Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic developments in pancreatic cancer

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has a rising incidence and is one of the most lethal human malignancies. Much is known regarding the biology and pathophysiology of PDAC, but translating this knowledge to the clinic to improve patient outcomes has been challenging. In this Review, we discuss advances and practice-changing trials for PDAC. We briefly review therapeutic failures as well as ongoing research to refine the standard of care, including novel biomarkers and clinical trial designs. In addition, we highlight contemporary areas of research, including poly(ADP-ribose) polymerase inhibitors, KRAS-targeted therapies and immunotherapies. Finally, we discuss the future of pancreatic cancer research and areas for improvement in the next decade.

Key points

  • Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, with cytotoxic chemotherapy remaining the mainstay of treatment for most patients.

  • Ongoing trials are evaluating ‘classical’ versus ‘basal-like’ expression signatures to inform the therapeutic selection of standard cytotoxic regimens.

  • Small subsets of patients, including those with mutations in BRCA1, BRCA2, PALB2 and KRASG12C, rare fusions (NRG1, NTRK), and mismatch repair deficiency, benefit from targeted therapies.

  • KRAS is a critical target for therapeutic evaluation in PDAC and proof-of-principle approaches have validated targeting in KRASG12C; ongoing trials are evaluating allele-specific inhibitors and pan-(K)RAS inhibitors against the more common allele variants G12D, G12V and G12R.

  • Immune-checkpoint inhibitor blockade and other immune therapies have not had utility for most patients with PDAC; however, select rare individuals beyond mismatch repair deficiency have seen major benefit, leading to optimism that these results can be expanded to a broader patient population.

  • Clinical trial design strategies are changing and PDAC is a prototypic disease to investigate novel drug development paradigms; innovation in clinical trial design has led to the integration of platform-type studies that incorporate novel statistical design, leading to expediencies in drug development, timelines, cost and other resources. Platform studies enable parallel investigation of multiple novel agents, with early signal adjudication of success or failure to allow efficient signal seeking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Treatment strategies for homologous recombination-deficient pancreatic cancers.
Fig. 2: RAS signalling pathway and therapeutic targets in PDAC.
Fig. 3: Immune therapeutic strategies in PDAC.

Similar content being viewed by others

References

  1. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    CAS  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    PubMed  Google Scholar 

  3. Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    CAS  PubMed  Google Scholar 

  4. Mahaseth, H. et al. Modified FOLFIRINOX regimen with improved safety and maintained efficacy in pancreatic adenocarcinoma. Pancreas 42, 1311–1315 (2013).

    CAS  PubMed  Google Scholar 

  5. Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

    Google Scholar 

  6. Wainberg, Z. A. et al. NAPOLI-3: a randomized, open-label phase 3 study of liposomal irinotecan + 5-fluorouracil/leucovorin + oxaliplatin (NALIRIFOX) versus nab-paclitaxel + gemcitabine in treatment-naïve patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). J. Clin. Oncol. 41, LBA661 (2023).

    Google Scholar 

  7. Conroy, T. et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N. Engl. J. Med. 379, 2395–2406 (2018).

    CAS  PubMed  Google Scholar 

  8. Neoptolemos, J. P. et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet 389, 1011–1024 (2017).

    CAS  PubMed  Google Scholar 

  9. Uesaka, K. et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet 388, 248–257 (2016).

    CAS  PubMed  Google Scholar 

  10. Springfeld, C. et al. Neoadjuvant therapy for pancreatic cancer. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-023-00746-1 (2023).

    Article  PubMed  Google Scholar 

  11. Springfeld, C. & Neoptolemos, J. P. The role of neoadjuvant therapy for resectable pancreatic cancer remains uncertain. Nat. Rev. Clin. Oncol. 19, 285–286 (2022).

    PubMed  Google Scholar 

  12. Schwarz, L. et al. Resectable pancreatic adenocarcinoma neo-adjuvant FOLF(IRIN)OX-based chemotherapy: a multicenter, non-comparative, randomized, phase II trial (PANACHE01-PRODIGE48 study). J. Clin. Oncol. 40, 4134 (2022).

    Google Scholar 

  13. Labori, K. J. et al. Short-course neoadjuvant FOLFIRINOX versus upfront surgery for resectable pancreatic head cancer: a multicenter randomized phase-II trial (NORPACT-1). J. Clin. Oncol. 41, LBA4005 (2023).

    Google Scholar 

  14. Katz, M. H. et al. Preoperative modified FOLFIRINOX treatment followed by capecitabine-based chemoradiation for borderline resectable pancreatic cancer: Alliance for Clinical Trials in Oncology Trial A021101. JAMA Surg. 151, e161137 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Ghaneh, P. et al. ESPAC-5F: four-arm, prospective, multicenter, international randomized phase II trial of immediate surgery compared with neoadjuvant gemcitabine plus capecitabine (GEMCAP) or FOLFIRINOX or chemoradiotherapy (CRT) in patients with borderline resectable pancreatic cancer. J. Clin. Oncol. 38, 4505 (2020).

    Google Scholar 

  16. Versteijne, E. et al. Neoadjuvant chemoradiotherapy versus upfront surgery for resectable and borderline resectable pancreatic cancer: long-term results of the Dutch randomized PREOPANC trial. J. Clin. Oncol. 40, 1220–1230 (2022).

    CAS  PubMed  Google Scholar 

  17. Katz, M. H. G. et al. Efficacy of preoperative mFOLFIRINOX vs mFOLFIRINOX plus hypofractionated radiotherapy for borderline resectable adenocarcinoma of the pancreas: the A021501 phase 2 randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2022.2319 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ghaneh, P. et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 8, 157–168 (2023).

    PubMed  Google Scholar 

  19. Pishvaian, M. J. et al. Molecular profiling of patients with pancreatic cancer: initial results from the know your tumor initiative. Clin. Cancer Res. 24, 5018–5027 (2018).

    CAS  PubMed  Google Scholar 

  20. Golan, T. et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med. 381, 317–327 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, Z. I. et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin. Cancer Res. 24, 1326–1336 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Muir, P. et al. The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol. 17, 53 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Aguirre, A. J. et al. Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine. Cancer Discov. 8, 1096–1111 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lowery, M. A. et al. Real-time genomic profiling of pancreatic ductal adenocarcinoma: potential actionability and correlation with clinical phenotype. Clin. Cancer Res. 23, 6094–6100 (2017).

    CAS  PubMed  Google Scholar 

  25. Sohal, D. P. S. et al. Metastatic pancreatic cancer: ASCO guideline update. J. Clin. Oncol. https://doi.org/10.1200/JCO.20.01364 (2020).

    Article  PubMed  Google Scholar 

  26. Tempero, M. A. et al. Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 19, 439–457 (2021).

    CAS  Google Scholar 

  27. Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203.e13 (2017).

    Google Scholar 

  29. Philip, P. A. et al. Molecular characterization of KRAS wild type tumors in patients with pancreatic adenocarcinoma. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-3581 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pishvaian, M. J. et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial. Lancet Oncol. 21, 508–518 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

    CAS  PubMed  Google Scholar 

  33. Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 52, 231–240 (2020).

    CAS  PubMed  Google Scholar 

  35. Puleo, F. et al. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology 155, 1999–2013.e3 (2018).

    PubMed  Google Scholar 

  36. Connor, A. A. & Gallinger, S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat. Rev. Cancer 22, 131–142 (2022).

    CAS  PubMed  Google Scholar 

  37. Bailey, P. et al. Refining the treatment of pancreatic cancer from big data to improved individual survival. Function 4, zqad011 (2023).

    PubMed  PubMed Central  Google Scholar 

  38. Hayashi, A. et al. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat. Cancer 1, 59–74 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rashid, N. U. et al. Purity independent subtyping of tumors (PurIST), a clinically robust, single-sample classifier for tumor subtyping in pancreatic cancer. Clin. Cancer Res. 26, 82–92 (2020).

    PubMed  Google Scholar 

  40. Kalimuthu, S. N. et al. Morphological classification of pancreatic ductal adenocarcinoma that predicts molecular subtypes and correlates with clinical outcome. Gut 69, 317–328 (2020).

    Google Scholar 

  41. O’Kane, G. M. et al. GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic cancer. Clin. Cancer Res. 26, 4901–4910 (2020).

    PubMed  Google Scholar 

  42. Aung, K. L. et al. Genomics-driven precision medicine for advanced pancreatic cancer: early results from the COMPASS trial. Clin. Cancer Res. 24, 1344–1354 (2018).

    CAS  PubMed  Google Scholar 

  43. Fuentes Antrás, J. et al. Molecular characterization of long-term and short-term survivors of advanced pancreatic ductal adenocarcinoma. J. Clin. Oncol. 40, 4024 (2022).

    Google Scholar 

  44. Suurmeijer, J. A. et al. Impact of classical and basal-like molecular subtypes on overall survival in resected pancreatic cancer in the SPACIOUS-2 multicentre study. Br. J. Surg. https://doi.org/10.1093/bjs/znac272 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Williams, H. L. et al. Spatially resolved single-cell assessment of pancreatic cancer expression subtypes reveals co-expressor phenotypes and extensive intratumoral heterogeneity. Cancer Res. 83, 441–455 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams, C. R. et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. eLife 8, e45313 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Knox, J. J. et al. PASS-01: pancreatic adenocarcinoma signature stratification for treatment–01. J. Clin. Oncol. 40, TPS635 (2022).

    Google Scholar 

  48. Nicolle, R. et al. A transcriptomic signature to predict adjuvant gemcitabine sensitivity in pancreatic adenocarcinoma. Ann. Oncol. 32, 250–260 (2021).

    CAS  PubMed  Google Scholar 

  49. Nicolle, R. et al. Adjuvant gemcitabine is as efficient as mFOLFIRINOX in patients with GemPred + tumor signature and resected pancreatic adenocarcinoma (PDAC): an ancillary study of the PRODIGE-24 clinical trial. ESMO Congress 2022, Abstract 1297P (2022).

  50. Reyngold, M. et al. Association of ablative radiation therapy with survival among patients with inoperable pancreatic cancer. JAMA Oncol. 7, 735–738 (2021).

    PubMed  Google Scholar 

  51. Hassanzadeh, C. et al. Ablative five-fraction stereotactic body radiation therapy for inoperable pancreatic cancer using online MR-guided adaptation. Adv. Radiat. Oncol. 6, 100506 (2021).

    PubMed  Google Scholar 

  52. Chuong, M. D. et al. Ablative 5-fraction stereotactic magnetic resonance-guided radiation therapy with on-table adaptive replanning and elective nodal irradiation for inoperable pancreas cancer. Pract. Radiat. Oncol. 11, 134–147 (2021).

    PubMed  Google Scholar 

  53. Hoffe, S. E. et al. GRECO-2: a randomized, phase 2 study of stereotactic body radiation therapy (SBRT) in combination with GC4711 in the treatment of unresectable or borderline resectable nonmetastatic pancreatic cancer (PC). J. Clin. Oncol. 39, TPS4175 (2021).

    Google Scholar 

  54. Tuli, R. et al. Abstract B58: a phase I/II study of durvalumab and stereotactic radiotherapy in locally advanced pancreatic cancer. Cancer Res. https://doi.org/10.1158/1538-7445.PANCA19-B58 (2019).

    Article  Google Scholar 

  55. Bagley, A. F. et al. NBTXR3, a first-in-class radioenhancer for pancreatic ductal adenocarcinoma: report of first patient experience. Clin. Transl. Radiat. Oncol. 33, 66–69 (2022).

    PubMed  PubMed Central  Google Scholar 

  56. Chatterjee, N. & Walker, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Heeke, A. L. et al. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis. Oncol. 2018, PO.17.00286 (2018).

    PubMed  Google Scholar 

  58. Park, W. et al. Genomic methods identify homologous recombination deficiency in pancreas adenocarcinoma and optimize treatment selection. Clin. Cancer Res. 26, 3239–3247 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lowery, M. A. et al. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Oncologist 16, 1397–1402 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. Golan, T. et al. Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br. J. Cancer 111, 1132–1138 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sonnenblick, A. et al. Complete remission, in BRCA2 mutation carrier with metastatic pancreatic adenocarcinoma, treated with cisplatin based therapy. Cancer Biol. Ther. 12, 165–168 (2011).

    CAS  PubMed  Google Scholar 

  62. O’Reilly, E. M. et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J. Clin. Oncol. 38, 1378–1388 (2020).

    PubMed  PubMed Central  Google Scholar 

  63. Dasari, S. & Tchounwou, P. B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pommier, Y., O’Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med. 8, 362ps17 (2016).

    PubMed  Google Scholar 

  65. Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016).

    CAS  PubMed  Google Scholar 

  66. Park, J. H. et al. BRCA 1/2 germline mutation predicts the treatment response of FOLFIRINOX with pancreatic ductal adenocarcinoma in Korean patients. Cancers 14, 236 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Golan, T. et al. Increased rate of complete pathologic response after neoadjuvant FOLFIRINOX for BRCA mutation carriers with borderline resectable pancreatic cancer. Ann. Surg. Oncol. 27, 3963–3970 (2020).

    PubMed  Google Scholar 

  68. Reiss, K. A. et al. Retrospective survival analysis of patients with advanced pancreatic ductal adenocarcinoma and germline BRCA or PALB2 mutations. JCO Precis. Oncol. https://doi.org/10.1200/po.17.00152 (2018).

    Article  PubMed  Google Scholar 

  69. Lowery, M. A. et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. Eur. J. Cancer 89, 19–26 (2018).

    CAS  PubMed  Google Scholar 

  70. Wattenberg, M. M. et al. Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation. Br. J. Cancer 122, 333–339 (2020).

    CAS  PubMed  Google Scholar 

  71. Kindler, H. L. et al. Overall survival results from the POLO trial: a phase III study of active maintenance olaparib versus placebo for germline BRCA-mutated metastatic pancreatic cancer. J. Clin. Oncol. https://doi.org/10.1200/JCO.21.01604 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Reiss, K. A. et al. Phase II study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic variant in BRCA1, BRCA2, or PALB2. J. Clin. Oncol. 39, 2497–2505 (2021).

    CAS  PubMed  Google Scholar 

  73. Brown, T. J. et al. The clinical implications of reversions in patients with advanced pancreatic cancer and pathogenic variants in BRCA1, BRCA2, or PALB2 after progression on rucaparib. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-23-1467 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Reiss, K. A. et al. Niraparib plus nivolumab or niraparib plus ipilimumab in patients with platinum-sensitive advanced pancreatic cancer: a randomised, phase 1b/2 trial. Lancet Oncol. https://doi.org/10.1016/S1470-2045(22)00369-2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Keane, F., Park, W. & O’Reilly, E. M. Homologous recombination deficiency in pancreatic cancer: poly (ADP-ribose) polymerase inhibition, checkpoint inhibition, or a combination of both? JCO Precis. Oncol. https://doi.org/10.1200/po.22.00141 (2022).

    Article  PubMed  Google Scholar 

  76. Park, W. et al. Clinico-genomic characterization of ATM and HRD in pancreas cancer: application for practice. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-22-1483 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Park, W. et al. Phase 2 trial of pembrolizumab and olaparib (POLAR) maintenance for patients (pts) with metastatic pancreatic cancer (mPDAC): two cohorts B non-core homologous recombination deficiency (HRD) and C exceptional response to platinum-therapy. J. Clin. Oncol. 41, 4140 (2023).

    Google Scholar 

  78. Li, H. et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol. Cancer 19, 107 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Evers, B. et al. A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors. Clin. Cancer Res. 16, 99–108 (2010).

    CAS  PubMed  Google Scholar 

  80. Wood, L. D. & Hruban, R. H. Pathology and molecular genetics of pancreatic neoplasms. Cancer J. 18, 492–501 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kamisawa, T., Wood, L. D., Itoi, T. & Takaori, K. Pancreatic cancer. Lancet 388, 73–85 (2016).

    CAS  PubMed  Google Scholar 

  82. Smit, V. T. et al. KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res. 16, 7773–7782 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Almoguera, C. et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53, 549–554 (1988).

    CAS  PubMed  Google Scholar 

  84. Joneson, T. & Bar-Sagi, D. Suppression of Ras-induced apoptosis by the Rac GTPase. Mol. Cell Biol. 19, 5892–5901 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    CAS  PubMed  Google Scholar 

  86. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).

    CAS  PubMed  Google Scholar 

  87. Huang, L., Guo, Z., Wang, F. & Fu, L. KRAS mutation: from undruggable to druggable in cancer. Signal. Transduct. Target. Ther. 6, 386 (2021).

    PubMed  PubMed Central  Google Scholar 

  88. Waters, A. M. & Der, C. J. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med. 8, a031435 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Gibbs, J. B., Sigal, I. S., Poe, M. & Scolnick, E. M. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc. Natl Acad. Sci. USA 81, 5704–5708 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tong, L. A., de Vos, A. M., Milburn, M. V. & Kim, S. H. Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. Mol. Biol. 217, 503–516 (1991).

    CAS  PubMed  Google Scholar 

  91. Berndt, N., Hamilton, A. D. & Sebti, S. M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer 11, 775–791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lim, S. M. et al. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew. Chem. Int. Ed. 53, 199–204 (2014).

    CAS  Google Scholar 

  94. Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 72, 2457–2467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Biernacka, A. et al. The potential utility of re-mining results of somatic mutation testing: KRAS status in lung adenocarcinoma. Cancer Genet. 209, 195–198 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bekaii-Saab, T. S. et al. KRYSTAL-1: updated activity and safety of adagrasib (MRTX849) in patients (Pts) with unresectable or metastatic pancreatic cancer (PDAC) and other gastrointestinal (GI) tumors harboring a KRASG12C mutation. J. Clin. Oncol. 40, 519 (2022).

    Google Scholar 

  97. Hallin, J. et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).

    CAS  PubMed  Google Scholar 

  98. Pant, S. et al. KRYSTAL-1: activity and safety of adagrasib (MRTX849) in patients with advanced solid tumors harboring a KRASG12C mutation. J. Clin. Oncol. 41, 425082 (2023).

    Google Scholar 

  99. Lanman, B. A. et al. Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors. J. Med. Chem. 63, 52–65 (2020).

    CAS  PubMed  Google Scholar 

  100. Strickler, J. H. et al. Sotorasib in KRAS p.G12C-mutated advanced pancreatic cancer. N. Engl. J. Med. 388, 33–43 (2023).

    CAS  PubMed  Google Scholar 

  101. Li, J. et al. A phase I/II study of first-in-human trial of JAB-21822 (KRAS G12C inhibitor) in advanced solid tumors. J. Clin. Oncol. 40, 3089 (2022).

    Google Scholar 

  102. Bournet, B. et al. KRAS G12D mutation subtype is a prognostic factor for advanced pancreatic adenocarcinoma. Clin. Transl. Gastroenterol. 7, e157 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, S., Balmain, A. & Counter, C. M. A model for RAS mutation patterns in cancers: finding the sweet spot. Nat. Rev. Cancer 18, 767–777 (2018).

    CAS  PubMed  Google Scholar 

  104. Wang, X. et al. Identification of MRTX1133, a noncovalent, potent, and selective KRAS(G12D) inhibitor. J. Med. Chem. 65, 3123–3133 (2022).

    CAS  PubMed  Google Scholar 

  105. Kemp, S. B. et al. Efficacy of a small-molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. Cancer Discov. 13, 298–311 (2023).

    CAS  PubMed  Google Scholar 

  106. Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nat. Med. 28, 2171–2182 (2022).

    CAS  PubMed  Google Scholar 

  107. Zhang, Z. & Shokat, K. M. Bifunctional small-molecule ligands of K-Ras induce its association with immunophilin proteins. Angew. Chem. Int. Ed. 58, 16314–16319 (2019).

    CAS  Google Scholar 

  108. Gustafson, W. C. et al. Direct targeting of RAS in pancreatic ductal adenocarcinoma with RMC-6236, a first-in-class, RAS-selective, orally bioavailable, tri-complex RASMULTI(ON) inhibitor. J. Clin. Oncol. 40, 591 (2022).

    Google Scholar 

  109. Gentile, D. R. et al. Ras binder induces a modified switch-II pocket in GTP and GDP states. Cell Chem. Biol. 24, 1455–1466.e14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. McGee, J. H. et al. Exceptionally high-affinity Ras binders that remodel its effector domain. J. Biol. Chem. 293, 3265–3280 (2018).

    CAS  PubMed  Google Scholar 

  111. Hillig, R. C. et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS-SOS1 interaction. Proc. Natl Acad. Sci. USA 116, 2551–2560 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hofmann, M. H. et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 11, 142–157 (2021).

    CAS  PubMed  Google Scholar 

  113. Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K.-K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-022-00671-9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bery, N., Miller, A. & Rabbitts, T. A potent KRAS macromolecule degrader specifically targeting tumours with mutant KRAS. Nat. Commun. 11, 3233 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Nagashima, T. et al. ASP3082, a First-in-class novel KRAS G12D degrader, exhibits remarkable anti-tumor activity in KRAS G12D mutated cancer models. Eur. J. Cancer 174, S30 (2022).

    Google Scholar 

  116. Pant, S. et al. First-in-human phase 1 trial of ELI-002 immunotherapy as treatment for subjects with Kirsten rat sarcoma (KRAS)-mutated pancreatic ductal adenocarcinoma and other solid tumors. J. Clin. Oncol. 40, TPS2701 (2022).

    Google Scholar 

  117. O’Reilly, E. M. et al. AMPLIFY-201, a first-in-human safety and efficacy trial of adjuvant ELI-002 2P immunotherapy for patients with high-relapse risk with KRAS G12D- or G12R-mutated pancreatic and colorectal cancer. J. Clin. Oncol. 41, 2528 (2023).

    Google Scholar 

  118. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Surana, R. et al. Phase I study of mesenchymal stem cell (MSC)-derived exosomes with KRASG12D siRNA in patients with metastatic pancreatic cancer harboring a KRASG12D mutation. J. Clin. Oncol. 40, TPS633 (2022).

    Google Scholar 

  120. Varghese, A. M. et al. Early-onset pancreas cancer: clinical descriptors, genomics, and outcomes. J. Natl Cancer Inst. 113, 1194–1202 (2021).

    PubMed  PubMed Central  Google Scholar 

  121. Heining, C. et al. NRG1 fusions in KRAS wild-type pancreatic cancer. Cancer Discov. 8, 1087–1095 (2018).

    CAS  PubMed  Google Scholar 

  122. Singhi, A. D. et al. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology 156, 2242–2253.e4 (2019).

    CAS  PubMed  Google Scholar 

  123. Lee, M. S. & Pant, S. Personalizing medicine with germline and somatic sequencing in advanced pancreatic cancer: current treatments and novel opportunities. Am. Soc. Clin. Oncol. Educ. Book https://doi.org/10.1200/EDBK_321255 (2021).

    Article  PubMed  Google Scholar 

  124. Luchini, C. et al. KRAS wild-type pancreatic ductal adenocarcinoma: molecular pathology and therapeutic opportunities. J. Exp. Clin. Cancer Res. 39, 227 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Doebele, R. C. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 21, 271–282 (2020).

    CAS  PubMed  Google Scholar 

  126. Drilon, A. et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378, 731–739 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. O’Reilly, E. M. & Hechtman, J. F. Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion. Ann. Oncol. 30, viii36–viii40 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Pishvaian, M. J. et al. Entrectinib in TRK and ROS1 fusion-positive metastatic pancreatic cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.18.00039 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gower, A., Golestany, B., Gong, J., Singhi, A. D. & Hendifar, A. E. Novel ALK fusion, PPFIBP1-ALK, in pancreatic ductal adenocarcinoma responsive to alectinib and lorlatinib. JCO Precis. Oncol. https://doi.org/10.1200/PO.19.00365 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hyman, D. et al. 365O – Durability of response with larotrectinib in adult and pediatric patients with TRK fusion cancer. Ann. Oncol. https://doi.org/10.1093/annonc/mdz431.002 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Schram, A. M. et al. Zenocutuzumab, a HER2xHER3 bispecific antibody, is effective therapy for tumors driven by NRG1 gene rearrangements. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-1119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ueda, S. et al. The correlation between cytoplasmic overexpression of epidermal growth factor receptor and tumor aggressiveness: poor prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas 29, e1–e8 (2004).

    PubMed  Google Scholar 

  133. Bruns, C. J. et al. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res. 60, 2926–2935 (2000).

    CAS  PubMed  Google Scholar 

  134. Ng, S. S., Tsao, M. S., Nicklee, T. & Hedley, D. W. Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Mol. Cancer Ther. 1, 777–783 (2002).

    CAS  PubMed  Google Scholar 

  135. Van Cutsem, E. et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J. Clin. Oncol. 27, 2231–2237 (2009).

    PubMed  Google Scholar 

  136. Philip, P. A. et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J. Clin. Oncol. 28, 3605–3610 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    CAS  PubMed  Google Scholar 

  138. Qin, S. et al. Nimotuzumab combined with gemcitabine versus gemcitabine in K-RAS wild-type locally advanced or metastatic pancreatic cancer: a prospective, randomized-controlled, double-blinded, multicenter, and phase III clinical trial. J. Clin. Oncol. 40, LBA4011 (2022).

    Google Scholar 

  139. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Grünwald, B. T. et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 184, 5577–5592.e18 (2021).

    PubMed  Google Scholar 

  141. Clark, C. E. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 67, 9518–9527 (2007).

    CAS  PubMed  Google Scholar 

  142. Zhang, Y. et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66, 124–136 (2017).

    CAS  PubMed  Google Scholar 

  143. Hegde, S. et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37, 289–307.e9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lin, J. H. et al. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J. Exp. Med. 217, e20190673 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    PubMed  Google Scholar 

  146. Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv4 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. O’Reilly, E. M. et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 5, 1431–1438 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Terrero, G. et al. Ipilimumab/nivolumab therapy in patients with metastatic pancreatic or biliary cancer with homologous recombination deficiency pathogenic germline variants. JAMA Oncol. 8, 1–3 (2022).

    PubMed  Google Scholar 

  149. Kim, A. M. J., Nemeth, M. R. & Lim, S.-O. 4-1BB: a promising target for cancer immunotherapy. Front. Oncol. 12, 968360 (2022).

    PubMed  PubMed Central  Google Scholar 

  150. Muth, S. T. et al. CD137 agonist-based combination immunotherapy enhances activated, effector memory T cells and prolongs survival in pancreatic adenocarcinoma. Cancer Lett. 499, 99–108 (2021).

    CAS  PubMed  Google Scholar 

  151. Zheng, L. et al. 812 Urelumab (anti-CD137 agonist) in combination with vaccine and nivolumab treatments is safe and associated with pathologic response as neoadjuvant and adjuvant therapy for resectable pancreatic cancer. J. Immunother. Cancer 8, A486 (2020).

    Google Scholar 

  152. Vonderheide, R. H. CD40 agonist antibodies in cancer immunotherapy. Annu. Rev. Med. 71, 47–58 (2020).

    CAS  PubMed  Google Scholar 

  153. Grewal, I. S. & Flavell, R. A. The role of CD40 ligand in costimulation and T-cell activation. Immunol. Rev. 153, 85–106 (1996).

    CAS  PubMed  Google Scholar 

  154. Ma, D. Y. & Clark, E. A. The role of CD40 and CD154/CD40L in dendritic cells. Semin. Immunol. 21, 265–272 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Byrne, K. T. & Vonderheide, R. H. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep. 15, 2719–2732 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Winograd, R. et al. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res. 3, 399–411 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. O’Hara, M. H. et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 22, 118–131 (2021).

    PubMed  Google Scholar 

  158. Padron, L. J. et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 28, 1167–1177 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

    CAS  PubMed  Google Scholar 

  161. Chavez-Galan, L., Olleros, M. L., Vesin, D. & Garcia, I. Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages. Front. Immunol. 6, 263 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. Yoshikawa, K. et al. Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci. 103, 2012–2020 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013).

    CAS  PubMed  Google Scholar 

  166. Candido, J. B. et al. CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Rep. 23, 1448–1460 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Magkouta, S. F. et al. CSF1/CSF1R axis blockade limits mesothelioma and enhances efficiency of anti-PDL1 immunotherapy. Cancers 13, 2546 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang-Gillam, A. et al. A randomized phase II study of cabiralizumab (cabira) + nivolumab (nivo) ± chemotherapy (chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). J. Clin. Oncol. 37, TPS465 (2019).

    Google Scholar 

  169. Columbus, G. Nivolumab/Cabiralizumab Combo Misses PFS Endpoint in Pancreatic Cancer https://www.onclive.com/view/nivolumabcabiralizumab-combo-misses-pfs-endpoint-in-pancreatic-cancer (2020).

  170. Li, B.-H., Garstka, M. A. & Li, Z.-F. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol. Immunol. 117, 201–215 (2020).

    CAS  PubMed  Google Scholar 

  171. Sanford, D. E. et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin. Cancer Res. 19, 3404–3415 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Noel, M. et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. New Drugs 38, 800–811 (2020).

    CAS  PubMed  Google Scholar 

  174. Cherney, R. J. et al. BMS-813160: a potent CCR2 and CCR5 dual antagonist selected as a clinical candidate. ACS Med. Chem. Lett. 12, 1753–1758 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Le, D. et al. Abstract CT124: a phase Ib/II study of BMS-813160, a CC chemokine receptor (CCR) 2/5 dual antagonist, in combination with chemotherapy or nivolumab in patients (pts) with advanced pancreatic or colorectal cancer. Cancer Res. 78, CT124 (2018).

    Google Scholar 

  176. Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Caligiuri, G. & Tuveson, D. A. Activated fibroblasts in cancer: perspectives and challenges. Cancer Cell 41, 434–449 (2023).

    CAS  PubMed  Google Scholar 

  178. Huang, H. et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40, 656–673.e7 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 80–93 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Perez, K. et al. Vitamin D receptor agonist paricalcitol plus gemcitabine and nab-paclitaxel in patients with metastatic pancreatic cancer. J. Clin. Oncol. 38, TPS784 (2020).

    Google Scholar 

  182. Beatty, G. L. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155, 29–32 (2018).

    CAS  PubMed  Google Scholar 

  183. Haas, A. R. et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol. Ther. 27, 1919–1929 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189–1198 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Leidner, R. et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386, 2112–2119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Melief, C. J. M. T-cell immunotherapy against mutant KRAS for pancreatic cancer. N. Engl. J. Med. 386, 2143–2144 (2022).

    PubMed  Google Scholar 

  187. Balachandran, V. P. et al. Phase I trial of adjuvant autogene cevumeran, an individualized mRNA neoantigen vaccine, for pancreatic ductal adenocarcinoma. J. Clin. Oncol. 40, 2516 (2022).

    Google Scholar 

  188. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA 90, 3539–3543 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Haldar, S. D. et al. A phase I study of a mutant KRAS-targeted long peptide vaccine combined with ipilimumab/nivolumab in resected pancreatic cancer and MMR-proficient metastatic colorectal cancer. J. Clin. Oncol. 41, TPS814 (2023).

    Google Scholar 

  191. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806.e12 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Tanaka, M. et al. Claudin-18 is an early-stage marker of pancreatic carcinogenesis. J. Histochem. Cytochem. 59, 942–952 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Sahin, U. et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin. Cancer Res. 14, 7624–7634 (2008).

    CAS  PubMed  Google Scholar 

  196. Overman, M. J. et al. A phase I, first-in-human, open-label, dose escalation and expansion study of PT886 in adult patients with advanced gastric, gastroesophageal junction, and pancreatic adenocarcinomas. J. Clin. Oncol. 41, TPS765 (2023).

    Google Scholar 

  197. Körner, M., Waser, B., Strobel, O., Büchler, M. & Reubi, J. C. Neurotensin receptors in pancreatic ductal carcinomas. EJNMMI Res. 5, 17 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. Yin, X. et al. Evaluation of neurotensin receptor 1 as a potential imaging target in pancreatic ductal adenocarcinoma. Amino Acids 49, 1325–1335 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Baum, R. P. et al. 177Lu-3BP-227 for neurotensin receptor 1-targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J. Nucl. Med. 59, 809–814 (2018).

    CAS  PubMed  Google Scholar 

  200. Dean, A. et al. Dual αV-integrin and neuropilin-1 targeting peptide CEND-1 plus nab-paclitaxel and gemcitabine for the treatment of metastatic pancreatic ductal adenocarcinoma: a first-in-human, open-label, multicentre, phase 1 study. Lancet Gastroenterol. Hepatol. 7, 943–951 (2022).

    PubMed  Google Scholar 

  201. Hurtado de Mendoza, T. et al. Tumor-penetrating therapy for β5 integrin-rich pancreas cancer. Nat. Commun. 12, 1541 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Sugahara, K. N. et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328, 1031–1035 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Kasi, A. et al. Phase Ib/IIa trial of CEND‐1 in combination with neoadjuvant FOLFIRINOX-based therapies in pancreatic, colorectal, and appendiceal cancers (CENDIFOX). J. Clin. Oncol. 40, TPS4195 (2022).

    Google Scholar 

  204. Bates, S. E. Pancreatic cancer: challenge and inspiration. Clin. Cancer Res. 23, 1628 (2017).

    PubMed  Google Scholar 

  205. Van Norman, G. A. Drugs, devices, and the FDA: part 1: an overview of approval processes for drugs. JACC Basic Transl. Sci. 1, 170–179 (2016).

    PubMed  PubMed Central  Google Scholar 

  206. Li, A. & Bergan, R. C. Clinical trial design: past, present, and future in the context of big data and precision medicine. Cancer 126, 4838–4846 (2020).

    PubMed  Google Scholar 

  207. FDA. Master Protocols: Efficient Clinical Trial Design Strategies to Expedite Development of Oncology Drugs and Biologics Guidance for Industry https://www.fda.gov/regulatory-information/search-fda-guidance-documents/master-protocols-efficient-clinical-trial-design-strategies-expedite-development-oncology-drugs-and (2022).

  208. Bogin, V. Master protocols: new directions in drug discovery. Contemp. Clin. Trials Commun. 18, 100568 (2020).

    PubMed  PubMed Central  Google Scholar 

  209. Chung, V. et al. SO-4 phase Ib/II, open-label, randomised evaluation of atezolizumab plus RO6874281 vs control in MORPHEUS–pancreatic ductal adenocarcinoma. Ann. Oncol. 31 (Suppl. 3), S218 (2020).

    Google Scholar 

  210. Pellat, A., Boutron, I. & Ravaud, P. Availability of results of trials studying pancreatic adenocarcinoma over the past 10 years. Oncologist https://doi.org/10.1093/oncolo/oyac156 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Adamska, A., Domenichini, A. & Falasca, M. Pancreatic ductal adenocarcinoma: current and evolving therapies. Int. J. Mol. Sci. 18, 1338 (2017).

    PubMed  PubMed Central  Google Scholar 

  212. Wang-Gillam, A. et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 387, 545–557 (2016).

    CAS  PubMed  Google Scholar 

  213. Van Cutsem, E. et al. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38, 3185–3194 (2020).

    PubMed  PubMed Central  Google Scholar 

  214. Philip, P. A. et al. Avenger 500, a phase III open-label randomized trial of the combination of CPI-613 with modified FOLFIRINOX (mFFX) versus FOLFIRINOX (FFX) in patients with metastatic adenocarcinoma of the pancreas. J. Clin. Oncol. 37, TPS479 (2019).

    Google Scholar 

  215. Sonbol, M. B. et al. CanStem111P trial: a phase III study of napabucasin plus nab-paclitaxel with gemcitabine. Future Oncol. 15, 1295–1302 (2019).

    CAS  PubMed  Google Scholar 

  216. Tempero, M. et al. Ibrutinib in combination with nab-paclitaxel and gemcitabine for first-line treatment of patients with metastatic pancreatic adenocarcinoma: phase III RESOLVE study. Ann. Oncol. 32, 600–608 (2021).

    CAS  PubMed  Google Scholar 

  217. Hecht, J. R. et al. Randomized phase III study of FOLFOX alone or with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer that progressed after gemcitabine (SEQUOIA). J. Clin. Oncol. 39, 1108–1118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Tempero, M. A. et al. Adjuvant nab-paclitaxel + gemcitabine in resected pancreatic ductal adenocarcinoma: results from a randomized, open-label, phase III trial. J. Clin. Oncol. https://doi.org/10.1200/JCO.22.01134 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Cancer Center Support Grant/Core Grant: P30 CA008748. SPORE: 1P50CA257881-01A1.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Eileen M. O’Reilly.

Ethics declarations

Competing interests

Z.I.H. declares no competing interests. E.M.O. receives institutional research funding from Genentech-Roche, Celgene–Bristol-Myers Squibb, BioNTech, AstraZeneca, Arcus, Elicio Therapeutics, Parker Institute, and Pertzye and has consulting, advisory and/or Steering Committee roles for Boehringer Ingelheim, BioNTech, Ipsen, Merck, Novartis, AstraZeneca, BioSapien, Astellas, BMS, Thetis, Autem, Novogene, Tempus, Agios, Genentech-Roche, Eisai, Merus, Genentech-Roche, Servier, Syros, and Leap Therapeutics.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks John Neoptolemos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z.I., O’Reilly, E.M. Therapeutic developments in pancreatic cancer. Nat Rev Gastroenterol Hepatol 21, 7–24 (2024). https://doi.org/10.1038/s41575-023-00840-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00840-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research