to a commercial kefir: a randomized pilot study. Appl. Physiol. Nutr. Metab. 48, 668–677 (2023).
Mathur, H., Beresford, T. P. & Cotter, P. D. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients 12, 1679 (2020).
Staudacher, H. M. & Nevin, A. N. Fermented foods: fad or favourable addition to the diet? Lancet Gastroenterol. Hepatol. 4, 19 (2019).
Morales, D. Biological activities of kombucha beverages: the need of clinical evidence. Trends Food Sci. Technol. 105, 323–333 (2020).
Savaiano, D. A. & Hutkins, R. W. Yogurt, cultured fermented milk, and health: a systematic review. Nutr. Rev. 79, 599–614 (2021).
Diez-Ozaeta, I. & Astiazaran, O. J. Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res. Int. 156, 111133 (2022).
Baruah, R., Ray, M. & Halami, P. M. Preventive and therapeutic aspects of fermented foods. J. Appl. Microbiol. 132, 3476–3489 (2022).
Bell, V., Ferrão, J. & Fernandes, T. Nutritional guidelines and fermented food frameworks. Foods 6, 65, (2017).
Chilton, S. N., Burton, J. P. & Reid, G. Inclusion of fermented foods in food guides around the world. Nutrients 7, 390–404 (2015).
Zimmermann, A., Van Hoorde, K. & Butler, F. Microbial analysis of craft and microbrewed beer. Biosyst. Food Eng. Res. Rev. 23, 52 (2018).
Altay, F., Karbancioglu-Guler, F., Daskaya-Dikmen, C. & Heperkan, D. A review on traditional Turkish fermented non-alcoholic beverages: microbiota, fermentation process and quality characteristics. Int. J. Food Microbiol. 167, 44–56 (2013).
Lee, L. W., Cheong, M. W., Curran, P., Yu, B. & Liu, S. Q. Coffee fermentation and flavor–an intricate and delicate relationship. Food Chem. 185, 182–191 (2015).
Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J.-P. & Taillandier, P. Understanding kombucha tea fermentation: a review. J. Food Sci. 83, 580–588 (2018).
Zhang, K., Wu, W. & Yan, Q. Research advances on sake rice, koji, and sake yeast: a review. Food Sci. Nutr. 8, 2995–3003 (2020).
Romero-Luna, H. E., Hernández-Sánchez, H. & Dávila-Ortiz, G. Traditional fermented beverages from Mexico as a potential probiotic source. Ann. Microbiol. 67, 577–586 (2017).
Lynch, K. M., Wilkinson, S., Daenen, L. & Arendt, E. K. An update on water kefir: microbiology, composition and production. Int. J. Food Microbiol. 345, 109128 (2021).
Han, J. et al. Regulation of microbial metabolism on the formation of characteristic flavor and quality formation in the traditional fish sauce during fermentation: a review. Crit. Rev. Food Sci. Nutr. 63, 7564–7583 (2022).
Allwood, J. G., Wakeling, L. T. & Bean, D. C. Fermentation and the microbial community of Japanese koji and miso: a review. J. Food Sci. 86, 2194–2207 (2021).
Devanthi, P. V. P. & Gkatzionis, K. Soy sauce fermentation: microorganisms, aroma formation, and process modification. Food Res. Int. 120, 364–374 (2019).
Budak, N. H., Aykin, E., Seydim, A. C., Greene, A. K. & Guzel-Seydim, Z. B. Functional properties of vinegar. J. Food Sci. 79, R757–R764 (2014).
Kongor, J. E. et al. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile – a review. Food Res. Int. 82, 44–52 (2016).
Johnson, M. E. A 100-year review: cheese production and quality. J. Dairy. Sci. 100, 9952–9965 (2017).
Jung, J. Y., Lee, S. H. & Jeon, C. O. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Appl. Microbiol. Biotechnol. 98, 2385–2393 (2014).
Bourrie, B. C., Willing, B. P. & Cotter, P. D. The microbiota and health promoting characteristics of the fermented beverage kefir. Front. Microbiol. 7, 647 (2016).
Afzaal, M. et al. Nutritional health perspective of natto: a critical review. Biochem. Res. Int. 2022, 5863887 (2022).
Adisa, A. M. & Enujiugha, V. N. Microbiology and safety of ogi fermentation: a review. Eur. J. Nutr. Food Saf. 12, 90–100 (2020).
Yang, X. et al. Microbial community dynamics and metabolome changes during spontaneous fermentation of northeast sauerkraut from different households. Front. Microbiol. 11, 1878 (2020).
Sakandar, H. A. et al. Sourdough bread: a contemporary cereal fermented product. J. Food Process. Preserv. 43, e13883 (2019).
Han, B.-Z., Rombouts, F. M. & Nout, M. J. R. A Chinese fermented soybean food. Int. J. Food Microbiol. 65, 1–10 (2001).
Romulo, A. & Surya, R. Tempe: a traditional fermented food of Indonesia and its health benefits. Int. J. Gastronomy Food Sci. 26, 100413 (2021).
McKinley, M. C. The nutrition and health benefits of yoghurt. Int. J. Dairy. Technol. 58, 1–12 (2005).
Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72, 728–764 (2008).
Fox, P. F., Guinee, T. P., Cogan, T. M. & McSweeney, P. L. Fundamentals of Cheese Science Ch. 6 (Springer, 2017).
Acknowledgements
A.M. was supported by the Marie Skłodowska-Curie Career-FIT PLUS Fellowship (MF20210247); this project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement (as per Article 29.4 of the grant agreement). Research in the Cotter laboratory is funded by the European Union’s Horizon 2020 Research and Innovation Programme, under the MASTER project (grant number 818368), by Science Foundation Ireland (SFI) (grant number SFI/12/RC/2273_P2) (APC Microbiome Ireland), by SFI together with the Irish Department of Agriculture, Food and the Marine (grant number SFI/16/RC/3835) (VistaMilk), by Enterprise Ireland and industry in the Food for Health Ireland (FHI)-3 project (grant number TC/2018/0025), and by the Institute for the Advancement of Food and Nutritional Sciences (grant number NA-AGFOODDEVELAUTH-20201216). Discussions with R. Balasubramanian helped the authors improve the revised manuscript; they thank her for her help.
Author information
Authors and Affiliations
Contributions
All the authors contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission. A.M., S.B. and P.D.C. researched data for the article.
Corresponding author
Ethics declarations
Competing interests
E.D. has received an education grant from Alpro, research funding from the British Dietetic Association, Almond Board of California, the International Nut and Dried Fruit Council and Nestec Ltd, and has served as a consultant for Puratos. M.L.M. has been compensated for consulting, speaking fees or service on advisory boards for the Kerry Health and Nutrition Institute, the Icelandic Milk & Skyr Corporation, and NURA USA. Research in the laboratory of P.D.C. has been funded by Friesland Campina, PrecisionBiotics Group, PepsiCo and Danone. P.D.C. has received support from PepsiCo, Yakult and H&H to attend/present at scientific meetings/conferences, and is the Chief Technical Officer and a co-founder of SeqBiome. A.M. and S.B. declare no competing interests.
Peer review
Peer review information
Nature Reviews Gastroenterology & Hepatology thanks Franck Carbonero, Michael Gänzle and Kieran Tuohy for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mukherjee, A., Breselge, S., Dimidi, E. et al. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 21, 248–266 (2024). https://doi.org/10.1038/s41575-023-00869-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41575-023-00869-x
This article is cited by
-
Sleep promoting and omics exploration on probiotics fermented Gastrodia elata Blume
npj Science of Food (2024)
-
Fermentation-mediated sustainable development and improvement of quality of plant-based foods: from waste to a new food
Systems Microbiology and Biomanufacturing (2024)
-
Lactic acid bacteria in Asian fermented foods and their beneficial roles in human health
Food Science and Biotechnology (2024)
-
Plant-based probiotic foods: current state and future trends
Food Science and Biotechnology (2024)