Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut microbiota in overweight and obesity: crosstalk with adipose tissue

Abstract

Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.

Key points

  • Approximately 40% of the global population is affected by overweight or obesity; novel treatments focusing on modulating thermogenic pathways in adipose tissue and altering gut microbiota are being explored.

  • Adipose tissues, categorized as white, brown and beige, have distinct roles in energy storage, thermogenesis and metabolism in the body.

  • Environmental factors substantially influence energy metabolism, with diet, exercise and sleep being primary contributors.

  • Gut bacteria are involved in bidirectional communication between the gut and adipose tissue, influencing energy metabolism, nutrient absorption, appetite and adipose tissue function.

  • Adipose tissue hosts its own distinct microbiota, which varies based on metabolic health and other factors; its understanding could offer novel insights.

  • Translating gut microbiota research from animal models to human applications faces methodological and biological challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of adipose tissues and adipokines on peripheral tissues and metabolism.
Fig. 2: Different types of adipose tissues and adipocytes.
Fig. 3: Different types of adipose tissues in humans and rodents.
Fig. 4: Environmental factors and intrinsic factors affecting the gut microbiota composition.
Fig. 5: Molecular mechanisms and metabolites produced by the gut microbiota and acting on specific receptors in the intestine or the white and brown adipose tissues.

Similar content being viewed by others

References

  1. Valenzuela, P. L. et al. Obesity and the risk of cardiometabolic diseases. Nat. Rev. Cardiol. 20, 475–494 (2023).

    Article  PubMed  Google Scholar 

  2. Saha, A., Kolonin, M. G. & DiGiovanni, J. Obesity and prostate cancer — microenvironmental roles of adipose tissue. Nat. Rev. Urol. 20, 579–596 (2023).

    Article  PubMed  Google Scholar 

  3. de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

    Article  PubMed  Google Scholar 

  4. Van Hul, M. & Cani, P. D. The gut microbiota in obesity and weight management: microbes as friends or foe. Nat. Rev. Endocrinol. 19, 258–271 (2023).

    Article  PubMed  Google Scholar 

  5. Lafontan, M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am. J. Physiol. Cell Physiol. 302, C327–C359 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Hammarstedt, A., Gogg, S., Hedjazifar, S., Nerstedt, A. & Smith, U. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol. Rev. 98, 1911–1941 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. White, U., Beyl, R. A. & Ravussin, E. A higher proportion of small adipocytes is associated with increased visceral and ectopic lipid accumulation during weight gain in response to overfeeding in men. Int. J. Obes. 46, 1560–1563 (2022).

    Article  CAS  Google Scholar 

  8. White, U. & Ravussin, E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia 62, 17–23 (2019).

    Article  PubMed  Google Scholar 

  9. Koenen, M., Hill, M. A., Cohen, P. & Sowers, J. R. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128, 951–968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Longo, M. et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 20, 2358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kahn, C. R., Wang, G. & Lee, K. Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest. 129, 3990–4000 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karpe, F. & Pinnick, K. E. Biology of upper-body and lower-body adipose tissue — link to whole-body phenotypes. Nat. Rev. Endocrinol. 11, 90–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, M., Hu, T., Zhang, S. & Zhou, L. Associations of different adipose tissue depots with insulin resistance: a systematic review and meta-analysis of observational studies. Sci. Rep. 5, 18495 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McLaughlin, T., Lamendola, C., Liu, A. & Abbasi, F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 96, E1756–1760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klein, S. et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N. Engl. J. Med. 350, 2549–2557 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cypess, A. M. Reassessing human adipose tissue. N. Engl. J. Med. 386, 768–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Luong, Q., Huang, J. & Lee, K. Y. Deciphering white adipose tissue heterogeneity. Biology 8, 23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iacobellis, G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 19, 593–606 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, H. et al. Characteristics of mesenteric adipose tissue attached to different intestinal segments and their roles in immune regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 322, G310–G326 (2022).

    Article  ADS  PubMed  Google Scholar 

  22. Wu, Z. et al. Mesenteric adipose tissue contributes to intestinal barrier integrity and protects against nonalcoholic fatty liver disease in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G659–G670 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Yu, Z., Wang, Y., Yu, Z., Lu, M. & Xu, B. Crosstalk between adipose tissue and the microbiota-gut-brain axis in metabolic diseases. Int. J. Biol. Sci. 18, 1706–1723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Jung, S. M., Sanchez-Gurmaches, J. & Guertin, D. A. Brown adipose tissue development and metabolism. Handb. Exp. Pharmacol. 251, 3–36 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, F. T. & Stanford, K. I. Batokines: mediators of inter-tissue communication (a mini-review). Curr. Obes. Rep. 11, 1–9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Scheele, C. & Wolfrum, C. Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr. Rev. 41, 53–65 (2020).

    Article  PubMed  Google Scholar 

  28. Kajimura, S. et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22, 1397–1409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401–4406 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanchez-Gurmaches, J. & Guertin, D. A. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 5, 4099 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Schulz, T. J. et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl Acad. Sci. USA 108, 143–148 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Yang Loureiro, Z. et al. Wnt signaling preserves progenitor cell multipotency during adipose tissue development. Nat. Metab. 5, 1014–1028 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palani, N. P. et al. Adipogenic and SWAT cells separate from a common progenitor in human brown and white adipose depots. Nat. Metab. 5, 996–1013 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Demine, S., Renard, P. & Arnould, T. Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases. Cells 8, 795 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalinovich, A. V., de Jong, J. M., Cannon, B. & Nedergaard, J. UCP1 in adipose tissues: two steps to full browning. Biochimie 134, 127–137 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Lam, Y. Y. & Ravussin, E. Analysis of energy metabolism in humans: a review of methodologies. Mol. Metab. 5, 1057–1071 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Nat. Metab. 1, 34–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Buchholz, A. C. & Schoeller, D. A. Is a calorie a calorie? Am. J. Clin. Nutr. 79, 899S–906S (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Cani, P. D. & Van Hul, M. Mediterranean diet, gut microbiota and health: when age and calories do not add up! Gut 69, 1167–1168 (2020).

    Article  PubMed  Google Scholar 

  41. Westerterp, K. R. Perception, passive overfeeding and energy metabolism. Physiol. Behav. 89, 62–65 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Swaminathan, R. et al. Thermic effect of feeding carbohydrate, fat, protein and mixed meal in lean and obese subjects. Am. J. Clin. Nutr. 42, 177–181 (1985).

    Article  CAS  PubMed  Google Scholar 

  43. Calcagno, M. et al. The thermic effect of food: a review. J. Am. Coll. Nutr. 38, 547–551 (2019).

    Article  PubMed  Google Scholar 

  44. Du, S., Rajjo, T., Santosa, S. & Jensen, M. D. The thermic effect of food is reduced in older adults. Horm. Metab. Res. 46, 365–369 (2014).

    CAS  PubMed  Google Scholar 

  45. Binns, A., Gray, M. & Di Brezzo, R. Thermic effect of food, exercise, and total energy expenditure in active females. J. Sci. Med. Sport 18, 204–208 (2015).

    Article  PubMed  Google Scholar 

  46. Halton, T. L. & Hu, F. B. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J. Am. Coll. Nutr. 23, 373–385 (2004).

    Article  PubMed  Google Scholar 

  47. Macdonald, I. A. A review of recent evidence relating to sugars, insulin resistance and diabetes. Eur. J. Nutr. 55, 17–23 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fuglsang-Nielsen, R. et al. Effects of whey protein and dietary fiber intake on insulin sensitivity, body composition, energy expenditure, blood pressure, and appetite in subjects with abdominal obesity. Eur. J. Clin. Nutr. 75, 611–619 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Meslier, V. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Reynolds, A. N., Akerman, A. P. & Mann, J. Dietary fibre and whole grains in diabetes management: systematic review and meta-analyses. PLoS Med. 17, e1003053 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thyfault, J. P. & Bergouignan, A. Exercise and metabolic health: beyond skeletal muscle. Diabetologia 63, 1464–1474 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Richter, E. A. & Ruderman, N. B. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem. J. 418, 261–275 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Liang, H. & Ward, W. F. PGC-1α: a key regulator of energy metabolism. Adv. Physiol. Educ. 30, 145–151 (2006).

    Article  PubMed  Google Scholar 

  54. Stanford, K. I. et al. 12,13-DiHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab. 27, 1111–1120.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reutrakul, S. & Van Cauter, E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism 84, 56–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Spiegel, K., Knutson, K., Leproult, R., Tasali, E. & Van Cauter, E. Sleep loss: a novel risk factor for insulin resistance and type 2 diabetes. J. Appl. Physiol. 99, 2008–2019 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, B., Shi, C., Park, C. G., Zhao, X. & Reutrakul, S. Effects of sleep restriction on metabolism-related parameters in healthy adults: a comprehensive review and meta-analysis of randomized controlled trials. Sleep Med. Rev. 45, 18–30 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Soltanieh, S., Solgi, S., Ansari, M., Santos, H. O. & Abbasi, B. Effect of sleep duration on dietary intake, desire to eat, measures of food intake and metabolic hormones: a systematic review of clinical trials. Clin. Nutr. ESPEN 45, 55–65 (2021).

    Article  PubMed  Google Scholar 

  60. Frank, S. et al. Diet and sleep physiology: public health and clinical implications. Front. Neurol. 8, 393 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cooper, C. B., Neufeld, E. V., Dolezal, B. A. & Martin, J. L. Sleep deprivation and obesity in adults: a brief narrative review. BMJ Open Sport Exerc. Med. 4, e000392 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shan, Z. et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 38, 529–537 (2015).

    Article  PubMed  Google Scholar 

  63. Ayas, N. T. et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care 26, 380–384 (2003).

    Article  PubMed  Google Scholar 

  64. Smith, S. M. & Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8, 383–395 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hirotsu, C., Tufik, S. & Andersen, M. L. Interactions between sleep, stress, and metabolism: from physiological to pathological conditions. Sleep Sci. 8, 143–152 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sato, F., Kohsaka, A., Bhawal, U. K. & Muragaki, Y. Potential roles of Dec and Bmal1 genes in interconnecting circadian clock and energy metabolism. Int. J. Mol. Sci. 19, 781 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nowak, N., Rawleigh, A. & Brown, S. A. Circadian clocks, sleep, and metabolism. Adv. Exp. Med. Biol. 1344, 21–42 (2021).

    Article  PubMed  Google Scholar 

  68. Broussard, J. L., Ehrmann, D. A., Van Cauter, E., Tasali, E. & Brady, M. J. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann. Intern. Med. 157, 549–557 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sweeney, E. L., Jeromson, S., Hamilton, D. L., Brooks, N. E. & Walshe, I. H. Skeletal muscle insulin signaling and whole-body glucose metabolism following acute sleep restriction in healthy males. Physiol. Rep. 5, e13498 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schmid, S. M., Hallschmid, M., Jauch-Chara, K., Born, J. & Schultes, B. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J. Sleep Res. 17, 331–334 (2008).

    Article  PubMed  Google Scholar 

  71. Liu, S., Wang, X., Zheng, Q., Gao, L. & Sun, Q. Sleep deprivation and central appetite regulation. Nutrients 14, 5196 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. van Egmond, L. T. et al. Effects of acute sleep loss on leptin, ghrelin, and adiponectin in adults with healthy weight and obesity: a laboratory study. Obesity 31, 635–641 (2023).

    Article  PubMed  Google Scholar 

  73. Colangeli, L. et al. The crosstalk between gut microbiota and white adipose tissue mitochondria in obesity. Nutrients 15, 1723 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Backhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rabot, S. et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24, 4948–4959 (2010).

    CAS  PubMed  Google Scholar 

  76. Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  77. Muccioli, G. et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 6, 392 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Geurts, L. et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat. Commun. 6, 6495 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Suarez-Zamorano, N. et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat. Med. 21, 1497–1501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    Article  PubMed  Google Scholar 

  83. Hill, C. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  84. Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Aguilar-Toala, J. E. et al. Postbiotics — when simplification fails to clarify. Nat. Rev. Gastroenterol. Hepatol. 18, 825–826 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Vinderola, G., Sanders, M. E. & Salminen, S. The concept of postbiotics. Foods 11, 1077 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rinott, E. et al. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology 160, 158–173.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Wolters, M. et al. Dietary fat, the gut microbiota, and metabolic health — a systematic review conducted within the MyNewGut project. Clin. Nutr. 38, 2504–2520 (2019).

    Article  ADS  PubMed  Google Scholar 

  89. Mocanu, V. et al. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat. Med. 27, 1272–1279 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Rastall, R. A. et al. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef. Microbes 13, 95–168 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Bartlett, A. & Kleiner, M. Dietary protein and the intestinal microbiota: an understudied relationship. iScience 25, 105313 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Suriano, F. et al. Fat and not sugar as the determining factor for gut microbiota changes, obesity, and related metabolic disorders in mice. Am. J. Physiol. Endocrinol. Metab. 324, E85–E96 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Allen, J. M. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50, 747–757 (2018).

    Article  PubMed  Google Scholar 

  94. Sun, J., Fang, D., Wang, Z. & Liu, Y. Sleep deprivation and gut microbiota dysbiosis: current understandings and implications. Int J. Mol. Sci. 24, 9603 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yoon, J. C. et al. Peroxisome proliferator-activated receptor γ target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol. Cell Biol. 20, 5343–5349 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kersten, S. et al. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489–1498 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, H. & Eckel, R. H. Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab. 297, E271–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Fleissner, C. K. et al. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr. 104, 919–929 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Kubeck, R. et al. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol. Metab. 5, 1162–1174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Moretti, C. H. et al. Germ-free mice are not protected against diet-induced obesity and metabolic dysfunction. Acta Physiol. 231, e13581 (2021).

    Article  CAS  Google Scholar 

  101. Jacouton, E. et al. Lactobacillus rhamnosus CNCMI-4317 modulates Fiaf/Angptl4 in intestinal epithelial cells and circulating level in mice. PLoS One 10, e0138880 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kim, H. K. et al. Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight. Diabetes 59, 2772–2780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Slavin, J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104, S1–S63 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Cronin, P., Joyce, S. A., O’Toole, P. W. & O’Connor, E. M. Dietary fibre modulates the gut microbiota. Nutrients 13, 1655 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Blaak, E. E. et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 11, 411–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

    Article  PubMed  Google Scholar 

  111. Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Anachad, O., Taouil, A., Taha, W., Bennis, F. & Chegdani, F. The implication of short-chain fatty acids in obesity and diabetes. Microbiol. Insights 16, 11786361231162720 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rastelli, M., Cani, P. D. & Knauf, C. The gut microbiome influences host endocrine functions. Endocr. Rev. 40, 1271–1284 (2019).

    Article  PubMed  Google Scholar 

  114. Chambers, E. S. et al. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes Obes. Metab. 20, 1034–1039 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Chambers, E. S., Preston, T., Frost, G. & Morrison, D. J. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr. Nutr. Rep. 7, 198–206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chambers, E. S. et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial. Gut 68, 1430–1438 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Byrne, C. S. et al. Effects of inulin propionate ester incorporated into palatable food products on appetite and resting energy expenditure: a randomised crossover study. Nutrients 11, 861 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hong, Y. H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Dewulf, E. et al. Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J. Nutr. Biochem. 22, 712–722 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Dewulf, E. M. et al. Evaluation of the relationship between GPR43 and adiposity in human. Nutr. Metab. 10, 11 (2013).

    Article  CAS  Google Scholar 

  121. Yu, H., Li, R., Huang, H., Yao, R. & Shen, S. Short-chain fatty acids enhance the lipid accumulation of 3T3-L1 cells by modulating the expression of enzymes of fatty acid metabolism. Lipids 53, 77–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. May, K. S. & den Hartigh, L. J. Modulation of adipocyte metabolism by microbial short-chain fatty acids. Nutrients 13, 3666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hu, J. et al. Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in brown adipocytes. Endocrinology 157, 1881–1894 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Li, Z. et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67, 1269–1279 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Sharma, M., Li, Y., Stoll, M. L. & Tollefsbol, T. O. The epigenetic connection between the gut microbiome in obesity and diabetes. Front. Genet. 10, 1329 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  127. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Cani, P. D. Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Regnier, M., Van Hul, M., Knauf, C. & Cani, P. D. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J. Endocrinol. 248, R67–R82 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Leclercq, S. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl Acad. Sci. USA 111, E4485–E4493 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Brun, P. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G518–G525 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Suriano, F. et al. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome 9, 147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359, 1376–1383 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  135. Chassaing, B. et al. Lack of soluble fiber drives diet-induced adiposity in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G528-41 (2015).

    Article  PubMed  Google Scholar 

  136. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Everard, A. et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 8, 2116–2130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Guo, X. et al. High fat diet alters gut microbiota and the expression of paneth cell-antimicrobial peptides preceding changes of circulating inflammatory cytokines. Mediators Inflamm. 2017, 9474896 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Paone, P. & Cani, P. D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69, 2232–2243 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Caesar, R. et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61, 1701–1707 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Hersoug, L. G., Moller, P. & Loft, S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes. Rev. 17, 297–312 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Chung, S. et al. Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 147, 5340–5351 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Poulain-Godefroy, O. & Froguel, P. Preadipocyte response and impairment of differentiation in an inflammatory environment. Biochem. Biophys. Res. Commun. 356, 662–667 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Poulain-Godefroy, O., Lecoeur, C., Pattou, F., Fruhbeck, G. & Froguel, P. Inflammation is associated with a decrease of lipogenic factors in omental fat in women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1–R7 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Cawthorn, W. P., Heyd, F., Hegyi, K. & Sethi, J. K. Tumour necrosis factor-α inhibits adipogenesis via a β-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death Differ. 14, 1361–1373 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Luo, X. et al. β-Catenin protein utilized by tumour necrosis factor-alpha in porcine preadipocytes to suppress differentiation. BMB Rep. 42, 338–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Geurts, L. et al. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front. Microbiol. 2, 149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Than, A. et al. Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol. Cell Endocrinol. 362, 227–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Zhao, M. & Chen, X. Effect of lipopolysaccharides on adipogenic potential and premature senescence of adipocyte progenitors. Am. J. Physiol. Endocrinol. Metab. 309, E334–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chang, C. C. et al. Lipopolysaccharide promoted proliferation and adipogenesis of preadipocytes through JAK/STAT and AMPK-regulated cPLA2 expression. Int. J. Med. Sci. 16, 167–179 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Luche, E. et al. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol. Metab. 2, 281–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ding, S. et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5, e12191 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  153. Anhê, F. F., Barra, N. G., Cavallari, J. F., Henriksbo, B. D. & Schertzer, J. D. Metabolic endotoxemia is dictated by the type of lipopolysaccharide. Cell Rep. 36, 109691 (2021).

    Article  PubMed  Google Scholar 

  154. Moreno-Navarrete, J. M. et al. Lysozyme is a component of the innate immune system linked to obesity associated-chronic low-grade inflammation and altered glucose tolerance. Clin. Nutr. 40, 1420–1429 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Chi, W. et al. Bacterial peptidoglycan stimulates adipocyte lipolysis via NOD1. PLoS One 9, e97675 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  156. Foley, K. P. et al. Inflammation promotes adipocyte lipolysis via IRE1 kinase. J. Biol. Chem. 296, 100440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schertzer, J. D. et al. NOD1 activators link innate immunity to insulin resistance. Diabetes 60, 2206–2215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gao, H. et al. Accumulation of microbial DNAs promotes to islet inflammation and beta cell abnormalities in obesity in mice. Nat. Commun. 13, 565 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jialal, I., Kaur, H. & Devaraj, S. Toll-like receptor status in obesity and metabolic syndrome: a translational perspective. J. Clin. Endocrinol. Metab. 99, 39–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Guerrero-Romero, F. et al. Association between the expression of TLR4, TLR2, and MyD88 with low-grade chronic inflammation in individuals with metabolically healthy obesity. Mol. Biol. Rep. 50, 4723–4728 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Guadagnini, D. et al. Microbiota determines insulin sensitivity in TLR2-KO mice. Life Sci. 234, 116793 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Denou, E. et al. Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Mol. Med. 7, 259–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rojas, I. Y. et al. Kynurenine-induced aryl hydrocarbon receptor signaling in mice causes body mass gain, liver steatosis, and hyperglycemia. Obesity 29, 337–349 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Favennec, M. et al. The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity 23, 2066–2074 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Vujkovic-Cvijin, I. et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci. Transl. Med. 5, 193ra91 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Alexander, D. L., Ganem, L. G., Fernandez-Salguero, P., Gonzalez, F. & Jefcoate, C. R. Aryl-hydrocarbon receptor is an inhibitory regulator of lipid synthesis and of commitment to adipogenesis. J. Cell Sci. 111, 3311–3322 (1998).

    Article  CAS  PubMed  Google Scholar 

  168. Dou, H. et al. Aryl hydrocarbon receptor (AhR) regulates adipocyte differentiation by assembling CRL4B ubiquitin ligase to target PPARγ for proteasomal degradation. J. Biol. Chem. 294, 18504–18515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Agudelo, L. Z. et al. Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab. 27, 378–392.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Laurans, L. et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat. Med. 24, 1113–1120 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Huang, T. et al. Adipocyte-derived kynurenine promotes obesity and insulin resistance by activating the AhR/STAT3/IL-6 signaling. Nat. Commun. 13, 3489 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  172. Virtue, A. T. et al. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci. Transl. Med. 11, eaav1892 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Park, J. et al. Bioactive lipids and their derivatives in biomedical applications. Biomol. Ther. 29, 465–482 (2021).

    Article  CAS  Google Scholar 

  174. Ayub, M., Jin, H. K. & Bae, J. S. Novelty of sphingolipids in the central nervous system physiology and disease: focusing on the sphingolipid hypothesis of neuroinflammation and neurodegeneration. Int. J. Mol. Sci. 22, 7353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Leuti, A. et al. Bioactive lipids, inflammation and chronic diseases. Adv. Drug Deliv. Rev. 159, 133–169 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Cani, P. D. et al. Endocannabinoids — at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 12, 133–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Russo, R. et al. Gut-brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr. Med. Chem. 25, 3930–3952 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article  PubMed  Google Scholar 

  179. Collins, S. L., Stine, J. G., Bisanz, J. E., Okafor, C. D. & Patterson, A. D. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21, 236–247 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. Lefort, C. & Cani, P. D. The liver under the spotlight: bile acids and oxysterols as pivotal actors controlling metabolism. Cells 10, 400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Dawson, P. A. & Karpen, S. J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 56, 1085–1099 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ahmad, T. R. & Haeusler, R. A. Bile acids in glucose metabolism and insulin signalling — mechanisms and research needs. Nat. Rev. Endocrinol. 15, 701–712 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chen, X., Lou, G., Meng, Z. & Huang, W. TGR5: a novel target for weight maintenance and glucose metabolism. Exp. Diabetes Res. 2011, 853501 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Velazquez-Villegas, L. A. et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat. Commun. 9, 245 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  185. Broeders, E. P. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 22, 418–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Pellicciari, R. et al. Discovery of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52, 7958–7961 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Murakami, M. et al. Incretin secretion stimulated by ursodeoxycholic acid in healthy subjects. Springerplus 2, 20 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Bala, V. et al. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-epsilon pathway and modulated by endogenous H2S. Front. Physiol. 5, 420 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Devane, W. A., Dysarz, F. A. III, Johnson, M. R., Melvin, L. S. & Howlett, A. C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34, 605–613 (1988).

    CAS  PubMed  Google Scholar 

  190. Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  191. D’Eon, T. M. et al. The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids. Diabetes 57, 1262–1268 (2008).

    Article  PubMed  Google Scholar 

  192. Starowicz, K. M. et al. Endocannabinoid dysregulation in the pancreas and adipose tissue of mice fed with a high-fat diet. Obesity 16, 553–565 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Sarzani, R. et al. Altered pattern of cannabinoid type 1 receptor expression in adipose tissue of dysmetabolic and overweight patients. Metabolism 58, 361–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Gasperi, V. et al. Endocannabinoids in adipocytes during differentiation and their role in glucose uptake. Cell Mol. Life Sci. 64, 219–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Everard, A. et al. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat. Commun. 10, 457 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  196. Geurts, L., Muccioli, G. G., Delzenne, N. M. & Cani, P. D. Chronic endocannabinoid system stimulation induces muscle macrophage and lipid accumulation in type 2 diabetic mice independently of metabolic endotoxaemia. PLoS One 8, e55963 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  197. Suriano, F. et al. Exploring the endocannabinoidome in genetically obese (ob/ob) and diabetic (db/db) mice: links with inflammation and gut microbiota. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1867, 159056 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Manca, C. et al. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J. Lipid Res. 61, 70–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Suriano, F. et al. A lipidomics- and transcriptomics-based analysis of the intestine of genetically obese (ob/ob) and diabetic (db/db) mice: links with inflammation and gut microbiota. Cells 12, 411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cohen, L. J. et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  201. Misheva, M., Johnson, J. & McCullagh, J. Role of oxylipins in the inflammatory-related diseases NAFLD, obesity, and type 2 diabetes. Metabolites 12, 1238 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Avila-Roman, J. et al. Impact of gut microbiota on plasma oxylipins profile under healthy and obesogenic conditions. Clin. Nutr. 40, 1475–1486 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Gurup, A. et al. Effect of acute exercise on 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) levels in obese male adolescents. Clin. Endocrinol. 99, 174–181 (2023).

    Article  CAS  Google Scholar 

  204. Moens de Hase, E. et al. Dysosmobacter welbionis effects on glucose, lipid and energy metabolism are associated with specific bioactive lipids. J. Lipid Res. 64, 100437 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Le Roy, T. et al. Dysosmobacter welbionis is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut 71, 534–543 (2022).

    Article  PubMed  Google Scholar 

  206. Fernandez-Veledo, S. & Vendrell, J. Gut microbiota-derived succinate: friend or foe in human metabolic diseases? Rev. Endocr. Metab. Disord. 20, 439–447 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Ariza, A. C., Deen, P. M. & Robben, J. H. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front. Endocrinol. 3, 22 (2012).

    Article  Google Scholar 

  208. Louis, P. & Flint, H. J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19, 29–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  210. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  211. Chia, L. W. et al. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek 111, 859–873 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Cani, P. D., Depommier, C., Derrien, M., Everard, A. & de Vos, W. M. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 19, 625–637 (2022).

    Article  PubMed  Google Scholar 

  213. Wang, K. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 26, 222–235.e5 (2019).

    Article  PubMed  Google Scholar 

  214. Sadagopan, N. et al. Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am. J. Hypertens. 20, 1209–1215 (2007).

    CAS  PubMed  Google Scholar 

  215. McCreath, K. J. et al. Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes 64, 1154–1167 (2015).

    Article  CAS  PubMed  Google Scholar 

  216. Monfort-Ferre, D. et al. The gut microbiota metabolite succinate promotes adipose tissue browning in crohn’s disease. J. Crohns Colitis 16, 1571–1583 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Massier, L. et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 69, 1796–1806 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Anhê, F. F. et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat. Metab. 2, 233–242 (2020).

    Article  PubMed  Google Scholar 

  219. Amar, J. et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54, 3055–3061 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol. 3, 851–853 (2018).

    Article  PubMed  Google Scholar 

  221. Church, D. L. et al. Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clin. Microbiol. Rev. 33, e00053-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Sun, J. et al. The visceral adipose tissue bacterial microbiota provides a signature of obesity based on inferred metagenomic functions. Int. J. Obes. 47, 1008–1022 (2023).

    Article  MathSciNet  CAS  Google Scholar 

  223. Cinti, S. Pink adipocytes. Trends Endocrinol. Metab. 29, 651–666 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Selma-Royo, M., Calvo Lerma, J., Cortes-Macias, E. & Collado, M. C. Human milk microbiome: from actual knowledge to future perspective. Semin. Perinatol. 45, 151450 (2021).

    Article  PubMed  Google Scholar 

  225. Collado, M. C., Laitinen, K., Salminen, S. & Isolauri, E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr. Res. 72, 77–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  226. Fernandez, L. & Rodriguez, J. M. Human milk microbiota: origin and potential uses. Nestle Nutr. Inst. Workshop Ser. 94, 75–85 (2020).

    Article  PubMed  Google Scholar 

  227. Fernandez, L., Pannaraj, P. S., Rautava, S. & Rodriguez, J. M. The microbiota of the human mammary ecosystem. Front. Cell. Infect. Microbiol. 10, 586667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Mohandas, S. & Pannaraj, P. S. Beyond the bacterial microbiome: virome of human milk and effects on the developing infant. Nestle Nutr. Inst. Workshop Ser. 94, 86–93 (2020).

    Article  PubMed  Google Scholar 

  229. Cani, P. D. & Van Hul, M. Microbial signatures in metabolic tissues: a novel paradigm for obesity and diabetes? Nat. Metab. 2, 211–212 (2020).

    Article  PubMed  Google Scholar 

  230. Bluher, S., Shah, S. & Mantzoros, C. S. Leptin deficiency: clinical implications and opportunities for therapeutic interventions. J. Investig. Med. 57, 784–788 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Suleiman, J. B., Mohamed, M. & Bakar, A. B. A. A systematic review on different models of inducing obesity in animals: advantages and limitations. J. Adv. Vet. Anim. Res. 7, 103–114 (2020).

    Article  PubMed  Google Scholar 

  232. Healey, G. R., Murphy, R., Brough, L., Butts, C. A. & Coad, J. Interindividual variability in gut microbiota and host response to dietary interventions. Nutr. Rev. 75, 1059–1080 (2017).

    Article  PubMed  Google Scholar 

  233. Schlomann, B. H. & Parthasarathy, R. Timescales of gut microbiome dynamics. Curr. Opin. Microbiol. 50, 56–63 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Cerdó, T., García-Santos, J. A., Bermúdez, M. G. & Campoy, C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 11, 635 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Nearing, J. T., Comeau, A. M. & Langille, M. G. I. Identifying biases and their potential solutions in human microbiome studies. Microbiome 9, 113 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Bharti, R. & Grimm, D. G. Current challenges and best-practice protocols for microbiome analysis. Brief. Bioinform 22, 178–193 (2021).

    Article  CAS  PubMed  Google Scholar 

  237. Levitan, O. et al. The gut microbiome — does stool represent right? Heliyon 9, e13602 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Chikina, A. & Matic Vignjevic, D. At the right time in the right place: how do luminal gradients position the microbiota along the gut? Cell Dev. 168, 203712 (2021).

    Article  CAS  Google Scholar 

  239. Zoetendal, E. G. et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Env. Microbiol. 68, 3401–3407 (2002).

    Article  ADS  CAS  Google Scholar 

  240. Vaga, S. et al. Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Sci. Rep. 10, 14977 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Ranjan, R., Rani, A., Metwally, A., McGee, H. S. & Perkins, D. L. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977 (2016).

    Article  CAS  PubMed  Google Scholar 

  243. Sharpton, T. J. An introduction to the analysis of shotgun metagenomic data. Front. Plant. Sci. 5, 209 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Van Hul, M. et al. From correlation to causality: the case of Subdoligranulum. Gut Microbes 12, 1–13 (2020).

    Article  PubMed  Google Scholar 

  245. Chusyd, D. E., Wang, D., Huffman, D. M. & Nagy, T. R. Relationships between rodent white adipose fat pads and human white adipose fat depots. Front. Nutr. 3, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Borgeson, E., Boucher, J. & Hagberg, C. E. Of mice and men: pinpointing species differences in adipose tissue biology. Front. Cell Dev. Biol. 10, 1003118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Bagchi, D. P. & MacDougald, O. A. Identification and dissection of diverse mouse adipose depots. J. Vis. Exp. https://doi.org/10.3791/59499 (2019).

    Article  PubMed  Google Scholar 

  248. Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res. 53, 619–629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Cohen, C. A., Shea, A. A., Heffron, C. L., Schmelz, E. M. & Roberts, P. C. Intra-abdominal fat depots represent distinct immunomodulatory microenvironments: a murine model. PLoS One 8, e66477 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  250. Foster, M. T. et al. Transplantation of non-visceral fat to the visceral cavity improves glucose tolerance in mice: investigation of hepatic lipids and insulin sensitivity. Diabetologia 54, 2890–2899 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Wueest, S., Yang, X., Liu, J., Schoenle, E. J. & Konrad, D. Inverse regulation of basal lipolysis in perigonadal and mesenteric fat depots in mice. Am. J. Physiol. Endocrinol. Metab. 302, E153–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  252. Stenkula, K. G. & Erlanson-Albertsson, C. Adipose cell size: importance in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R284–R295 (2018).

    Article  CAS  PubMed  Google Scholar 

  253. Kowaltowski, A. J. Cold exposure and the metabolism of mice, men, and other wonderful creatures. Physiology 37, 253–259 (2022).

    Article  CAS  Google Scholar 

  254. Armani, A. et al. Nutraceuticals in brown adipose tissue activation. Cells 11, 3996 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Choi, Y. & Yu, L. Natural bioactive compounds as potential browning agents in white adipose tissue. Pharm. Res. 38, 549–567 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Reynes, B., Palou, M., Rodriguez, A. M. & Palou, A. Regulation of adaptive thermogenesis and browning by prebiotics and postbiotics. Front. Physiol. 9, 1908 (2018).

    Article  PubMed  Google Scholar 

  257. Zhou, L., Xiao, X., Zhang, Q., Zheng, J. & Deng, M. Deciphering the anti-obesity benefits of resveratrol: the “gut microbiota-adipose tissue” axis. Front. Endocrinol. 10, 413 (2019).

    Article  Google Scholar 

  258. Hui, S. et al. Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling. Int. J. Obes. 44, 1678–1690 (2020).

    Article  CAS  Google Scholar 

  259. Liao, W. et al. Resveratrol-induced white adipose tissue browning in obese mice by remodeling fecal microbiota. Molecules 23, 3356 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Baskaran, P., Krishnan, V., Ren, J. & Thyagarajan, B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br. J. Pharmacol. 173, 2369–2389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kida, R. et al. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes. Cell Biochem. Funct. 34, 34–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  262. Lee, S. G., Parks, J. S. & Kang, H. W. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J. Nutr. Biochem. 42, 62–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  263. Pei, Y. et al. Effect of quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice. J. Nutr. Biochem. 88, 108532 (2021).

    Article  CAS  PubMed  Google Scholar 

  264. Sheng, L. et al. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila. FASEB J. 32, 6371–6384 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  265. Li, C. et al. Berberine ameliorates obesity by inducing GDF15 secretion by brown adipocytes. Endocrinology 164, bqad035 (2023).

    Article  PubMed  Google Scholar 

  266. Xu, Y. et al. Berberine modulates deacetylation of PPARγ to promote adipose tissue remodeling and thermogenesis via AMPK/SIRT1 pathway. Int. J. Biol. Sci. 17, 3173–3187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Wu, L. et al. Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans. Cell Death Dis. 10, 468 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Regnier, M. et al. Rhubarb supplementation prevents diet-induced obesity and diabetes in association with increased Akkermansia muciniphila in mice. Nutrients 12, 2932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Regnier, M. et al. Inulin increases the beneficial effects of rhubarb supplementation on high-fat high-sugar diet-induced metabolic disorders in mice: impact on energy expenditure, brown adipose tissue activity, and microbiota. Gut Microbes 15, 2178796 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Anhe, F. F. et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut 68, 453–464 (2019).

    Article  CAS  PubMed  Google Scholar 

  271. Zheng, X. et al. Membrane protein Amuc_1100 derived from Akkermansia muciniphila facilitates lipolysis and browning via activating the AC3/PKA/HSL pathway. Microbiol. Spectr. 11, e0432322 (2023).

    Article  PubMed  Google Scholar 

  272. Deng, L. et al. Diverse effects of different Akkermansia muciniphila genotypes on Brown adipose tissue inflammation and whitening in a high-fat-diet murine model. Microb. Pathog. 147, 104353 (2020).

    Article  CAS  PubMed  Google Scholar 

  273. Depommier, C. et al. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes 11, 1231–1245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).

    Article  CAS  PubMed  Google Scholar 

  275. Agus, A., Clement, K. & Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70, 1174–1182 (2020).

    Article  PubMed  Google Scholar 

  276. Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).

    Article  CAS  PubMed  Google Scholar 

  277. James, D. E., Stockli, J. & Birnbaum, M. J. The aetiology and molecular landscape of insulin resistance. Nat. Rev. Mol. Cell Biol. 22, 751–771 (2021).

    Article  CAS  PubMed  Google Scholar 

  278. Morigny, P., Boucher, J., Arner, P. & Langin, D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 17, 276–295 (2021).

    Article  CAS  PubMed  Google Scholar 

  279. Clemente-Suarez, V. J. et al. The role of adipokines in health and disease. Biomedicines 11, 1290 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Lazar, V. et al. Gut microbiota, host organism, and diet trialogue in diabetes and obesity. Front. Nutr. 6, 21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Jardon, K. M., Canfora, E. E., Goossens, G. H. & Blaak, E. E. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut 71, 1214–1226 (2022).

    Article  PubMed  Google Scholar 

  282. Gerard, C. & Vidal, H. Impact of gut microbiota on host glycemic control. Front. Endocrinol. 10, 29 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

P.D.C. is Honorary Research Director at FRS-FNRS (Fonds de la Recherche Scientifique) and a recipient of grants from FNRS (Projet de Recherche PDR-convention: FNRS T.0030.21, CDR-convention: J.0027.22, FRFS-WELBIO: WELBIO-CR-2022A-02, EOS: programme no. 40007505) and ARC (action de recherche concertée: ARC19/24-096) and La Caixa (NeuroGut).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Patrice D. Cani.

Ethics declarations

Competing interests

P.D.C. is an inventor on patent applications dealing with the use of specific bacteria and components in the treatment of different diseases. P.D.C. was co-founder of The Akkermansia Company SA and Enterosys. M.V.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Philip Calder, Remy Burcelin, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

World Obesity Federation: https://www.worldobesityday.org/resources/entry/world-obesity-atlas-2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cani, P.D., Van Hul, M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 21, 164–183 (2024). https://doi.org/10.1038/s41575-023-00867-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00867-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing