Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fermented foods and gastrointestinal health: underlying mechanisms

This article has been updated

Abstract

Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.

Key points

  • Fermented foods provide a unique combination of beneficial microorganisms and bioactive compounds that can contribute to gastrointestinal health in a variety of ways.

  • A better understanding of fermented foods, their associated gastrointestinal health benefits and the underlying mechanisms has benefited from a greater appreciation of the unique biological and chemical composition of different fermented foods.

  • Fermentation can be utilized to reduce or even remove undesirable compounds present in food substrates, such as FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) or gluten, to aid patients with intolerances that influence the gut.

  • Fermented foods represent a safe way for increased microbial exposure with a view to improving gut health and potentially reducing the risk of chronic gut disease.

  • Further research into fermented foods, especially involving randomized and controlled human trials, is required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of action for bioactive components in fermented foods.

Similar content being viewed by others

Change history

  • 18 December 2023

    In the version of this article initially published, exponent values did not appear in Table 1, footnote b, and are now restored in the HTML and PDF versions of the article.

References

  1. Afzaal, M. et al. Nutritional and ethnomedicinal scenario of Koumiss: a concurrent review. Food Sci. Nutr. 9, 6421–6428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim, B. H. & Gadd, G. M. Prokaryotic Metabolism and Physiology 2nd edn (Cambridge Univ. Press, 2019).

  3. Mackowiak, P. A. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front. Public. Health 1, 52 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tamang, J. P. et al. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 19, 184–217 (2020).

    Article  PubMed  Google Scholar 

  5. Marco, M. L. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 18, 196–208 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marco, M. L. et al. Health benefits of fermented foods: microbiota and beyond. Curr. Opin. Biotechnol. 44, 94–102 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Obafemi, Y. D. et al. African fermented foods: overview, emerging benefits, and novel approaches to microbiome profiling. NPJ Sci. Food 6, 15 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jimenez, M. E., O’Donovan, C. M., Ullivarri, M. F. D. & Cotter, P. D. Microorganisms present in artisanal fermented food from South America. Front. Microbiol. 13, 941866 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rezac, S., Kok, C. R., Heermann, M. & Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 9, 1785 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gänzle, M. The periodic table of fermented foods: limitations and opportunities. Appl. Microbiol. Biotechnol. 106, 2815–2826 (2022).

    Article  PubMed  Google Scholar 

  11. Dimidi, E., Cox, S. R., Rossi, M. & Whelan, K. Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients 11, 1806 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Venturini Copetti, M. Yeasts and molds in fermented food production: an ancient bioprocess. Curr. Opin. Food Sci. 25, 57–61 (2019).

    Article  Google Scholar 

  13. Blandino, A., Al-Aseeri, M. E., Pandiella, S. S., Cantero, D. & Webb, C. Cereal-based fermented foods and beverages. Food Res. Int. 36, 527–543 (2003).

    Article  CAS  Google Scholar 

  14. Leeuwendaal, N. K., Stanton, C., O’Toole, P. W. & Beresford, T. P. Fermented foods, health and the gut microbiome. Nutrients 14, 1527 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Leech, J. et al. Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants. mSystems 5, e00522-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pasolli, E. et al. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nat. Commun. 11, 2610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aslam, H. et al. Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety. Nutr. Neurosci. 23, 659–671 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Li, K. J., Burton-Pimentel, K. J., Vergères, G., Feskens, E. J. M. & Brouwer-Brolsma, E. M. Fermented foods and cardiometabolic health: definitions, current evidence, and future perspectives. Front. Nutr. 9, 976020 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, X.-F. et al. Fermented foods and metabolic outcomes in diabetes and prediabetes: a systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2023.2213770 (2023).

    Article  PubMed  Google Scholar 

  22. Melini, F., Melini, V., Luziatelli, F., Ficca, A. G. & Ruzzi, M. Health-promoting components in fermented foods: an up-to-date systematic review. Nutrients 11, 1189 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gänzle, M. G. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. 37, 2–10 (2014).

    Article  PubMed  Google Scholar 

  24. Joye, I. Protein digestibility of cereal products. Foods 8, 199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chandra-Hioe, M. V., Wong, C. H. & Arcot, J. The potential use of fermented chickpea and faba bean flour as food ingredients. Plant. Foods Hum. Nutr. 71, 90–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Shekib, L. A. Nutritional improvement of lentils, chick pea, rice and wheat by natural fermentation. Plant. Foods Hum. Nutr. 46, 201–205 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Poutanen, K., Flander, L. & Katina, K. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol. 26, 693–699 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Deniz, E., Mora, L., Aristoy, M. C., Candoğan, K. & Toldrá, F. Free amino acids and bioactive peptides profile of Pastırma during its processing. Food Res. Int. 89, 194–201 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Shang, Y.-F. et al. Effect of lactic acid bacteria fermentation on tannins removal in Xuan Mugua fruits. Food Chem. 274, 118–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Jiménez, N., Esteban-Torres, M., Mancheño, J. M., de Las Rivas, B. & Muñoz, R. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl. Env. Microbiol. 80, 2991–2997 (2014).

    Article  Google Scholar 

  31. García Méndez, M. G. et al. Application of lactic acid bacteria in fermentation processes to obtain tannases using agro-industrial wastes. Fermentation 7, 48 (2021).

    Article  Google Scholar 

  32. Gorbach, S. L. Lactic acid bacteria and human health. Ann. Med. 22, 37–41 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Gänzle, M. G. & Salovaara, H. in Lactic Acid Bacteria (eds Vinderola, G., Ouwehand, A., Salminen, S, & von Wright, A.) 199–213 (CRC, 2019).

  34. Katina, K. et al. Fermentation-induced changes in the nutritional value of native or germinated rye. J. Cereal Sci. 46, 348–355 (2007).

    Article  CAS  Google Scholar 

  35. François, I. E. et al. Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br. J. Nutr. 108, 2229–2242 (2012).

    Article  PubMed  Google Scholar 

  36. Walton, G. E., Lu, C., Trogh, I., Arnaut, F. & Gibson, G. R. A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutr. J. 11, 36 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gänzle, M. G., Loponen, J. & Gobbetti, M. Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci. Technol. 19, 513–521 (2008).

    Article  Google Scholar 

  38. Wang, D. et al. The changes occurring in proteins during processing and storage of fermented meat products and their regulation by lactic acid bacteria. Foods 11, 2427 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gobbetti, M., Rizzello, C. G., Di Cagno, R. & De Angelis, M. How the sourdough may affect the functional features of leavened baked goods. Food Microbiol. 37, 30–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Gobbetti, M., Cagno, R. D. & De Angelis, M. Functional microorganisms for functional food quality. Crit. Rev. Food Sci. Nutr. 50, 716–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Nyyssölä, A., Ellilä, S., Nordlund, E. & Poutanen, K. Reduction of FODMAP content by bioprocessing. Trends Food Sci. Technol. 99, 257–272 (2020).

    Article  Google Scholar 

  42. Xu, Y., Li, L., Xia, W., Zang, J. & Gao, P. The role of microbes in free fatty acids release and oxidation in fermented fish paste. LWT 101, 323–330 (2018).

    Article  Google Scholar 

  43. Savaiano, D. A. Lactose digestion from yogurt: mechanism and relevance. Am. J. Clin. Nutr. 99, 1251S–1255S (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Kurosawa, Y. et al. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci. Rep. 5, 11601 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, B. H., Lai, Y. S. & Wu, S. C. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea. J. Food Drug. Anal. 23, 750–757 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weng, Y., Yao, J., Sparks, S. & Wang, K. Y. Nattokinase: an oral antithrombotic agent for the prevention of cardiovascular disease. Int. J. Mol. Sci. 18, 523 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fujita, M. et al. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. Biol. Pharm. Bull. 18, 1387–1391 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Fujita, M. et al. Transport of nattokinase across the rat intestinal tract. Biol. Pharm. Bull. 18, 1194–1196 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Fujita, M. et al. Antihypertensive effects of continuous oral administration of nattokinase and its fragments in spontaneously hypertensive rats. Biol. Pharm. Bull. 34, 1696–1701 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Jensen, G. S., Lenninger, M., Ero, M. P. & Benson, K. F. Consumption of nattokinase is associated with reduced blood pressure and von Willebrand factor, a cardiovascular risk marker: results from a randomized, double-blind, placebo-controlled, multicenter North American clinical trial. Integr. Blood Press. Control. 9, 95–104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ero, M. P., Ng, C. M., Mihailovski, T., Harvey, N. R. & Lewis, B. H. A pilot study on the serum pharmacokinetics of nattokinase in humans following a single, oral, daily dose. Altern. Ther. Health Med. 19, 16–19 (2013).

    PubMed  Google Scholar 

  52. Zhou, X., Liu, L. & Zeng, X. Research progress on the utilisation of embedding technology and suitable delivery systems for improving the bioavailability of nattokinase: a review. Food Struct. 30, 100219 (2021).

    Article  CAS  Google Scholar 

  53. Tamura, M. et al. Effects of a high-γ-polyglutamic acid-containing natto diet on liver lipids and cecal microbiota of adult female mice. Biosci. Microbiota Food Health 40, 176–185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kono, K. et al. Fluctuations in intestinal microbiota following ingestion of natto powder containing Bacillus subtilis var. natto SONOMONO spores: considerations using a large-scale intestinal microflora database. Nutrients 14, 3839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mitsui, N. et al. Effect of natto including Bacillus subtilis K-2 (spore) on defecation and fecal microbiota, and safety of excessive ingestion in healthy volunteers. Jpn. Pharmacol. Ther. 34, 135 (2006).

    Google Scholar 

  56. Martinez-Villaluenga, C., Peñas, E. & Frias, J. in Fermented Foods in Health and Disease Prevention (eds Frias, J., Martinez-Villaluenga, C. & Peñas, E) 23–47 (Academic Press, 2017).

  57. Chaudhary, A., Bhalla, S., Patiyal, S., Raghava, G. P. S. & Sahni, G. FermFooDb: a database of bioactive peptides derived from fermented foods. Heliyon 7, e06668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chai, K. F., Voo, A. Y. H. & Chen, W. N. Bioactive peptides from food fermentation: a comprehensive review of their sources, bioactivities, applications, and future development. Compr. Rev. Food Sci. Food Saf. 19, 3825–3885 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Guo, Q., Chen, P. & Chen, X. Bioactive peptides derived from fermented foods: preparation and biological activities. J. Funct. Foods 101, 105422 (2023).

    Article  CAS  Google Scholar 

  60. Murray, B. A. & FitzGerald, R. J. Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr. Pharm. Des. 13, 773–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. López-Fandiño, R., Otte, J. & van Camp, J. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int. Dairy. J. 16, 1277–1293 (2006).

    Article  Google Scholar 

  62. Gouda, A. S., Adbelruhman, F. G., Sabbah Alenezi, H. & Mégarbane, B. Theoretical benefits of yogurt-derived bioactive peptides and probiotics in COVID-19 patients–a narrative review and hypotheses. Saudi J. Biol. Sci. 28, 5897–5905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakamura, T. et al. Casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro improves central blood pressure and arterial stiffness in hypertensive subjects: a randomized, double-blind, placebo-controlled trial. Atherosclerosis 219, 298–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Jäkälä, P. & Vapaatalo, H. Antihypertensive peptides from milk proteins. Pharmaceuticals 3, 251–272 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tonolo, F. et al. Identification of new peptides from fermented milk showing antioxidant properties: mechanism of action. Antioxidants 9, 177 (2020).

    Article  Google Scholar 

  66. Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Hegarty, J. W., Guinane, C. M., Ross, R. P., Hill, C. & Cotter, P. D. Bacteriocin production: a relatively unharnessed probiotic trait? F1000Res 5, 2587 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Simons, A., Alhanout, K. & Duval, R. E. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 8, 639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bali, V., Panesar, P. S., Bera, M. B. & Kennedy, J. F. Bacteriocins: recent trends and potential applications. Crit. Rev. Food Sci. Nutr. 56, 817–834 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Donia, M. S. & Fischbach, M. A. Small molecules from the human microbiota. Science 349, 1254766 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dobson, A., Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocin production: a probiotic trait. Appl. Env. Microbiol. 78, 1–6 (2012).

    Article  CAS  Google Scholar 

  72. Heeney, D. D. et al. Lactobacillus plantarum bacteriocin is associated with intestinal and systemic improvements in diet-induced obese mice and maintains epithelial barrier integrity in vitro. Gut Microbes 10, 382–397 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Huang, F. et al. Bacteriocins: potential for human health. Oxid. Med. Cell. Longev. 2021, 5518825 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dicks, L. M. T., Dreyer, L., Smith, C. & van Staden, A. D. A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut-blood barrier? Front. Microbiol. 9, 2297 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Teng, K. et al. Food and gut originated bacteriocins involved in gut microbe-host interactions. Crit. Rev. Microbiol. 49, 515–527 (2022).

    Article  PubMed  Google Scholar 

  76. Shirako, S. et al. Pyroglutamyl leucine, a peptide in fermented foods, attenuates dysbiosis by increasing host antimicrobial peptide. NPJ Sci. Food 3, 18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sato, K., Shirako, S. & Wada, S. in Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Heatlth (eds Bagchi, D. & Ohia, S. E.) 255–265 (Academic Press, 2022).

  78. Sato, K. et al. Identification of a hepatoprotective peptide in wheat gluten hydrolysate against D-galactosamine-induced acute hepatitis in rats. J. Agric. Food Chem. 61, 6304–6310 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Wada, S. et al. Ingestion of low dose pyroglutamyl leucine improves dextran sulfate sodium-induced colitis and intestinal microbiota in mice. J. Agric. Food Chem. 61, 8807–8813 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Plaisancié, P. et al. A novel bioactive peptide from yoghurts modulates expression of the gel-forming MUC2 mucin as well as population of goblet cells and Paneth cells along the small intestine. J. Nutr. Biochem. 24, 213–221 (2013).

    Article  PubMed  Google Scholar 

  81. Wall, R. et al. in: Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease (eds Lyte, M. & Cryan, J. F.) 221–239 (Springer, 2014).

  82. Ahmed, H. et al. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes 14, 2102878 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Spichak, S. et al. Mining microbes for mental health: determining the role of microbial metabolic pathways in human brain health and disease. Neurosci. Biobehav. Rev. 125, 698–761 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Salman, S., Yılmaz, C., Gökmen, V. & Özdemir, F. Effects of fermentation time and shooting period on amino acid derivatives and free amino acid profiles of tea. LWT 137, 110481 (2021).

    Article  CAS  Google Scholar 

  85. Briguglio, M. et al. Dietary neurotransmitters: a narrative review on current knowledge. Nutrients 10, 591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jang, M. et al. Genetic background behind the amino acid profiles of fermented soybeans produced by four Bacillus spp. J. Microbiol. Biotechnol. 31, 447–455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Herraiz, T. Tetrahydro-beta-carbolines, potential neuroactive alkaloids, in chocolate and cocoa. J. Agric. Food Chem. 48, 4900–4904 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Baranowska, I. & Płonka, J. Simultaneous determination of biogenic amines and methylxanthines in foodstuff – sample preparation with HPLC-DAD-FL analysis. Food Anal. Methods 8, 963–972 (2015).

    Article  Google Scholar 

  89. Yılmaz, C. & Gökmen, V. Determination of tryptophan derivatives in kynurenine pathway in fermented foods using liquid chromatography tandem mass spectrometry. Food Chem. 243, 420–427 (2018).

    Article  PubMed  Google Scholar 

  90. Yılmaz, C. & Gökmen, V. Kinetic evaluation of the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using Saccharomyces pastorianus and Saccharomyces cerevisiae. Food Chem. 297, 124975 (2019).

    Article  PubMed  Google Scholar 

  91. Yılmaz, C. & Gökmen, V. Formation of amino acid derivatives in white and red wines during fermentation: effects of non-Saccharomyces yeasts and Oenococcus oeni. Food Chem. 343, 128415 (2021).

    Article  PubMed  Google Scholar 

  92. Rodriguez-Naranjo, M. I., Gil-Izquierdo, A., Troncoso, A. M., Cantos-Villar, E. & Garcia-Parrilla, M. C. Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chem. 126, 1608–1613 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Cui, Y., Miao, K., Niyaphorn, S. & Qu, X. Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review. Int. J. Mol. Sci. 21, 995 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yılmaz, C. & Gökmen, V. Neuroactive compounds in foods: occurrence, mechanism and potential health effects. Food Res. Int. 128, 108744 (2020).

    Article  PubMed  Google Scholar 

  95. Turska, M. et al. Presence of kynurenic acid in alcoholic beverages–is this good news, or bad news? Med. Hypotheses 122, 200–205 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Loh, L. X., Ng, D. H. J., Toh, M., Lu, Y. & Liu, S. Q. Targeted and nontargeted metabolomics of amino acids and bioactive metabolites in probiotic-fermented unhopped beers using liquid chromatography high-resolution mass spectrometry. J. Agric. Food Chem. 69, 14024–14036 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. 108, 16050–16055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Breit, S., Kupferberg, A., Rogler, G. & Hasler, G. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front. Psychiatry 9, 44 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Nakamura, U. et al. Dietary gamma-aminobutyric acid (GABA) induces satiation by enhancing the postprandial activation of vagal afferent nerves. Nutrients 14, 2492 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hepsomali, P., Groeger, J. A., Nishihira, J. & Scholey, A. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review. Front. Neurosci. 14, 923 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kim, B. et al. A review of fermented foods with beneficial effects on brain and cognitive function. Prev. Nutr. Food Sci. 21, 297–309 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. León-Ponte, M., Ahern, G. P. & O’Connell, P. J. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109, 3139–3146 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Besser, M. J., Ganor, Y. & Levite, M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFα or both. J. Neuroimmunol. 169, 161–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Dionisio, L., José De Rosa, M., Bouzat, C. & Esandi Mdel, C. An intrinsic GABAergic system in human lymphocytes. Neuropharmacology 60, 513–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Miyajima, M. Amino acids: key sources for immunometabolites and immunotransmitters. Int. Immunol. 32, 435–446 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Levite, M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr. Opin. Pharmacol. 8, 460–471 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Ruth, M. R. & Field, C. J. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J. Anim. Sci. Biotechnol. 4, 27 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Spano, G. et al. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 64, S95–S100 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Linares, D. M. et al. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem. 197, 658–663 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Shalaby, A. R. Significance of biogenic amines to food safety and human health. Food Res. Int. 29, 675–690 (1996).

    Article  CAS  Google Scholar 

  111. Del Rio, B. et al. The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Sci. Rep. 9, 120 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. ten Brink, B., Damink, C., Joosten, H. M. L. J. & Huis in ‘t Veld, J. H. J. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11, 73–84 (1990).

    Article  PubMed  Google Scholar 

  113. Warthesen, J. J., Scanlan, R. A., Bills, D. D. & Libbey, L. M. Formation of heterocyclic N-nitrosamines from the reaciton of nitrite and selected primary diamines and amino acids. J. Agric. Food Chem. 23, 898–902 (1975).

    Article  CAS  PubMed  Google Scholar 

  114. Lyte, M. The biogenic amine tyramine modulates the adherence of Escherichia coli O157:H7 to intestinal mucosa. J. Food Prot. 67, 878–883 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Crittenden, R. G., Martinez, N. R. & Playne, M. J. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int. J. Food Microbiol. 80, 217–222 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Saubade, F., Hemery, Y. M., Guyot, J. P. & Humblot, C. Lactic acid fermentation as a tool for increasing the folate content of foods. Crit. Rev. Food Sci. Nutr. 57, 3894–3910 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. LeBlanc, J. G. et al. B-group vitamin production by lactic acid bacteria–current knowledge and potential applications. J. Appl. Microbiol. 111, 1297–1309 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Russo, P. et al. Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Appl. Microbiol. Biotechnol. 98, 3691–3700 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Hossain, K. S., Amarasena, S. & Mayengbam, S. B vitamins and their roles in gut health. Microorganisms 10, 1168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Williams, E. A., Rumsey, R. D. & Powers, H. J. Cytokinetic and structural responses of the rat small intestine to riboflavin depletion. Br. J. Nutr. 75, 315–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Williams, E. A., Powers, H. J. & Rumsey, R. D. Morphological changes in the rat small intestine in response to riboflavin depletion. Br. J. Nutr. 73, 141–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Lee, E. S., Corfe, B. M. & Powers, H. J. Riboflavin depletion of intestinal cells in vitro leads to impaired energy generation and enhanced oxidative stress. Eur. J. Nutr. 52, 1513–1521 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Williams, E. A., Rumsey, R. D. & Powers, H. J. An investigation into the reversibility of the morphological and cytokinetic changes seen in the small intestine of riboflavin deficient rats. Gut 39, 220 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zironi, E. et al. Determination of vitamin B12 in dairy products by ultra performance liquid chromatography-tandem mass spectrometry. Ital. J. Food Saf. 3, 4513 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. Chamlagain, B., Edelmann, M., Kariluoto, S., Ollilainen, V. & Piironen, V. Ultra-high performance liquid chromatographic and mass spectrometric analysis of active vitamin B12 in cells of Propionibacterium and fermented cereal matrices. Food Chem. 166, 630–638 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Yongsmith, B., Kitpreechavanich, V., Tangjitjaroenkun, J. & Krusong, W. in: Functional Properties of Traditional Foods (eds Kristberg K. & Semih Ö.) 17–37 (Springer, 2016).

  127. Berg, N. O., Dahlqvist, A., Lindberg, T., Lindstrand, K. & Nordén, Å. Morphology, dipeptidases and disaccharidases of small intestinal mucosa in vitamin B12 and folic acid deficiency. Scand. J. Haematol. 9, 167–173 (1972).

    Article  CAS  PubMed  Google Scholar 

  128. Bressenot, A. et al. Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats. Br. J. Nutr. 109, 667–677 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Manoury, E., Jourdon, K., Boyaval, P. & Fourcassié, P. Quantitative measurement of vitamin K2 (menaquinones) in various fermented dairy products using a reliable high-performance liquid chromatography method. J. Dairy. Sci. 96, 1335–1346 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Fu, X. et al. Multiple vitamin K forms exist in dairy foods. Curr. Dev. Nutr. 1, e000638 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tarvainen, M., Fabritius, M. & Yang, B. Determination of vitamin K composition of fermented food. Food Chem. 275, 515–522 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Yanagisawa, Y. & Sumi, H. Natto Bacillus contains a large amount of water-soluble vitamin K (menaquinone-7). J. Food Biochem. 29, 267–277 (2005).

    Article  CAS  Google Scholar 

  133. Lai, Y., Masatoshi, H., Ma, Y., Guo, Y. & Zhang, B. Role of vitamin K in intestinal health. Front. Immunol. 12, 791565 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Şanlier, N., Gökcen, B. B. & Sezgin, A. C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 59, 506–527 (2019).

    Article  PubMed  Google Scholar 

  135. Rousseau, S., Kyomugasho, C., Celus, M., Hendrickx, M. E. G. & Grauwet, T. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Crit. Rev. Food Sci. Nutr. 60, 826–843 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Nkhata, S. G., Ayua, E., Kamau, E. H. & Shingiro, J. B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 6, 2446–2458 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ahmed, M. I., Xu, X., Sulieman, A. A., Na, Y. & Mahdi, A. A. The effect of fermentation time on in vitro bioavailability of iron, zinc, and calcium of kisra bread produced from koreeb (Dactyloctenium aegyptium) seeds flour. Microchem. J. 154, 104644 (2020).

    Article  CAS  Google Scholar 

  138. Diaz de Barboza, G., Guizzardi, S. & Tolosa de Talamoni, N. Molecular aspects of intestinal calcium absorption. World J. Gastroenterol. 21, 7142–7154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    Article  PubMed  Google Scholar 

  140. Samtiya, M., Aluko, R. E., Puniya, A. K. & Dhewa, T. Enhancing micronutrients bioavailability through fermentation of plant-based foods: a concise review. Fermentation 7, 63 (2021).

    Article  CAS  Google Scholar 

  141. Guéguen, L. & Pointillart, A. The bioavailability of dietary calcium. J. Am. Coll. Nutr. 19, 119S–136S (2000).

    Article  PubMed  Google Scholar 

  142. Smith, T. M., Kolars, J. C., Savaiano, D. A. & Levitt, M. D. Absorption of calcium from milk and yogurt. Am. J. Clin. Nutr. 42, 1197–1200 (1985).

    Article  CAS  PubMed  Google Scholar 

  143. Voidarou, C. et al. Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues. Foods 10, 69 (2021).

    Article  CAS  Google Scholar 

  144. Gänzle, M. G. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2, 106–117 (2015).

    Article  Google Scholar 

  145. Penna, A. L. B., Paula, A., Casarotti, S. N., Diamantino, V. & Silva, L. Overview of the functional lactic acid bacteria in the fermented milk products. Benef. Microbes Fermented Funct. Foods 1, 100–154 (2015).

    Google Scholar 

  146. Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front. Cell Infect. Microbiol. 2, 86 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kahlert, S. et al. Physiological concentration of exogenous lactate reduces antimycin a triggered oxidative stress in intestinal epithelial cell line IPEC-1 and IPEC-J2 in vitro. PLoS ONE 11, e0153135 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sales, K. M. & Reimer, R. A. Unlocking a novel determinant of athletic performance: the role of the gut microbiota, short-chain fatty acids, and “biotics” in exercise. J. Sport. Health Sci. 12, 36–44 (2023).

    Article  PubMed  Google Scholar 

  149. Belenguer, A. et al. Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl. Env. Microbiol. 73, 6526–6533 (2007).

    Article  CAS  Google Scholar 

  150. Jung, S., Hwang, H. & Lee, J.-H. Effect of lactic acid bacteria on phenyllactic acid production in kimchi. Food Control. 106, 106701 (2019).

    Article  CAS  Google Scholar 

  151. Peters, A. et al. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet. 15, e1008145 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sales-Campos, H., Souza, P. R., Peghini, B. C., da Silva, J. S. & Cardoso, C. R. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 13, 201–210 (2013).

    CAS  PubMed  Google Scholar 

  153. Shekari, S. et al. Association between dietary intake of fatty acids and colorectal cancer, a case-control study. Front. Nutr. 9, 856408 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Butler, L. M. et al. Plasma fatty acids and risk of colon and rectal cancers in the Singapore Chinese Health Study. NPJ Precis. Oncol. 1, 38 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kaewkod, T., Bovonsombut, S. & Tragoolpua, Y. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 7, 700 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Asano, T., Yuasa, K., Kunugita, K., Teraji, T. & Mitsuoka, T. Effects of gluconic acid on human faecal bacteria. Microb. Ecol. Health Dis. 7, 247–256 (1994).

    Google Scholar 

  157. Dufresne, C. & Farnworth, E. Tea, kombucha, and health: a review. Food Res. Int. 33, 409–421 (2000).

    Article  CAS  Google Scholar 

  158. Jayabalan, R., Marimuthu, S. & Swaminathan, K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem. 102, 392–398 (2007).

    Article  CAS  Google Scholar 

  159. Kuivanen, J., Sugai-Guérios, M. H., Arvas, M. & Richard, P. A novel pathway for fungal D-glucuronate catabolism contains an L-idonate forming 2-keto-L-gulonate reductase. Sci. Rep. 6, 26329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chakravorty, S. et al. Kombucha tea fermentation: microbial and biochemical dynamics. Int. J. Food Microbiol. 220, 63–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Bhattacharya, S., Manna, P., Gachhui, R. & Sil, P. C. D-saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling. Toxicol. Appl. Pharmacol. 267, 16–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Wang, Y. et al. Hepatoprotective effects of kombucha tea: identification of functional strains and quantification of functional components. J. Sci. Food Agric. 94, 265–272 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Diez, T. & Cabezas, J. A. Properties of two molecular forms of β-glucuronidase from the mollusc Littorina littorea L. Eur. J. Biochem. 93, 301–311 (1979).

    Article  CAS  PubMed  Google Scholar 

  164. Wang, K., Gan, X., Tang, X., Wang, S. & Tan, H. Determination of D-saccharic acid-1,4-lactone from brewed kombucha broth by high-performance capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 878, 371–374 (2010).

    Article  CAS  Google Scholar 

  165. Yang, Z. et al. Symbiosis between microorganisms from kombucha and kefir: potential significance to the enhancement of kombucha function. Appl. Biochem. Biotechnol. 160, 446–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Kim, D. H. & Jin, Y. H. Intestinal bacterial β-glucuronidase activity of patients with colon cancer. Arch. Pharm. Res. 24, 564–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Steinkraus, K. H., Shapiro, K. B., Hotchkiss, J. H. & Mortlock, R. P. Investigations into the antibiotic activity of tea fungus/kombucha beverage. Acta Biotechnol. 16, 199–205 (1996).

    Article  Google Scholar 

  168. Sreeramulu, G., Zhu, Y. & Knol, W. Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem. 48, 2589–2594 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Lim, J., Henry, C. J. & Haldar, S. Vinegar as a functional ingredient to improve postprandial glycemic control – human intervention findings and molecular mechanisms. Mol. Nutr. Food Res. 60, 1837–1849 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    Article  PubMed  Google Scholar 

  171. Vinderola, G. et al. Fermented foods: a perspective on their role in delivering biotics. Front. Microbiol. 14, 1196239 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Salmerón, I. Fermented cereal beverages: from probiotic, prebiotic and synbiotic towards nanoscience designed healthy drinks. Lett. Appl. Microbiol. 65, 114–124 (2017).

    Article  PubMed  Google Scholar 

  173. Apolinar-Valiente, R. et al. Oligosaccharides of cabernet sauvignon, syrah and monastrell red wines. Food Chem. 179, 311–317 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Nemoto, H. et al. Effects of fermented brown rice on the intestinal environments in healthy adult. J. Med. Invest. 58, 235–245 (2011).

    Article  PubMed  Google Scholar 

  175. Schwab, C., Mastrangelo, M., Corsetti, A. & Gänzle, M. Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chem. 85, 679–684 (2008).

    Article  CAS  Google Scholar 

  176. Salazar, N., Gueimonde, M., de los Reyes-Gavilán, C. G. & Ruas-Madiedo, P. Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit. Rev. Food Sci. Nutr. 56, 1440–1453 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Hidalgo-Cantabrana, C. et al. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics Antimicrob. Proteins 4, 227–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Castellone, V. et al. Eating fermented: health benefits of LAB-fermented foods. Foods 10, 2639 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lynch, K. M., Zannini, E., Coffey, A. & Arendt, E. K. Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization, and health benefits. Annu. Rev. Food Sci. Technol. 9, 155–176 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Moran, A. P. Microbial Glycobiology: Structures, Relevance and Applications (Elsevier, 2009).

  181. Smitinont, T. et al. Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization. Int. J. Food Microbiol. 51, 105–111 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Sanni, A. I., Onilude, A. A., Ogunbanwo, S. T., Fadahunsi, I. F. & Afolabi, R. O. Production of exopolysaccharides by lactic acid bacteria isolated from traditional fermented foods in Nigeria. Eur. Food Res. Technol. 214, 405–407 (2002).

    Article  CAS  Google Scholar 

  183. Patel, A., Prajapati, J. B., Holst, O. & Ljungh, A. Determining probiotic potential of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented food products. Food Biosci. 5, 27–33 (2014).

    Article  CAS  Google Scholar 

  184. Seo, E.-S. et al. Synthesis of thermo- and acid-stable novel oligosaccharides by using dextransucrase with high concentration of sucrose. Enzym. Microb. Technol. 40, 1117–1123 (2007).

    Article  CAS  Google Scholar 

  185. Tieking, M. & Gänzle, M. G. Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci. Technol. 16, 79–84 (2005).

    Article  CAS  Google Scholar 

  186. Liu, C. F. et al. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric. 91, 2284–2291 (2011).

    CAS  PubMed  Google Scholar 

  187. Oerlemans, M. M. P., Akkerman, R., Ferrari, M., Walvoort, M. T. C. & de Vos, P. Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. J. Funct. Foods 76, 104289 (2021).

    Article  CAS  Google Scholar 

  188. Živković, M. et al. EPS-SJ exopolisaccharide produced by the strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 is involved in adhesion to epithelial intestinal cells and decrease on E. coli association to Caco-2 cells. Front. Microbiol. 7, 286 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Vinderola, G., Perdigón, G., Duarte, J., Farnworth, E. & Matar, C. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36, 254–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Kook, S.-Y., Lee, Y., Jeong, E.-C. & Kim, S. Immunomodulatory effects of exopolysaccharides produced by Bacillus licheniformis and Leuconostoc mesenteroides isolated from Korean kimchi. J. Funct. Foods 54, 211–219 (2019).

    Article  CAS  Google Scholar 

  191. Zhou, X. et al. Exopolysaccharides from Lactobacillus plantarum NCU116 regulate intestinal barrier function via STAT3 signaling pathway. J. Agric. Food Chem. 66, 9719–9727 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Lim, J. et al. Antiobesity effect of exopolysaccharides isolated from kefir grains. J. Agric. Food Chem. 65, 10011–10019 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Zhang, Z. et al. Isolated exopolysaccharides from Lactobacillus rhamnosus GG alleviated adipogenesis mediated by TLR2 in mice. Sci. Rep. 6, 36083 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Choi, S. S. et al. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol. 42, 452–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Kim, Y., Oh, S., Yun, H. S., Oh, S. & Kim, S. H. Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett. Appl. Microbiol. 51, 123–130 (2010).

    CAS  PubMed  Google Scholar 

  196. Ismail, B. & Nampoothiri, K. M. Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Biologia 68, 1041–1047 (2013).

    Article  CAS  Google Scholar 

  197. Wang, J., Zhao, X., Tian, Z., Yang, Y. & Yang, Z. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet kefir. Carbohydr. Polym. 125, 16–25 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Zhou, J., Liu, X., Jiang, H. & Dong, M. Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis. Food Microbiol. 26, 770–775 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Maeda, H., Zhu, X., Omura, K., Suzuki, S. & Kitamura, S. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors 22, 197–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  200. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gaur, G. & Gänzle, M. G. Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: novel insights into metabolic pathways and functional metabolites. Curr. Res. Food Sci. 6, 100448 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Del Rio, D. et al. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 18, 1818–1892 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Leonard, W., Zhang, P., Ying, D. & Fang, Z. Hydroxycinnamic acids on gut microbiota and health. Compr. Rev. Food Sci. Food Saf. 20, 710–737 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Leonard, W., Zhang, P., Ying, D., Adhikari, B. & Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 49, 107763 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Leonard, W., Zhang, P., Ying, D. & Fang, Z. Lignanamides: sources, biosynthesis and potential health benefits – a minireview. Crit. Rev. Food Sci. Nutr. 61, 1404–1414 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Senger, D. R., Li, D., Jaminet, S.-C. & Cao, S. Activation of the Nrf2 cell defense pathway by ancient foods: disease prevention by important molecules and microbes lost from the modern western diet. PLoS ONE 11, e0148042 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Cardoso, R. R. et al. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int. 128, 108782 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Namal Senanayake, S. P. J. Green tea extract: chemistry, antioxidant properties and food applications–a review. J. Funct. Foods 5, 1529–1541 (2013).

    Article  CAS  Google Scholar 

  209. Tanaka, T. & Kouno, I. Oxidation of tea catechins: chemical structures and reaction mechanism. Food Sci. Technol. Res. 9, 128–133 (2003).

    Article  CAS  Google Scholar 

  210. Corrêa, T. A. F., Rogero, M. M., Hassimotto, N. M. A. & Lajolo, F. M. The two-way polyphenols-microbiota interactions and their effects on obesity and related metabolic diseases. Front. Nutr. 6, 188 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Ozdal, T. et al. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8, 78 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Selma, M. V., Espin, J. C. & Tomas-Barberan, F. A. Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem. 57, 6485–6501 (2009).

    Article  CAS  PubMed  Google Scholar 

  213. Tombola, F. et al. Plant polyphenols inhibit VacA, a toxin secreted by the gastric pathogen Helicobacter pylori. FEBS Lett. 543, 184–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  214. Moreno-Indias, I. et al. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct. 7, 1775–1787 (2016).

    Article  PubMed  Google Scholar 

  215. Puupponen‐Pimiä, R. et al. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 98, 991–1000 (2005).

    Article  PubMed  Google Scholar 

  216. Saw, C. L. et al. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food Chem. Toxicol. 72, 303–311 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Tolonen, M. et al. Plant-derived biomolecules in fermented cabbage. J. Agric. Food Chem. 50, 6798–6803 (2002).

    Article  CAS  PubMed  Google Scholar 

  218. Kim, D. & Han, G. D. in Wheat and Rice In Disease Prevention and Health: Benefits, Risks and Mechanisms of Whole Grains in Health Promotion (eds Watson, R. R., Preedy, V. R. & Zibadi, S.) 467–480 (Elsevier, 2014).

  219. Li, W. et al. Effects of co-fermentation on the release of ferulic acid and the rheological properties of whole wheat dough. J. Cereal Sci. 111, 103669 (2023).

    Article  CAS  Google Scholar 

  220. Kudou, S. et al. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric. Biol. Chem. 55, 2227–2233 (1991).

    CAS  Google Scholar 

  221. Al-Nakkash, L. & Kubinski, A. Soy isoflavones and gastrointestinal health. Curr. Nutr. Rep. 9, 193–201 (2020).

    Article  CAS  PubMed  Google Scholar 

  222. Wang, L.-j et al. Influences of processing and NaCl supplementation on isoflavone contents and composition during douchi manufacturing. Food Chem. 101, 1247–1253 (2007).

    Article  CAS  Google Scholar 

  223. Chiou, R. Y. & Cheng, S. L. Isoflavone transformation during soybean koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl. J. Agric. Food Chem. 49, 3656–3660 (2001).

    Article  CAS  PubMed  Google Scholar 

  224. Lee, Y.-W., Kim, J.-D., Zheng, J. & Row, K. H. Comparisons of isoflavones from Korean and Chinese soybean and processed products. Biochem. Eng. J. 36, 49–53 (2007).

    Article  CAS  Google Scholar 

  225. Nakajima, N., Nozaki, N., Ishihara, K., Ishikawa, A. & Tsuji, H. Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isoflavone-enriched tempeh. J. Biosci. Bioeng. 100, 685–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  226. Izumi, T. et al. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130, 1695–1699 (2000).

    Article  CAS  PubMed  Google Scholar 

  227. Marhuenda-Muñoz, M. et al. Microbial phenolic metabolites: which molecules actually have an effect on human health? Nutrients 11, 2725 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Choi, Y. H., Lee, W. H., Park, K. Y. & Zhang, L. p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn. J. Cancer Res. 91, 164–173 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Li, Y. & Sarkar, F. H. Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin. Cancer Res. 8, 2369–2377 (2002).

    CAS  PubMed  Google Scholar 

  230. Miękus, K. & Madeja, Z. Genistein inhibits the contact-stimulated migration of prostate cancer cells. Cell. Mol. Biol. Lett. 12, 348–361 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Gänzle, M. G. Food fermentations for improved digestibility of plant foods – an essential ex situ digestion step in agricultural societies? Curr. Opin. Food Sci. 32, 124–132 (2020).

    Article  Google Scholar 

  232. Barac, A. in Clinically Relevant Mycoses: A Practical Approach (ed. Presterl, E.) 213–225 (Springer, 2019).

  233. Adebiyi, J. A., Kayitesi, E., Adebo, O. A., Changwa, R. & Njobeh, P. B. Food fermentation and mycotoxin detoxification: an African perspective. Food Control. 106, 106731 (2019).

    Article  CAS  Google Scholar 

  234. Joint FAO/WHO Expert Committee on Food Additives, World Health Organization & Food and Agriculture Organization of the United Nations. Evaluation of certain food additives and contaminants: thirty-fifth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization (1990).

  235. Wei, C. et al. Progress in the distribution, toxicity, control, and detoxification of patulin: a review. Toxicon 184, 83–93 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Moss, M. O. & Long, M. T. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit. Contam. 19, 387–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  237. Benkerroum, N. Chronic and acute toxicities of aflatoxins: mechanisms of action. Int. J. Environ. Res. Public Health 17, 423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Frisvad, J. C., Samson, R. A. & Smedsgaard, J. Emericella astellata, a new producer of aflatoxin B1, B2 and sterigmatocystin. Lett. Appl. Microbiol. 38, 440–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  239. Frisvad, J. C. & Samson, R. A. Emericella venezuelensis, a new species with stellate ascospores producing sterigmatocystin and aflatoxin B1. Syst. Appl. Microbiol. 27, 672–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  240. Nazhand, A., Durazzo, A., Lucarini, M., Souto, E. B. & Santini, A. Characteristics, occurrence, detection and detoxification of aflatoxins in foods and feeds. Foods 9, 644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Williams, J. H. et al. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 80, 1106–1122 (2004).

    Article  CAS  PubMed  Google Scholar 

  242. Gong, Y. Y. et al. Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: cross sectional study. BMJ 325, 20 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Martínez, M. P., Magnoli, A. P., González Pereyra, M. L. & Cavaglieri, L. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon 172, 1–7 (2019).

    Article  PubMed  Google Scholar 

  244. Taheur, F. B. et al. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. Int. J. Food Microbiol. 251, 1–7 (2017).

    Article  PubMed  Google Scholar 

  245. Saladino, F., Luz, C., Manyes, L., Fernández-Franzón, M. & Meca, G. In vitro antifungal activity of lactic acid bacteria against mycotoxigenic fungi and their application in loaf bread shelf life improvement. Food Control. 67, 273–277 (2016).

    Article  CAS  Google Scholar 

  246. Bouhet, S. et al. The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci. 77, 165–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  247. Mokoena, M. P., Chelule, P. K. & Gqaleni, N. Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. J. Food Prot. 68, 2095–2099 (2005).

    Article  CAS  PubMed  Google Scholar 

  248. Nyamete, F. A., Mourice, B. & Mugula, J. K. Fumonisin B1 reduction in lactic acid bacteria fermentation of maize porridges. Tanzan. J. Agric. Sci. 15, 13–20 (2016).

    Google Scholar 

  249. Lomer, M. C., Parkes, G. C. & Sanderson, J. D. Review article: lactose intolerance in clinical practice–myths and realities. Aliment. Pharmacol. Ther. 27, 93–103 (2008).

    Article  CAS  PubMed  Google Scholar 

  250. Martini, M. C., Bollweg, G. L., Levitt, M. D. & Savaiano, D. A. Lactose digestion by yogurt beta-galactosidase: influence of pH and microbial cell integrity. Am. J. Clin. Nutr. 45, 432–436 (1987).

    Article  CAS  PubMed  Google Scholar 

  251. Gilliland, S. E. & Kim, H. S. Effect of viable starter culture bacteria in yogurt on lactose utilization in humans. J. Dairy. Sci. 67, 1–6 (1984).

    Article  CAS  PubMed  Google Scholar 

  252. Noh, D. O. & Gilliland, S. E. Influence of bile on β-galactosidase activity of component species of yogurt starter cultures. J. Dairy. Sci. 77, 3532–3537 (1994).

    Article  CAS  PubMed  Google Scholar 

  253. Marteau, P. et al. Effect of the microbial lactase (EC 3.2.1.23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. Br. J. Nutr. 64, 71–79 (1990).

    Article  CAS  PubMed  Google Scholar 

  254. Kolars, J. C., Levitt, M. D., Aouji, M. & Savaiano, D. A. Yogurt–an autodigesting source of lactose. N. Engl. J. Med. 310, 1–3 (1984).

    Article  CAS  PubMed  Google Scholar 

  255. Kotz, C. M., Furne, J. K., Savaiano, D. A. & Levitt, M. D. Factors affecting the ability of a high β-galactosidase yogurt to enhance lactose absorption. J. Dairy. Sci. 77, 3538–3544 (1994).

    Article  CAS  PubMed  Google Scholar 

  256. Pochart, P., Dewit, O., Desjeux, J. F. & Bourlioux, P. Viable starter culture, beta-galactosidase activity, and lactose in duodenum after yogurt ingestion in lactase-deficient humans. Am. J. Clin. Nutr. 49, 828–831 (1989).

    Article  CAS  PubMed  Google Scholar 

  257. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 2976) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 8, 1763 (2010).

    Article  Google Scholar 

  258. Hertzler, S. R. & Clancy, S. M. Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. J. Am. Diet. Assoc. 103, 582–587 (2003).

    Article  PubMed  Google Scholar 

  259. Suri, S. et al. Considerations for development of lactose-free food. J. Nutr. Intermed. Metab. 15, 27–34 (2019).

    Article  Google Scholar 

  260. Palsson, O. S. et al. Development and validation of the Rome IV diagnostic questionnaire for adults. Gastroenterology 150, 1481–1491 (2016).

    Article  Google Scholar 

  261. van Lanen, A.-S., de Bree, A. & Greyling, A. Efficacy of a low-FODMAP diet in adult irritable bowel syndrome: a systematic review and meta-analysis. Eur. J. Nutr. 60, 3505–3522 (2021).

    PubMed  PubMed Central  Google Scholar 

  262. Black, C. J., Staudacher, H. M. & Ford, A. C. Efficacy of a low FODMAP diet in irritable bowel syndrome: systematic review and network meta-analysis. Gut 71, 1117–1126 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Iacovou, M., Tan, V., Muir, J. G. & Gibson, P. R. The low FODMAP diet and its application in East and Southeast Asia. J. Neurogastroenterol. Motil. 21, 459–470 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Struyf, N., Laurent, J., Verspreet, J., Verstrepen, K. J. & Courtin, C. M. Saccharomyces cerevisiae and Kluyveromyces marxianus cocultures allow reduction of fermentable oligo-, di-, and monosaccharides and polyols levels in whole wheat bread. J. Agric. Food Chem. 65, 8704–8713 (2017).

    Article  CAS  PubMed  Google Scholar 

  265. Andersson, R., Fransson, G., Tietjen, M. & Åman, P. Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J. Agric. Food Chem. 57, 2004–2008 (2009).

    Article  CAS  PubMed  Google Scholar 

  266. Laatikainen, R. et al. Randomised clinical trial: low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Aliment. Pharmacol. Ther. 44, 460–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Lebwohl, B., Sanders, D. S. & Green, P. H. R. Coeliac disease. Lancet 391, 70–81 (2018).

    Article  PubMed  Google Scholar 

  268. Caio, G. et al. Celiac disease: a comprehensive current review. BMC Med. 17, 142 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Singh, P. et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 16, 823–836.e2 (2018).

    Article  PubMed  Google Scholar 

  270. Roberts, S. E. et al. Systematic review and meta-analysis: the incidence and prevalence of paediatric coeliac disease across Europe. Aliment. Pharmacol. Ther. 54, 109–128 (2021).

    Article  PubMed  Google Scholar 

  271. Makharia, G. K. et al. The global burden of coeliac disease: opportunities and challenges. Nat. Rev. Gastroenterol. Hepatol. 19, 313–327 (2022).

    Article  CAS  PubMed  Google Scholar 

  272. Engström, N., Sandberg, A.-S. & Scheers, N. Sourdough fermentation of wheat flour does not prevent the interaction of transglutaminase 2 with α2-gliadin or gluten. Nutrients 7, 2134–2144 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Mandile, R. et al. Lack of immunogenicity of hydrolysed wheat flour in patients with coeliac disease after a short‐term oral challenge. Aliment. Pharmacol. Ther. 46, 440–446 (2017).

    Article  CAS  PubMed  Google Scholar 

  274. Di Cagno, R. et al. Gluten-free sourdough wheat baked goods appear safe for young celiac patients: a pilot study. J. Pediatr. Gastroenterol. Nutr. 51, 777–783 (2010).

    Article  PubMed  Google Scholar 

  275. Greco, L. et al. Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin. Gastroenterol. Hepatol. 9, 24–29 (2011).

    Article  PubMed  Google Scholar 

  276. Di Cagno, R. et al. Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl. Environ. Microbiol. 70, 1088–1096 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Vagadia, B. H., Vanga, S. K. & Raghavan, V. Inactivation methods of soybean trypsin inhibitor–a review. Trends Food Sci. Technol. 64, 115–125 (2017).

    Article  CAS  Google Scholar 

  278. Adeyemo, S. M. & Onilude, A. A. Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Niger. Food J. 31, 84–90 (2013).

    Article  Google Scholar 

  279. Shi, L., Mu, K., Arntfield, S. D. & Nickerson, M. T. Changes in levels of enzyme inhibitors during soaking and cooking for pulses available in Canada. J. Food Sci. Technol. 54, 1014–1022 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Kumar, A. et al. Phytic acid: blessing in disguise, a prime compound required for both plant and human nutrition. Food Res. Int. 142, 110193 (2021).

    Article  CAS  PubMed  Google Scholar 

  281. Gibson, R. S., Raboy, V. & King, J. C. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr. Rev. 76, 793–804 (2018).

    Article  PubMed  Google Scholar 

  282. Larsson, M. & Sandberg, A. S. Phytate reduction in bread containing oat flour, oat bran or rye bran. J. Cereal Sci. 14, 141–149 (1991).

    Article  CAS  Google Scholar 

  283. Yadav, S. & Khetarpaul, N. Indigenous legume fermentation: effect on some antinutrients and in-vitro digestibility of starch and protein. Food Chem. 50, 403–406 (1994).

    Article  CAS  Google Scholar 

  284. Ikenaga, T. et al. Effect of phytic acid on postprandial serum uric acid level in healthy volunteers: a randomized, double-blind, crossover study. Nucleosides Nucleotides Nucleic Acids 39, 504–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  285. Yoon, J. H., Thompson, L. U. & Jenkins, D. J. The effect of phytic acid on in vitro rate of starch digestibility and blood glucose response. Am. J. Clin. Nutr. 38, 835–842 (1983).

    Article  CAS  PubMed  Google Scholar 

  286. Luzzatto, L. & Arese, P. Favism and glucose-6-phosphate dehydrogenase deficiency. N. Engl. J. Med. 378, 60–71 (2018).

    Article  CAS  PubMed  Google Scholar 

  287. Multari, S., Stewart, D. & Russell, W. R. Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Compr. Rev. Food Sci. Food Saf. 14, 511–522 (2015).

    Article  Google Scholar 

  288. Rizzello, C. G. et al. Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Sci. Rep. 6, 32452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Panter, K. E. in: Veterinary Toxicology 3rd edn (ed. Gupta, R. C.) 935–940 (Academic Press, 2018).

  290. Cressey, P. & Reeve, J. Metabolism of cyanogenic glycosides: a review. Food Chem. Toxicol. 125, 225–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  291. Nzwalo, H. & Cliff, J. Konzo: from poverty, cassava, and cyanogen intake to toxico-nutritional neurological disease. PLoS Negl. Trop. Dis. 5, e1051 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Panghal, A., Munezero, C., Sharma, P. & Chhikara, N. Cassava toxicity, detoxification and its food applications: a review. Toxin Rev. 40, 1–16 (2021).

    Article  CAS  Google Scholar 

  293. Adamafio, N. A., Sakyiamah, M. & Tettey, J. Fermentation in cassava (Manihot esculenta Crantz) pulp juice improves nutritive value of cassava peel. Afr. J. Biochem. Res. 4, 51–56 (2010).

    CAS  Google Scholar 

  294. Lei, V., Amoa-Awua, W. K. A. & Brimer, L. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Int. J. Food Microbiol. 53, 169–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  295. Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  296. Mukherjee, A., Gómez-Sala, B., O’Connor, E. M., Kenny, J. G. & Cotter, P. D. Global regulatory frameworks for fermented foods: a review. Front. Nutr. 9, 902642 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Strachan, D. P. Hay fever, hygiene, and household size. Br. Med. J. 299, 1259 (1989).

    Article  CAS  Google Scholar 

  298. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Bach, J.-F. Revisiting the hygiene hypothesis in the context of autoimmunity. Front. Immunol. 11, 615192 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Guarner, F. et al. Mechanisms of disease: the hygiene hypothesis revisited. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 275–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  301. Rook, G. A. W. Hygiene hypothesis and autoimmune diseases. Clin. Rev. Allergy Immunol. 42, 5–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  302. Sonnenburg, J. L. & Sonnenburg, E. D. Vulnerability of the industrialized microbiota. Science 366, eaaw9255 (2019).

    Article  CAS  PubMed  Google Scholar 

  303. Marco, M. L. et al. Should there be a recommended daily intake of microbes. J. Nutr. 150, 3061–3067 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Masood, M. I., Qadir, M. I., Shirazi, J. H. & Khan, I. U. Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol. 37, 91–98 (2011).

    Article  PubMed  Google Scholar 

  305. Lang, J. M., Eisen, J. A. & Zivkovic, A. M. The microbes we eat: abundance and taxonomy of microbes consumed in a day’s worth of meals for three diet types. PeerJ 2, e659 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Codex Alimentarius. Standard for fermented milks. Standard CXS 243-2003. FAO (2022).

  307. Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Galimberti, A. et al. Fermented food products in the era of globalization: tradition meets biotechnology innovations. Curr. Opin. Biotechnol. 70, 36–41 (2021).

    Article  CAS  PubMed  Google Scholar 

  309. Hill, C. et al. Positive health outcomes associated with live microbe intake from foods, including fermented foods, assessed using the NHANES database. J. Nutr. 153, 1143–1149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Marco, M. L. et al. A classification system for defining and estimating dietary intake of live microbes in US adults and children. J. Nutr. 152, 1729–1736 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Nicklaus, S. et al. The protective effect of cheese consumption at 18 months on allergic diseases in the first 6 years. Allergy 74, 788–798 (2019).

    Article  PubMed  Google Scholar 

  312. Park, S. & Bae, J.-H. Fermented food intake is associated with a reduced likelihood of atopic dermatitis in an adult population (Korean National Health and Nutrition Examination Survey 2012-2013). Nutr. Res. 36, 125–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  313. Celik, V., Beken, B., Yazicioglu, M., Ozdemir, P. G. & Sut, N. Do traditional fermented foods protect against infantile atopic dermatitis. Pediatr. Allergy Immunol. 30, 540–546 (2019).

    Article  PubMed  Google Scholar 

  314. Yılmaz, İ., Dolar, M. E. & Özpınar, H. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: a randomized controlled trial. Turkish J. Gastroenterol. 30, 242 (2019).

    Article  Google Scholar 

  315. del Campo, R. et al. Scarce evidence of yogurt lactic acid bacteria in human feces after daily yogurt consumption by healthy volunteers. Appl. Environ. Microbiol. 71, 547–549 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  316. Mater, D. D. G. et al. Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiol. Lett. 250, 185–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  317. Elli, M. et al. Survival of yogurt bacteria in the human gut. Appl. Environ. Microbiol. 72, 5113–5117 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Oozeer, R. et al. Survival of Lactobacillus casei in the human digestive tract after consumption of fermented milk. Appl. Environ. Microbiol. 72, 5615–5617 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Bove, P. et al. Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiol. Res. 168, 351–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  320. Vesa, T., Pochart, P. & Marteau, P. Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Aliment. Pharmacol. Ther. 14, 823–828 (2000).

    Article  CAS  PubMed  Google Scholar 

  321. Lavermicocca, P. et al. Study of adhesion and survival of lactobacilli and bifidobacteria on table olives with the aim of formulating a new probiotic food. Appl. Environ. Microbiol. 71, 4233–4240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Saxelin, M. et al. Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese. Int. J. Food Microbiol. 144, 293–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  323. Derrien, M. & van Hylckama Vlieg, J. E. T. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 23, 354–366 (2015).

    Article  CAS  PubMed  Google Scholar 

  324. Roselli, M. et al. Colonization ability and impact on human gut microbiota of foodborne microbes from traditional or probiotic-added fermented foods: a systematic review. Front. Nutr. 8, 689084 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  325. Culp, E. J. & Goodman, A. L. Cross-feeding in the gut microbiome: ecology and mechanisms. Cell Host Microbe 31, 485–499 (2023).

    Article  CAS  PubMed  Google Scholar 

  326. Henriques, S. F. et al. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat. Commun. 11, 4236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Graber Joseph, R. & Breznak John, A. Folate cross-feeding supports symbiotic homoacetogenic spirochetes. Appl. Environ. Microbiol. 71, 1883–1889 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Liu, Y., Wang, J. & Wu, C. Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. Front. Nutr. 8, 634897 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Zhang, J. S. et al. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells. J. Dairy. Sci. 102, 6802–6819 (2019).

    Article  CAS  PubMed  Google Scholar 

  330. Zhang, Y. et al. Inhibition of Shigella sonnei-induced epithelial barrier disruption by surface-layer associated proteins of lactobacilli from Chinese fermented food. J. Dairy. Sci. 101, 1834–1842 (2018).

    Article  CAS  PubMed  Google Scholar 

  331. Park, J.-S., Joe, I., Rhee, P. D., Jeong, C.-S. & Jeong, G. A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis. J. Microbiol. 55, 304–310 (2017).

    Article  CAS  PubMed  Google Scholar 

  332. Liu, Y.-W., Su, Y.-W., Ong, W.-K., Cheng, T.-H. & Tsai, Y.-C. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. Int. Immunopharmacol. 11, 2159–2166 (2011).

    Article  CAS  PubMed  Google Scholar 

  333. Sharma, B. R., Jayant, D., Rajshee, K., Singh, Y. & Halami, P. M. Distribution and diversity of nisin producing LAB in fermented food. Curr. Microbiol. 78, 3430–3438 (2021).

    Article  CAS  PubMed  Google Scholar 

  334. Ghadimi, D. et al. Molecular identification of potential Th1/Th2 responses-modulating bacterial genes using suppression subtractive DNA hybridization. Immunobiology 219, 208–217 (2014).

    Article  CAS  PubMed  Google Scholar 

  335. Chen, Y. et al. Lactobacillus plantarum Lp2 improved LPS-induced liver injury through the TLR-4/MAPK/NFκB and Nrf2-HO-1/CYP2E1 pathways in mice. Food Nutr. Res.66, https://doi.org/10.29219/fnr.v66.5459 (2022).

  336. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  337. Yeşilyurt, N., Yılmaz, B., Ağagündüz, D. & Capasso, R. Involvement of probiotics and postbiotics in the immune system modulation. Biologics 1, 89–110 (2021).

    Article  Google Scholar 

  338. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  339. Zoetendal, E. G. et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6, 1415–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Zaccaria, E. et al. Endogenous small intestinal microbiome determinants of transient colonisation efficiency by bacteria from fermented dairy products: a randomised controlled trial. Microbiome 11, 43 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Fujisawa, T., Shinohara, K., Kishimoto, Y. & Terada, A. Effect of miso soup containing Natto on the composition and metabolic activity of the human faecal flora. Microb. Ecol. Health Dis. 18, 79–84 (2006).

    CAS  Google Scholar 

  342. McNulty, N. P. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 3, 106ra106 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  343. Taylor, B. C. et al. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. mSystems 5, e00901-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  344. Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  345. Nielsen, E. S. et al. Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurisation–a pilot study. Food Funct. 9, 5323–5335 (2018).

    Article  CAS  PubMed  Google Scholar 

  346. Bourrie, B. C. T., Cotter, P. D. & Willing, B. P. Traditional kefir reduces weight gain and improves plasma and liver lipid profiles more successfully than a commercial equivalent in a mouse model of obesity. J. Funct. Foods 46, 29–37 (2018).

    Article  CAS  Google Scholar 

  347. Bourrie, B. C. T. et al. Kefir microbial composition is a deciding factor in the physiological impact of kefir in a mouse model of obesity. Br. J. Nutr. 125, 129–138 (2020).

    Article  PubMed  Google Scholar 

  348. Bourrie, B. C. T. et al. Consumption of the cell-free or heat-treated fractions of a pitched kefir confers some but not all positive impacts of the corresponding whole kefir. Front. Microbiol. 13, 1056526 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  349. Bourrie, B. et al. Consumption of kefir made with traditional microorganisms resulted in greater improvements in LDL cholesterol and plasma markers of inflammation in males when compared to a commercial kefir: a randomized pilot study. Appl. Physiol. Nutr. Metab. 48, 668–677 (2023).

    Article  CAS  PubMed  Google Scholar 

  350. Mathur, H., Beresford, T. P. & Cotter, P. D. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients 12, 1679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Staudacher, H. M. & Nevin, A. N. Fermented foods: fad or favourable addition to the diet? Lancet Gastroenterol. Hepatol. 4, 19 (2019).

    Article  PubMed  Google Scholar 

  352. Morales, D. Biological activities of kombucha beverages: the need of clinical evidence. Trends Food Sci. Technol. 105, 323–333 (2020).

    Article  CAS  Google Scholar 

  353. Savaiano, D. A. & Hutkins, R. W. Yogurt, cultured fermented milk, and health: a systematic review. Nutr. Rev. 79, 599–614 (2021).

    Article  PubMed  Google Scholar 

  354. Diez-Ozaeta, I. & Astiazaran, O. J. Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res. Int. 156, 111133 (2022).

    Article  CAS  PubMed  Google Scholar 

  355. Baruah, R., Ray, M. & Halami, P. M. Preventive and therapeutic aspects of fermented foods. J. Appl. Microbiol. 132, 3476–3489 (2022).

    Article  PubMed  Google Scholar 

  356. Bell, V., Ferrão, J. & Fernandes, T. Nutritional guidelines and fermented food frameworks. Foods 6, 65, (2017).

    Article  PubMed  Google Scholar 

  357. Chilton, S. N., Burton, J. P. & Reid, G. Inclusion of fermented foods in food guides around the world. Nutrients 7, 390–404 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  358. Zimmermann, A., Van Hoorde, K. & Butler, F. Microbial analysis of craft and microbrewed beer. Biosyst. Food Eng. Res. Rev. 23, 52 (2018).

    Google Scholar 

  359. Altay, F., Karbancioglu-Guler, F., Daskaya-Dikmen, C. & Heperkan, D. A review on traditional Turkish fermented non-alcoholic beverages: microbiota, fermentation process and quality characteristics. Int. J. Food Microbiol. 167, 44–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  360. Lee, L. W., Cheong, M. W., Curran, P., Yu, B. & Liu, S. Q. Coffee fermentation and flavor–an intricate and delicate relationship. Food Chem. 185, 182–191 (2015).

    Article  CAS  PubMed  Google Scholar 

  361. Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J.-P. & Taillandier, P. Understanding kombucha tea fermentation: a review. J. Food Sci. 83, 580–588 (2018).

    Article  CAS  PubMed  Google Scholar 

  362. Zhang, K., Wu, W. & Yan, Q. Research advances on sake rice, koji, and sake yeast: a review. Food Sci. Nutr. 8, 2995–3003 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Romero-Luna, H. E., Hernández-Sánchez, H. & Dávila-Ortiz, G. Traditional fermented beverages from Mexico as a potential probiotic source. Ann. Microbiol. 67, 577–586 (2017).

    Article  CAS  Google Scholar 

  364. Lynch, K. M., Wilkinson, S., Daenen, L. & Arendt, E. K. An update on water kefir: microbiology, composition and production. Int. J. Food Microbiol. 345, 109128 (2021).

    Article  CAS  PubMed  Google Scholar 

  365. Han, J. et al. Regulation of microbial metabolism on the formation of characteristic flavor and quality formation in the traditional fish sauce during fermentation: a review. Crit. Rev. Food Sci. Nutr. 63, 7564–7583 (2022).

    Article  PubMed  Google Scholar 

  366. Allwood, J. G., Wakeling, L. T. & Bean, D. C. Fermentation and the microbial community of Japanese koji and miso: a review. J. Food Sci. 86, 2194–2207 (2021).

    Article  CAS  PubMed  Google Scholar 

  367. Devanthi, P. V. P. & Gkatzionis, K. Soy sauce fermentation: microorganisms, aroma formation, and process modification. Food Res. Int. 120, 364–374 (2019).

    Article  CAS  PubMed  Google Scholar 

  368. Budak, N. H., Aykin, E., Seydim, A. C., Greene, A. K. & Guzel-Seydim, Z. B. Functional properties of vinegar. J. Food Sci. 79, R757–R764 (2014).

    Article  CAS  PubMed  Google Scholar 

  369. Kongor, J. E. et al. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile – a review. Food Res. Int. 82, 44–52 (2016).

    Article  CAS  Google Scholar 

  370. Johnson, M. E. A 100-year review: cheese production and quality. J. Dairy. Sci. 100, 9952–9965 (2017).

    Article  CAS  PubMed  Google Scholar 

  371. Jung, J. Y., Lee, S. H. & Jeon, C. O. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Appl. Microbiol. Biotechnol. 98, 2385–2393 (2014).

    Article  CAS  PubMed  Google Scholar 

  372. Bourrie, B. C., Willing, B. P. & Cotter, P. D. The microbiota and health promoting characteristics of the fermented beverage kefir. Front. Microbiol. 7, 647 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  373. Afzaal, M. et al. Nutritional health perspective of natto: a critical review. Biochem. Res. Int. 2022, 5863887 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  374. Adisa, A. M. & Enujiugha, V. N. Microbiology and safety of ogi fermentation: a review. Eur. J. Nutr. Food Saf. 12, 90–100 (2020).

    Article  Google Scholar 

  375. Yang, X. et al. Microbial community dynamics and metabolome changes during spontaneous fermentation of northeast sauerkraut from different households. Front. Microbiol. 11, 1878 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  376. Sakandar, H. A. et al. Sourdough bread: a contemporary cereal fermented product. J. Food Process. Preserv. 43, e13883 (2019).

    Article  Google Scholar 

  377. Han, B.-Z., Rombouts, F. M. & Nout, M. J. R. A Chinese fermented soybean food. Int. J. Food Microbiol. 65, 1–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  378. Romulo, A. & Surya, R. Tempe: a traditional fermented food of Indonesia and its health benefits. Int. J. Gastronomy Food Sci. 26, 100413 (2021).

    Article  Google Scholar 

  379. McKinley, M. C. The nutrition and health benefits of yoghurt. Int. J. Dairy. Technol. 58, 1–12 (2005).

    Article  CAS  Google Scholar 

  380. Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72, 728–764 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Fox, P. F., Guinee, T. P., Cogan, T. M. & McSweeney, P. L. Fundamentals of Cheese Science Ch. 6 (Springer, 2017).

Download references

Acknowledgements

A.M. was supported by the Marie Skłodowska-Curie Career-FIT PLUS Fellowship (MF20210247); this project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement (as per Article 29.4 of the grant agreement). Research in the Cotter laboratory is funded by the European Union’s Horizon 2020 Research and Innovation Programme, under the MASTER project (grant number 818368), by Science Foundation Ireland (SFI) (grant number SFI/12/RC/2273_P2) (APC Microbiome Ireland), by SFI together with the Irish Department of Agriculture, Food and the Marine (grant number SFI/16/RC/3835) (VistaMilk), by Enterprise Ireland and industry in the Food for Health Ireland (FHI)-3 project (grant number TC/2018/0025), and by the Institute for the Advancement of Food and Nutritional Sciences (grant number NA-AGFOODDEVELAUTH-20201216). Discussions with R. Balasubramanian helped the authors improve the revised manuscript; they thank her for her help.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission. A.M., S.B. and P.D.C. researched data for the article.

Corresponding author

Correspondence to Paul D. Cotter.

Ethics declarations

Competing interests

E.D. has received an education grant from Alpro, research funding from the British Dietetic Association, Almond Board of California, the International Nut and Dried Fruit Council and Nestec Ltd, and has served as a consultant for Puratos. M.L.M. has been compensated for consulting, speaking fees or service on advisory boards for the Kerry Health and Nutrition Institute, the Icelandic Milk & Skyr Corporation, and NURA USA. Research in the laboratory of P.D.C. has been funded by Friesland Campina, PrecisionBiotics Group, PepsiCo and Danone. P.D.C. has received support from PepsiCo, Yakult and H&H to attend/present at scientific meetings/conferences, and is the Chief Technical Officer and a co-founder of SeqBiome. A.M. and S.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Franck Carbonero, Michael Gänzle and Kieran Tuohy for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Breselge, S., Dimidi, E. et al. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 21, 248–266 (2024). https://doi.org/10.1038/s41575-023-00869-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00869-x

This article is cited by