Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease

Abstract

Nonalcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD) are the leading causes of chronic liver disease worldwide. NAFLD and ALD share pathophysiological, histological and genetic features and both alcohol and metabolic dysfunction coexist as aetiological factors in many patients with hepatic steatosis. A diagnosis of NAFLD requires the exclusion of significant alcohol consumption and other causes of liver disease. However, data suggest that significant alcohol consumption is often under-reported in patients classified as having NAFLD and that alcohol and metabolic factors interact to exacerbate the progression of liver disease. In this Review, we analyse existing data on the interaction between alcohol consumption and metabolic syndrome as well as the overlapping features and differences in the pathogenesis of ALD and NAFLD. We also discuss the clinical implications of the coexistence of alcohol consumption, of any degree, in patients with evidence of metabolic derangement as well as the use of alcohol biomarkers to detect alcohol intake. Finally, we summarize the evolving nomenclature of fatty liver disease and describe a recent proposal to classify patients at the intersection of NAFLD and ALD. We propose that, regardless of the presumed aetiology, patients with fatty liver disease should be evaluated for both metabolic syndrome and alcohol consumption to enable better prognostication and a personalized medicine approach.

Key points

  • Nonalcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD) are the leading causes of chronic liver disease globally; in many patients, both metabolic dysfunction and alcohol consumption coexist as aetiological factors of hepatic steatosis.

  • The thresholds commonly used to diagnose NAFLD aim to exclude the role of alcohol in disease progression, but current evidence indicates that even low levels can exacerbate liver injury in susceptible individuals with metabolic syndrome; at present, there are no available data to recommend a safe level of alcohol consumption in patients with NAFLD.

  • Genetic background interacts with environmental factors, such as dietary patterns, sedentarism and alcohol intake, to induce more advanced liver disease by activating multiple inflammatory and fibrogenic signals.

  • Limitations of the current nomenclature and insights into the interaction of metabolic factors and alcohol consumption have led to a global debate regarding the nomenclature of NAFLD. A recent multisociety proposal of a new nomenclature for fatty liver disease addresses the issue of overlapping NAFLD–ALD and proposes a new category, termed MetALD, to designate those patients with NAFLD (named metabolic dysfunction-associated steatotic liver disease (MASLD) in the new nomenclature) who consume alcohol beyond 140–350 g per week and 210–420 g per week for women and men, respectively.

  • Identifying under-reported alcohol consumption in patients with presumed NAFLD using alcohol biomarkers is highly desirable.

  • Further research should include conducting new prospective studies to better characterize the clinical course of patients with metabolic dysfunction and varying degrees of alcohol consumption, developing new biomarkers for disease diagnosis and monitoring, and evaluating the efficacy of therapies developed for NAFLD in patients with dual-aetiology NAFLD and ALD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiological mechanisms involved in development and progression of NAFLD and ALD.
Fig. 2: Key pathogenic mechanisms in dual-aetiology nonalcoholic/alcohol-related fatty liver disease.
Fig. 3: Fatty liver disease spectrum and clinical considerations for management.

Similar content being viewed by others

References

  1. Younossi, Z. & Henry, L. Contribution of alcoholic and nonalcoholic fatty liver disease to the burden of liver-related morbidity and mortality. Gastroenterology 150, 1778–1785 (2016).

    PubMed  Google Scholar 

  2. Griswold, M. G. et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 392, 1015–1035 (2018).

    Google Scholar 

  3. Lindenmeyer, C. C. & McCullough, A. J. The natural history of nonalcoholic fatty liver disease-an evolving view. Clin. Liver Dis. 22, 11–21 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Loomba, R. et al. Nonalcoholic fatty liver disease progression rates to cirrhosis and progression of cirrhosis to decompensation and mortality: a real world analysis of Medicare data. Aliment. Pharmacol. Ther. 51, 1149–1159 (2020).

    CAS  PubMed  Google Scholar 

  5. Sanyal, A. J. et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 385, 1559–1569 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Parker, R. The natural history of alcohol-related liver disease. Curr. Opin. Gastroenterol. 36, 164–168 (2020).

    PubMed  Google Scholar 

  7. Younossi, Z. M. et al. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States. Clin. Gastroenterol. Hepatol. 19, 580–589.e5 (2021).

    PubMed  Google Scholar 

  8. Burra, P., Becchetti, C. & Germani, G. NAFLD and liver transplantation: disease burden, current management and future challenges. JHEP Rep. 2, 100192 (2020).

    PubMed  PubMed Central  Google Scholar 

  9. Rinella, M. E. et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 77, 1797–1835 (2023).

    PubMed  Google Scholar 

  10. Mitra, S., De, A. & Chowdhury, A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl. Gastroenterol. Hepatol. 5, 16 (2020).

    PubMed  PubMed Central  Google Scholar 

  11. Younossi, Z. M. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 77, 1335–1347 (2023).

    PubMed  Google Scholar 

  12. Henry, L., Paik, J. & Younossi, Z. M. Review article: the epidemiologic burden of non-alcoholic fatty liver disease across the world. Aliment. Pharmacol. Ther. 56, 942–956 (2022).

    CAS  PubMed  Google Scholar 

  13. Le, M. H. et al. 2019 Global NAFLD prevalence: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 20, 2809–2817 (2021).

    PubMed  Google Scholar 

  14. World Health Organization. Global Status Report on Alcohol and Health 2018 (World Health Organization, 2019).

  15. Arab, J. P. et al. NAFLD: challenges and opportunities to address the public health problem in Latin America. Ann. Hepatol. 24, 100359 (2021).

    PubMed  Google Scholar 

  16. Ayares, G. et al. Public health measures and prevention of alcohol-associated liver disease. J. Clin. Exp. Hepatol. 12, 1480–1491 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Julien, J., Ayer, T., Bethea, E. D., Tapper, E. B. & Chhatwal, J. Projected prevalence and mortality associated with alcohol-related liver disease in the USA, 2019-40: a modelling study. Lancet Public Health 5, e316–e323 (2020).

    PubMed  Google Scholar 

  18. Estes, C., Razavi, H., Loomba, R., Younossi, Z. & Sanyal, A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67, 123–133 (2018).

    CAS  PubMed  Google Scholar 

  19. Huang, D. Q., El-Serag, H. B. & Loomba, R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 18, 223–238 (2021).

    PubMed  Google Scholar 

  20. Huang, D. Q., Mathurin, P., Cortez-Pinto, H. & Loomba, R. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nat. Rev. Gastroenterol. Hepatol. 20, 37–49 (2023).

    PubMed  Google Scholar 

  21. Huang, D. Q. et al. Hepatocellular carcinoma incidence in alcohol-associated cirrhosis: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 21, 1169–1177 (2022).

    PubMed  Google Scholar 

  22. Díaz, L. A. et al. Impact of public health policies on alcohol-associated liver disease in Latin America: an ecological multi-national study. Hepatology 74, 2478–2490 (2021).

    PubMed  Google Scholar 

  23. Lazarus, J. V. et al. The global NAFLD policy review and preparedness index: are countries ready to address this silent public health challenge? J. Hepatol. 76, 771–780 (2021).

    PubMed  Google Scholar 

  24. Díaz, L. A. et al. The establishment of public health policies and the burden of non-alcoholic fatty liver disease in the Americas. Lancet Gastroenterol. Hepatol. 7, 552–559 (2022).

    PubMed  Google Scholar 

  25. Idalsoaga, F., Kulkarni, A. V., Mousa, O. Y., Arrese, M. & Arab, J. P. Non-alcoholic fatty liver disease and alcohol-related liver disease: two intertwined entities. Front. Med. 7, 448 (2020).

    Google Scholar 

  26. Lu, F.-B. et al. The relationship between obesity and the severity of non-alcoholic fatty liver disease: systematic review and meta-analysis. Expert Rev. Gastroenterol. Hepatol. 12, 491–502 (2018).

    CAS  PubMed  Google Scholar 

  27. Arrese, M., Barrera, F., Triantafilo, N. & Arab, J. P. Concurrent nonalcoholic fatty liver disease and type 2 diabetes: diagnostic and therapeutic considerations. Expert Rev. Gastroenterol. Hepatol. 13, 849–866 (2019).

    CAS  PubMed  Google Scholar 

  28. Åberg, F., Byrne, C. D., Pirola, C. J., Männistö, V. & Sookoian, S. Alcohol consumption and metabolic syndrome: clinical and epidemiological impact on liver disease. J. Hepatol. 78, 191–206 (2022).

    PubMed  Google Scholar 

  29. Younossi, Z. M. et al. Effects of alcohol consumption and metabolic syndrome on mortality in patients with nonalcoholic and alcohol-related fatty liver disease. Clin. Gastroenterol. Hepatol. 17, 1625–1633.e1 (2019).

    CAS  PubMed  Google Scholar 

  30. Inan-Eroglu, E. et al. Joint associations of adiposity and alcohol consumption with liver disease-related morbidity and mortality risk: findings from the UK Biobank. Eur. J. Clin. Nutr. 76, 74–83 (2022).

    PubMed  Google Scholar 

  31. Staufer, K. et al. Ethyl glucuronide in hair detects a high rate of harmful alcohol consumption in presumed non-alcoholic fatty liver disease. J. Hepatol. 77, 918–930 (2022).

    CAS  PubMed  Google Scholar 

  32. Ajmera, V. H., Terrault, N. A. & Harrison, S. A. Is moderate alcohol use in nonalcoholic fatty liver disease good or bad? A critical review. Hepatology 65, 2090–2099 (2017).

    CAS  PubMed  Google Scholar 

  33. Magherman, L. et al. Meta-analysis: the impact of light-to-moderate alcohol consumption on progressive non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 57, 820–836 (2023).

    PubMed  Google Scholar 

  34. NIAAA. Drinking Levels Defined. NIH https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-drinking (2023).

  35. Arab, J. P. et al. Alcohol-related liver disease: clinical practice guidelines by the Latin American Association for the Study of the Liver (ALEH). Ann. Hepatol. 18, 518–535 (2019).

    PubMed  Google Scholar 

  36. Osna, N. A., Donohue, T. M. Jr & Kharbanda, K. K. Alcoholic liver disease: pathogenesis and current management. Alcohol. Res. 38, 147–161 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Bajaj, J. S. & Nagy, L. E. Natural history of alcohol-associated liver disease: understanding the changing landscape of pathophysiology and patient care. Gastroenterology 163, 840–851 (2022).

    PubMed  Google Scholar 

  38. O’Shea, R. S., Dasarathy, S. & McCullough, A. J.; Practice Guideline Committee of the American Association for the Study of Liver Diseases; Practice Parameters Committee of the American College of Gastroenterology. Alcoholic liver disease. Hepatology 51, 307–328 (2010).

    PubMed  Google Scholar 

  39. Shah, N. D. et al. Alcohol-related liver disease is rarely detected at early stages compared with liver diseases of other etiologies worldwide. Clin. Gastroenterol. Hepatol. 17, 2320–2329.e12 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Bataller, R., Arab, J. P. & Shah, V. H. Alcohol-associated hepatitis. N. Engl. J. Med. 387, 2436–2448 (2022).

    CAS  PubMed  Google Scholar 

  41. Di Castelnuovo, A. et al. Alcohol intake and total mortality in 142 960 individuals from the MORGAM project: a population-based study. Addiction 117, 312–325 (2022).

    PubMed  Google Scholar 

  42. Rumgay, H. et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 22, 1071–1080 (2021).

    PubMed  PubMed Central  Google Scholar 

  43. Bagnardi, V. et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br. J. Cancer 112, 580–593 (2015).

    CAS  PubMed  Google Scholar 

  44. Roerecke, M. et al. Alcohol consumption and risk of liver cirrhosis: a systematic review and meta-analysis. Am. J. Gastroenterol. 114, 1574–1586 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Rehm, J. et al. Alcohol as a risk factor for liver cirrhosis: a systematic review and meta-analysis. Drug Alcohol Rev. 29, 437–445 (2010).

    PubMed  Google Scholar 

  46. Hagström, H., Thiele, M., Roelstraete, B., Söderling, J. & Ludvigsson, J. F. Mortality in biopsy-proven alcohol-related liver disease: a population-based nationwide cohort study of 3453 patients. Gut 70, 170–179 (2021).

    PubMed  Google Scholar 

  47. Wood, A. M. et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391, 1513–1523 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Bryazka, D. et al. Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020. Lancet 400, 185–235 (2022).

    Google Scholar 

  49. European Association for the Study of Liver. EASL clinical practical guidelines: management of alcoholic liver disease. J. Hepatol. 57, 399–420 (2012).

    Google Scholar 

  50. Hagström, H., Hemmingsson, T., Discacciati, A. & Andreasson, A. Alcohol consumption in late adolescence is associated with an increased risk of severe liver disease later in life. J. Hepatol. 68, 505–510 (2018).

    PubMed  Google Scholar 

  51. Tapper, E. B. & Parikh, N. D. Mortality due to cirrhosis and liver cancer in the United States, 1999-2016: observational study. BMJ 362, k2817 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Rehm, J. & Monteiro, M. Alcohol consumption and burden of disease in the Americas: implications for alcohol policy. Rev. Panam. Salud Publica 18, 241–248 (2005).

    PubMed  Google Scholar 

  53. Singal, A. K. et al. Alcohol-associated liver disease in the United States is associated with severe forms of disease among young, females and Hispanics. Aliment. Pharmacol. Ther. 54, 451–461 (2021).

    PubMed  Google Scholar 

  54. Julien, J. et al. Effect of increased alcohol consumption during COVID-19 pandemic on alcohol-associated liver disease: a modeling study. Hepatology 75, 1480–1490 (2022).

    CAS  PubMed  Google Scholar 

  55. Neufeld, M. et al. Impact of introducing a minimum alcohol tax share in retail prices on alcohol-attributable mortality in the WHO European region: a modelling study. Lancet Reg. Health Eur. 15, 100325 (2022).

    PubMed  PubMed Central  Google Scholar 

  56. Anouti, A. & Mellinger, J. L. The changing epidemiology of alcohol-associated liver disease: gender, race, and risk factors. Semin. Liver Dis. 43, 50–59 (2023).

    PubMed  Google Scholar 

  57. Naveau, S. et al. Excess weight risk factor for alcoholic liver disease. Hepatology 25, 108–111 (1997).

    CAS  PubMed  Google Scholar 

  58. Raynard, B. et al. Risk factors of fibrosis in alcohol-induced liver disease. Hepatology 35, 635–638 (2002).

    PubMed  Google Scholar 

  59. Hart, C. L., Morrison, D. S., Batty, G. D., Mitchell, R. J. & Davey Smith, G. Effect of body mass index and alcohol consumption on liver disease: analysis of data from two prospective cohort studies. BMJ 340, c1240 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Innes, H. et al. Characterizing the risk interplay between alcohol intake and body mass index on cirrhosis morbidity. Hepatology 75, 369–378 (2022).

    CAS  PubMed  Google Scholar 

  61. Allen, A. M. et al. Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: a 20 year-community study. Hepatology 67, 1726–1736 (2018).

    CAS  PubMed  Google Scholar 

  62. Whitfield, J. B. et al. Obesity, diabetes, coffee, tea, and cannabis use alter risk for alcohol-related cirrhosis in 2 large cohorts of high-risk drinkers. Am. J. Gastroenterol. 116, 106–115 (2021).

    PubMed  Google Scholar 

  63. Mallet, V. et al. Burden of liver disease progression in hospitalized patients with type 2 diabetes mellitus. J. Hepatol. 76, 265–274 (2022).

    CAS  PubMed  Google Scholar 

  64. Delacôte, C. et al. A model to identify heavy drinkers at high risk for liver disease progression. Clin. Gastroenterol. Hepatol. 18, 2315–2323.e6 (2020).

    PubMed  Google Scholar 

  65. Ganne-Carrié, N. et al. Estimate of hepatocellular carcinoma incidence in patients with alcoholic cirrhosis. J. Hepatol. 69, 1274–1283 (2018).

    PubMed  Google Scholar 

  66. Ascha, M. S. et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51, 1972–1978 (2010).

    PubMed  Google Scholar 

  67. Loomba, R. et al. Synergism between obesity and alcohol in increasing the risk of hepatocellular carcinoma: a prospective cohort study. Am. J. Epidemiol. 177, 333–342 (2013).

    PubMed  PubMed Central  Google Scholar 

  68. Dunn, W. et al. Modest alcohol consumption is associated with decreased prevalence of steatohepatitis in patients with non-alcoholic fatty liver disease (NAFLD). J. Hepatol. 57, 384–391 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sookoian, S., Castaño, G. O. & Pirola, C. J. Modest alcohol consumption decreases the risk of non-alcoholic fatty liver disease: a meta-analysis of 43 175 individuals. Gut 63, 530–532 (2014).

    PubMed  Google Scholar 

  70. Åberg, F. et al. Risks of light and moderate alcohol use in fatty liver disease: follow-up of population cohorts. Hepatology 71, 835–848 (2020).

    PubMed  Google Scholar 

  71. Hoek, A. G., van Oort, S., Mukamal, K. J. & Beulens, J. W. J. Alcohol consumption and cardiovascular disease risk: placing new data in context. Curr. Atheroscler. Rep. 24, 51–59 (2022).

    PubMed  PubMed Central  Google Scholar 

  72. Trépo, E. & Valenti, L. Update on NAFLD genetics: from new variants to the clinic. J. Hepatol. 72, 1196–1209 (2020).

    PubMed  Google Scholar 

  73. Jarvis, H. et al. Does moderate alcohol consumption accelerate the progression of liver disease in NAFLD? A systematic review and narrative synthesis. BMJ Open. 12, e049767 (2022).

    PubMed  PubMed Central  Google Scholar 

  74. Hajifathalian, K., Torabi Sagvand, B. & McCullough, A. J. Effect of alcohol consumption on survival in nonalcoholic fatty liver disease: a national prospective cohort study. Hepatology 70, 511–521 (2019).

    CAS  PubMed  Google Scholar 

  75. Chang, Y. et al. Low levels of alcohol consumption, obesity, and development of fatty liver with and without evidence of advanced fibrosis. Hepatology 71, 861–873 (2020).

    PubMed  Google Scholar 

  76. Blomdahl, J., Nasr, P., Ekstedt, M. & Kechagias, S. Moderate alcohol consumption is associated with significant fibrosis progression in NAFLD. Hepatol. Commun. 7, e0003 (2023).

    PubMed  PubMed Central  Google Scholar 

  77. Schuster, S., Cabrera, D., Arrese, M. & Feldstein, A. E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 15, 349–364 (2018).

    CAS  PubMed  Google Scholar 

  78. Gao, B., Ahmad, M. F., Nagy, L. E. & Tsukamoto, H. Inflammatory pathways in alcoholic steatohepatitis. J. Hepatol. 70, 249–259 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. Greuter, T., Malhi, H., Gores, G. J. & Shah, V. H. Therapeutic opportunities for alcoholic steatohepatitis and nonalcoholic steatohepatitis: exploiting similarities and differences in pathogenesis. JCI Insight 2, e95354 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Bedossa, P. Pathology of non-alcoholic fatty liver disease. Liver Int. 37, 85–89 (2017).

    PubMed  Google Scholar 

  81. Mashek, D. G., Khan, S. A., Sathyanarayan, A., Ploeger, J. M. & Franklin, M. P. Hepatic lipid droplet biology: getting to the root of fatty liver. Hepatology 62, 964–967 (2015).

    PubMed  Google Scholar 

  82. Gluchowski, N. L., Becuwe, M., Walther, T. C. & Farese, R. V. Jr. Lipid droplets and liver disease: from basic biology to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 14, 343–355 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Arab, J. P., Arrese, M. & Trauner, M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu. Rev. Pathol. 13, 321–350 (2018).

    CAS  PubMed  Google Scholar 

  84. Lee, E., Korf, H. & Vidal-Puig, A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J. Hepatol. 78, 1048–1062 (2023).

    CAS  PubMed  Google Scholar 

  85. Dearlove, D. J. & Hodson, L. Intrahepatic triglyceride content: influence of metabolic and genetics drivers. Curr. Opin. Clin. Nutr. Metab. Care 25, 241–247 (2022).

    CAS  PubMed  Google Scholar 

  86. Ipsen, D. H., Lykkesfeldt, J. & Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 75, 3313–3327 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014).

    CAS  PubMed  Google Scholar 

  88. Jeon, S. & Carr, R. Alcohol effects on hepatic lipid metabolism. J. Lipid Res. 61, 470–479 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mathur, M. et al. Adipose lipolysis is important for ethanol to induce fatty liver in the National Institute on Alcohol Abuse and Alcoholism murine model of chronic and binge ethanol feeding. Hepatology 77, 1688–1701 (2022).

    Google Scholar 

  90. Ferdouse, A. & Clugston, R. D. Pathogenesis of alcohol-associated fatty liver: lessons from transgenic mice. Front. Physiol. 13, 940974 (2022).

    PubMed  PubMed Central  Google Scholar 

  91. Clugston, R. D. et al. CD36-deficient mice are resistant to alcohol- and high-carbohydrate-induced hepatic steatosis. J. Lipid Res. 55, 239–246 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Barbier-Torres, L. et al. Depletion of mitochondrial methionine adenosyltransferase α1 triggers mitochondrial dysfunction in alcohol-associated liver disease. Nat. Commun. 13, 557 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Fromenty, B. & Roden, M. Mitochondrial alterations in fatty liver diseases. J. Hepatol. 78, 415–429 (2022).

    PubMed  Google Scholar 

  94. Williams, B. et al. A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis. FASEB J. 32, 130–142 (2018).

    CAS  PubMed  Google Scholar 

  95. Hajduch, E., Lachkar, F., Ferré, P. & Foufelle, F. Roles of ceramides in non-alcoholic fatty liver disease. J. Clin. Med. Res. 10, 792 (2021).

    CAS  Google Scholar 

  96. Singal, A. K., Shah, V. H. & Malhi, H. Emerging targets for therapy in ALD: lessons from NASH. Hepatology https://doi.org/10.1097/HEP.0000000000000381 (2023).

    Article  PubMed  Google Scholar 

  97. Gautheron, J., Gores, G. J. & Rodrigues, C. M. P. Lytic cell death in metabolic liver disease. J. Hepatol. 73, 394–408 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ibrahim, S. H., Hirsova, P. & Gores, G. J. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 67, 963–972 (2018).

    CAS  PubMed  Google Scholar 

  99. Musso, G., Cassader, M., Paschetta, E. & Gambino, R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology 155, 282–302.e8 (2018).

    CAS  PubMed  Google Scholar 

  100. Geng, Y., Faber, K. N., de Meijer, V. E., Blokzijl, H. & Moshage, H. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol. Int. 15, 21–35 (2021).

    PubMed  Google Scholar 

  101. Arrese, M., Cabrera, D., Kalergis, A. M. & Feldstein, A. E. Innate immunity and inflammation in NAFLD/NASH. Dig. Dis. Sci. 61, 1294–1303 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Peiseler, M. et al. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J. Hepatol. 77, 1136–1160 (2022).

    CAS  PubMed  Google Scholar 

  103. Hirsova, P. & Gores, G. J. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis. Cell Mol. Gastroenterol. Hepatol. 1, 17–27 (2015).

    PubMed  Google Scholar 

  104. Feldstein, A. E. & Gores, G. J. Apoptosis in alcoholic and nonalcoholic steatohepatitis. Front. Biosci. 10, 3093–3099 (2005).

    CAS  PubMed  Google Scholar 

  105. Idrissova, L. et al. TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. J. Hepatol. 62, 1156–1163 (2015).

    CAS  PubMed  Google Scholar 

  106. Hatting, M. et al. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents. Hepatology 57, 2189–2201 (2013).

    CAS  PubMed  Google Scholar 

  107. Eguchi, A., De Mollerat Du Jeu, X., Johnson, C. D., Nektaria, A. & Feldstein, A. E. Liver bid suppression for treatment of fibrosis associated with non-alcoholic steatohepatitis. J. Hepatol. 64, 699–707 (2016).

    CAS  PubMed  Google Scholar 

  108. Wiering, L. & Tacke, F. Treating inflammation to combat non-alcoholic fatty liver disease. J. Endocrinol. 256, e220194 (2022).

    PubMed  Google Scholar 

  109. Vitale, I. et al. Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 30, 1097–1154 (2023).

    PubMed  PubMed Central  Google Scholar 

  110. Shojaie, L., Iorga, A. & Dara, L. Cell death in liver diseases: a review. Int. J. Mol. Sci. 21, 9682 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Schwabe, R. F. & Luedde, T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat. Rev. Gastroenterol. Hepatol. 15, 738–752 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. Miyata, T. & Nagy, L. E. Programmed cell death in alcohol-associated liver disease. Clin. Mol. Hepatol. 26, 618–625 (2020).

    PubMed  PubMed Central  Google Scholar 

  113. Wu, X. et al. Recent advances in understanding of pathogenesis of alcohol-associated liver disease. Annu. Rev. Pathol. 18, 411–438 (2023).

    CAS  PubMed  Google Scholar 

  114. Wu, Y. et al. Molecular mechanisms of autophagy and implications in liver diseases. Liver Res. 7, 56–70 (2023).

    CAS  Google Scholar 

  115. Chao, X. et al. Impaired TFEB-mediated lysosome biogenesis and autophagy promote chronic ethanol-induced liver injury and steatosis in mice. Gastroenterology 155, 865–879.e12 (2018).

    CAS  PubMed  Google Scholar 

  116. Las, G., Serada, S. B., Wikstrom, J. D., Twig, G. & Shirihai, O. S. Fatty acids suppress autophagic turnover in β-cells. J. Biol. Chem. 286, 42534–42544 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sutti, S. & Albano, E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 17, 81–92 (2020).

    CAS  PubMed  Google Scholar 

  118. Shaker, M. E. The contribution of sterile inflammation to the fatty liver disease and the potential therapies. Biomed. Pharmacother. 148, 112789 (2022).

    CAS  PubMed  Google Scholar 

  119. Thibaut, R. et al. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J. 289, 3024–3057 (2022).

    CAS  PubMed  Google Scholar 

  120. Wen, Y., Lambrecht, J., Ju, C. & Tacke, F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell. Mol. Immunol. 18, 45–56 (2021).

    CAS  PubMed  Google Scholar 

  121. Liu, K., Wang, F.-S. & Xu, R. Neutrophils in liver diseases: pathogenesis and therapeutic targets. Cell. Mol. Immunol. 18, 38–44 (2021).

    CAS  PubMed  Google Scholar 

  122. Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hilscher, M. B. et al. Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension. Gastroenterology 157, 193–209.e9 (2019).

    CAS  PubMed  Google Scholar 

  124. Hwang, S., Yun, H., Moon, S., Cho, Y. E. & Gao, B. Role of neutrophils in the pathogenesis of nonalcoholic steatohepatitis. Front. Endocrinol. 12, 751802 (2021).

    Google Scholar 

  125. Deczkowska, A. et al. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat. Med. 27, 1043–1054 (2021).

    CAS  PubMed  Google Scholar 

  126. Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021).

    CAS  PubMed  Google Scholar 

  127. Li, S. et al. Recent insights into the role of immune cells in alcoholic liver disease. Front. Immunol. 10, 1328 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Marrero, I. et al. Differential activation of unconventional T cells, including iNKT cells, in alcohol-related liver disease. Alcohol. Clin. Exp. Res. 44, 1061–1074 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, H., Mehal, W., Nagy, L. E. & Rotman, Y. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell. Mol. Immunol. 18, 73–91 (2021).

    CAS  PubMed  Google Scholar 

  130. Bala, S., Marcos, M., Gattu, A., Catalano, D. & Szabo, G. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS ONE 9, e96864 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. Liu, M. et al. Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis. Nat. Commun. 12, 4560 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Szabo, G. & Iracheta-Vellve, A. Inflammasome activation in the liver: focus on alcoholic and non-alcoholic steatohepatitis. Clin. Res. Hepatol. Gastroenterol. 39, S18–S23 (2015).

    CAS  PubMed  Google Scholar 

  133. Knorr, J., Wree, A., Tacke, F. & Feldstein, A. E. The NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis. Semin. Liver Dis. 40, 298–306 (2020).

    PubMed  Google Scholar 

  134. Ganz, M. & Szabo, G. Immune and inflammatory pathways in NASH. Hepatol. Int. 7, 771–781 (2013).

    PubMed  Google Scholar 

  135. Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017).

    CAS  PubMed  Google Scholar 

  136. Schwabe, R. F., Tabas, I. & Pajvani, U. B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 158, 1913–1928 (2020).

    CAS  PubMed  Google Scholar 

  137. Hernández, A. et al. Extracellular vesicles in NAFLD/ALD: from pathobiology to therapy. Cells 9, 817 (2020).

    PubMed  PubMed Central  Google Scholar 

  138. Eguchi, A., Iwasa, M. & Nakagawa, H. Extracellular vesicles in fatty liver disease and steatohepatitis: role as biomarkers and therapeutic targets. Liver Int. 43, 292–298 (2023).

    CAS  PubMed  Google Scholar 

  139. Wu, D., Zhu, H. & Wang, H. Extracellular vesicles in non-alcoholic fatty liver disease and alcoholic liver disease. Front. Physiol. 12, 707429 (2021).

    PubMed  PubMed Central  Google Scholar 

  140. Miyaaki, H. et al. Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int. 34, e302–e307 (2014).

    CAS  PubMed  Google Scholar 

  141. Szabo, G. & Bala, S. MicroRNAs in liver disease. Nat. Rev. Gastroenterol. Hepatol. 10, 542–552 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Betrapally, N. S., Gillevet, P. M. & Bajaj, J. S. Changes in the intestinal microbiome and alcoholic and nonalcoholic liver diseases: causes or effects? Gastroenterology 150, 1745–1755.e3 (2016).

    PubMed  Google Scholar 

  143. Sharpton, S. R., Ajmera, V. & Loomba, R. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function. Clin. Gastroenterol. Hepatol. 17, 296–306 (2019).

    CAS  PubMed  Google Scholar 

  144. Leung, H. et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development. Sci. Transl. Med. 14, eabk0855 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jennison, E. & Byrne, C. D. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clin. Mol. Hepatol. 27, 22–43 (2021).

    PubMed  Google Scholar 

  146. Liu, Y. et al. Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting. Cell Metab. 34, 719–730.e4 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Oh, T. G. et al. A universal gut-microbiome-derived signature predicts cirrhosis. Cell Metab. 32, 901 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Fairfield, B. & Schnabl, B. Gut dysbiosis as a driver in alcohol-induced liver injury. JHEP Rep. 3, 100220 (2021).

    PubMed  Google Scholar 

  149. Jew, M. H. & Hsu, C. L. Alcohol, the gut microbiome, and liver disease. J. Gastroenterol. Hepatol. https://doi.org/10.1111/jgh.16199 (2023).

    Article  PubMed  Google Scholar 

  150. Leclercq, S. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl Acad. Sci. USA 111, E4485–E4493 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Mutlu, E. A. et al. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G966–G978 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Maccioni, L. et al. Duodenal CD8+ T resident memory cell apoptosis contributes to gut barrier dysfunction and microbial translocation in early alcohol-associated liver disease in humans. Aliment. Pharmacol. Ther. 56, 1055–1070 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013).

    CAS  PubMed  Google Scholar 

  154. Meijnikman, A. S. et al. Microbiome-derived ethanol in nonalcoholic fatty liver disease. Nat. Med. 28, 2100–2106 (2022).

    CAS  PubMed  Google Scholar 

  155. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).

    CAS  PubMed  Google Scholar 

  156. Henry, Z., Meadows, V. & Guo, G. L. FXR and NASH: an avenue for tissue-specific regulation. Hepatol. Commun. 7, e0127 (2023).

    PubMed  PubMed Central  Google Scholar 

  157. Jahn, D., Rau, M., Hermanns, H. M. & Geier, A. Mechanisms of enterohepatic fibroblast growth factor 15/19 signaling in health and disease. Cytokine Growth Factor Rev. 26, 625–635 (2015).

    CAS  PubMed  Google Scholar 

  158. Ferrebee, C. B. & Dawson, P. A. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm. Sin. B 5, 129–134 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. Arab, J. P., Karpen, S. J., Dawson, P. A., Arrese, M. & Trauner, M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 65, 350–362 (2017).

    PubMed  Google Scholar 

  160. Way, G. W., Jackson, K. G., Muscu, S. R. & Zhou, H. Key signaling in alcohol-associated liver disease: the role of bile acids. Cells 11, 1374 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang, X., Gonzalez, F. J., Huang, M. & Bi, H. Nuclear receptors and non-alcoholic fatty liver disease: an update. Liver Res. 4, 88–93 (2020).

    Google Scholar 

  162. Francque, S. et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat. Rev. Gastroenterol. Hepatol. 18, 24–39 (2021).

    PubMed  Google Scholar 

  163. Berthier, A., Johanns, M., Zummo, F. P., Lefebvre, P. & Staels, B. PPARs in liver physiology. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166097 (2021).

    CAS  PubMed  Google Scholar 

  164. Fischer, M., You, M., Matsumoto, M. & Crabb, D. W. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice. J. Biol. Chem. 278, 27997–28004 (2003).

    CAS  PubMed  Google Scholar 

  165. Yu, S., Rao, S. & Reddy, J. K. Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis. Curr. Mol. Med. 3, 561–572 (2003).

    CAS  PubMed  Google Scholar 

  166. Ajmera, V. & Loomba, R. Advances in the genetics of nonalcoholic fatty liver disease. Curr. Opin. Gastroenterol. 39, 150–155 (2023).

    PubMed  Google Scholar 

  167. Kim, H.-S. et al. Synergistic associations of PNPLA3 I148M variant, alcohol intake, and obesity with risk of cirrhosis, hepatocellular carcinoma, and mortality. JAMA Netw. Open. 5, e2234221 (2022).

    PubMed  PubMed Central  Google Scholar 

  168. Pennisi, G., Celsa, C., Giammanco, A., Spatola, F. & Petta, S. The burden of hepatocellular carcinoma in non-alcoholic fatty liver disease: screening issue and future perspectives. Int. J. Mol. Sci. 20, 5613 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Gellert-Kristensen, H. et al. Combined effect of PNPLA3, TM6SF2, and HSD17B13 variants on risk of cirrhosis and hepatocellular carcinoma in the general population. Hepatology 72, 845–856 (2020).

    CAS  PubMed  Google Scholar 

  170. Amangurbanova, M., Huang, D. Q. & Loomba, R. Review article: the role of HSD17B13 on global epidemiology, natural history, pathogenesis and treatment of NAFLD. Aliment. Pharmacol. Ther. 57, 37–51 (2023).

    CAS  PubMed  Google Scholar 

  171. Chen, H. et al. Genetic variant rs72613567 of HSD17B13 gene reduces alcohol-related liver disease risk in Chinese Han population. Liver Int. 40, 2194–2202 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Stickel, F. et al. Genetic variation in HSD17B13 reduces the risk of developing cirrhosis and hepatocellular carcinoma in alcohol misusers. Hepatology 72, 88–102 (2020).

    CAS  PubMed  Google Scholar 

  173. Pirola, C. J. & Sookoian, S. Epigenetics factors in nonalcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 16, 521–536 (2022).

    CAS  PubMed  Google Scholar 

  174. Rodríguez-Sanabria, J. S., Escutia-Gutiérrez, R., Rosas-Campos, R., Armendáriz-Borunda, J. S. & Sandoval-Rodríguez, A. An update in epigenetics in metabolic-associated fatty liver disease. Front. Med. 8, 770504 (2021).

    Google Scholar 

  175. Hardy, T. & Mann, D. A. Epigenetics in liver disease: from biology to therapeutics. Gut 65, 1895–1905 (2016).

    CAS  PubMed  Google Scholar 

  176. Habash, N. W., Sehrawat, T. S., Shah, V. H. & Cao, S. Epigenetics of alcohol-related liver diseases. JHEP Rep. 4, 100466 (2022).

    PubMed  PubMed Central  Google Scholar 

  177. Arrese, M. et al. Insights into nonalcoholic fatty-liver disease heterogeneity. Semin. Liver Dis. 41, 421–434 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ma, J. et al. Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure. J. Clin. Invest. 132, e157780 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Pirola, C. J. & Sookoian, S. Advances in our understanding of the molecular heterogeneity of fatty liver disease: toward informed treatment decision making. Expert Rev. Gastroenterol. Hepatol. 17, 317–324 (2023).

    CAS  PubMed  Google Scholar 

  180. Xu, J. et al. Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p-AMPK. J. Hepatol. 55, 673–682 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Benedé-Ubieto, R. et al. An experimental DUAL model of advanced liver damage. Hepatol. Commun. 5, 1051–1068 (2021).

    PubMed  PubMed Central  Google Scholar 

  182. Gäbele, E. et al. A new model of interactive effects of alcohol and high-fat diet on hepatic fibrosis. Alcohol. Clin. Exp. Res. 35, 1361–1367 (2011).

    PubMed  Google Scholar 

  183. Hwang, S., Ren, T. & Gao, B. Obesity and binge alcohol intake are deadly combination to induce steatohepatitis: a model of high-fat diet and binge ethanol intake. Clin. Mol. Hepatol. 26, 586–594 (2020).

    PubMed  PubMed Central  Google Scholar 

  184. Israelsen, M. et al. Comprehensive lipidomics reveals phenotypic differences in hepatic lipid turnover in ALD and NAFLD during alcohol intoxication. JHEP Rep. 3, 100325 (2021).

    PubMed  PubMed Central  Google Scholar 

  185. Liebe, R. et al. Diagnosis and management of secondary causes of steatohepatitis. J. Hepatol. 74, 1455–1471 (2021).

    CAS  PubMed  Google Scholar 

  186. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of alcohol-related liver disease. J. Hepatol. 69, 154–181 (2018).

    Google Scholar 

  187. Dunn, W. et al. Utility of a new model to diagnose an alcohol basis for steatohepatitis. Gastroenterology 131, 1057–1063 (2006).

    PubMed  Google Scholar 

  188. Hahn, J. A. et al. Factors associated with phosphatidylethanol (PEth) sensitivity for detecting unhealthy alcohol use: an individual patient data meta-analysis. Alcohol. Clin. Exp. Res. 45, 1166–1187 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Cabezas, J., Lucey, M. R. & Bataller, R. Biomarkers for monitoring alcohol use. Clin. Liver Dis. 8, 59–63 (2016).

    Google Scholar 

  190. Fakhari, S. & Waszkiewicz, N. Old and new biomarkers of alcohol abuse: narrative review. J. Clin. Med. 12, 2124 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO). Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

    Google Scholar 

  192. Arab, J. P. et al. Latin American Association for the Study of the Liver (ALEH) practice guidance for the diagnosis and treatment of non-alcoholic fatty liver disease. Ann. Hepatol. 19, 674–690 (2020).

    CAS  PubMed  Google Scholar 

  193. Bianco, C., Casirati, E., Malvestiti, F. & Valenti, L. Genetic predisposition similarities between NASH and ASH: identification of new therapeutic targets. JHEP Rep. 3, 100284 (2021).

    PubMed  PubMed Central  Google Scholar 

  194. Emdin, C. A. et al. Association of genetic variation with cirrhosis: a multi-trait genome-wide association and gene-environment interaction study. Gastroenterology 160, 1620–1633.e13 (2021).

    CAS  PubMed  Google Scholar 

  195. Bianco, C. et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J. Hepatol. 74, 775–782 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Thomas, C. E. et al. NAFLD polygenic risk score and risk of hepatocellular carcinoma in an East Asian population. Hepatol. Commun. 6, 2310–2321 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Romero-Gómez, M., Zelber-Sagi, S. & Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 67, 829–846 (2017).

    PubMed  Google Scholar 

  198. Mentella, M. C., Scaldaferri, F., Ricci, C., Gasbarrini, A. & Miggiano, G. A. D. Cancer and mediterranean diet: a review. Nutrients 11, 2059 (2019).

    PubMed  PubMed Central  Google Scholar 

  199. Marti-Aguado, D., Clemente-Sanchez, A. & Bataller, R. Cigarette smoking and liver diseases. J. Hepatol. 77, 191–205 (2022).

    CAS  PubMed  Google Scholar 

  200. Singal, A. K. et al. Research methodologies to address clinical unmet needs and challenges in alcohol-associated liver disease. Hepatology 75, 1026–1037 (2022).

    PubMed  Google Scholar 

  201. Janjua, M. et al. Alcohol consumption and cardiovascular outcomes in patients with nonalcoholic fatty liver disease: a population-based cohort study. Hepatol. Commun. 6, 526–534 (2022).

    PubMed  Google Scholar 

  202. Lemmer, P. et al. Effects of moderate alcohol consumption in non-alcoholic fatty liver disease. J. Clin. Med. Res. 11, 890 (2022).

    CAS  Google Scholar 

  203. Decraecker, M. et al. Long-term prognosis of patients with alcohol-related liver disease or non-alcoholic fatty liver disease according to metabolic syndrome or alcohol use. Liver Int. 42, 350–362 (2022).

    PubMed  Google Scholar 

  204. Tan, E. Z.-Y. et al. Modest alcohol intake not associated with significant hepatic steatosis or more severe liver disease among patients with diabetes mellitus. J. Gastroenterol. Hepatol. 36, 751–757 (2021).

    CAS  PubMed  Google Scholar 

  205. Long, M. T., Massaro, J. M., Hoffmann, U., Benjamin, E. J. & Naimi, T. S. Alcohol use is associated with hepatic steatosis among persons with presumed nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 18, 1831–1841.e5 (2020).

    PubMed  Google Scholar 

  206. Chang, Y. et al. Nonheavy drinking and worsening of noninvasive fibrosis markers in nonalcoholic fatty liver disease: a cohort study. Hepatology 69, 64–75 (2019).

    CAS  PubMed  Google Scholar 

  207. Åberg, F., Helenius-Hietala, J., Puukka, P., Färkkilä, M. & Jula, A. Interaction between alcohol consumption and metabolic syndrome in predicting severe liver disease in the general population. Hepatology 67, 2141–2149 (2018).

    PubMed  Google Scholar 

  208. Ajmera, V. et al. Among patients with nonalcoholic fatty liver disease, modest alcohol use is associated with less improvement in histologic steatosis and steatohepatitis. Clin. Gastroenterol. Hepatol. 16, 1511–1520.e5 (2018).

    PubMed  PubMed Central  Google Scholar 

  209. Mitchell, T. et al. Type and pattern of alcohol consumption is associated with liver fibrosis in patients with non-alcoholic fatty liver disease. Am. J. Gastroenterol. 113, 1484–1493 (2018).

    PubMed  Google Scholar 

  210. Kimura, T. et al. Mild drinking habit is a risk factor for hepatocarcinogenesis in non-alcoholic fatty liver disease with advanced fibrosis. World J. Gastroenterol. 24, 1440–1450 (2018).

    PubMed  PubMed Central  Google Scholar 

  211. Hagström, H. et al. Low to moderate lifetime alcohol consumption is associated with less advanced stages of fibrosis in non-alcoholic fatty liver disease. Scand. J. Gastroenterol. 52, 159–165 (2017).

    PubMed  Google Scholar 

  212. Kawamura, Y. et al. Effects of alcohol consumption on hepatocarcinogenesis in japanese patients with fatty liver disease. Clin. Gastroenterol. Hepatol. 14, 597–605 (2016).

    CAS  PubMed  Google Scholar 

  213. Sookoian, S., Flichman, D., Castaño, G. O. & Pirola, C. J. Mendelian randomisation suggests no beneficial effect of moderate alcohol consumption on the severity of nonalcoholic fatty liver disease. Aliment. Pharmacol. Ther. 44, 1224–1234 (2016).

    CAS  PubMed  Google Scholar 

  214. Moriya, A. et al. Roles of alcohol consumption in fatty liver: a longitudinal study. J. Hepatol. 62, 921–927 (2015).

    CAS  PubMed  Google Scholar 

  215. Kwon, H. K., Greenson, J. K. & Conjeevaram, H. S. Effect of lifetime alcohol consumption on the histological severity of non-alcoholic fatty liver disease. Liver Int. 34, 129–135 (2014).

    CAS  PubMed  Google Scholar 

  216. Gunji, T. et al. Modest alcohol consumption has an inverse association with liver fat content. Hepatogastroenterology 59, 2552–2556 (2012).

    CAS  PubMed  Google Scholar 

  217. Hamaguchi, M. et al. Protective effect of alcohol consumption for fatty liver but not metabolic syndrome. World J. Gastroenterol. 18, 156–167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Wong, V. W.-S. et al. Prevalence of non-alcoholic fatty liver disease and advanced fibrosis in Hong Kong Chinese: a population study using proton-magnetic resonance spectroscopy and transient elastography. Gut 61, 409–415 (2012).

    PubMed  Google Scholar 

  219. Hiramine, Y. et al. Alcohol drinking patterns and the risk of fatty liver in Japanese men. J. Gastroenterol. 46, 519–528 (2011).

    CAS  PubMed  Google Scholar 

  220. Moriya, A. et al. Alcohol consumption appears to protect against non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 33, 378–388 (2011).

    CAS  PubMed  Google Scholar 

  221. Yamada, T. et al. Alcohol drinking may not be a major risk factor for fatty liver in Japanese undergoing a health checkup. Dig. Dis. Sci. 55, 176–182 (2010).

    PubMed  Google Scholar 

  222. Cotrim, H. P. et al. Effects of light-to-moderate alcohol consumption on steatosis and steatohepatitis in severely obese patients. Eur. J. Gastroenterol. Hepatol. 21, 969–972 (2009).

    CAS  PubMed  Google Scholar 

  223. Ekstedt, M. et al. Alcohol consumption is associated with progression of hepatic fibrosis in non-alcoholic fatty liver disease. Scand. J. Gastroenterol. 44, 366–374 (2009).

    CAS  PubMed  Google Scholar 

  224. Gunji, T. et al. Light and moderate alcohol consumption significantly reduces the prevalence of fatty liver in the Japanese male population. Am. J. Gastroenterol. 104, 2189–2195 (2009).

    PubMed  Google Scholar 

  225. Baik, I. & Shin, C. Prospective study of alcohol consumption and metabolic syndrome. Am. J. Clin. Nutr. 87, 1455–1463 (2008).

    CAS  PubMed  Google Scholar 

  226. Dunn, W., Xu, R. & Schwimmer, J. B. Modest wine drinking and decreased prevalence of suspected nonalcoholic fatty liver disease. Hepatology 47, 1947–1954 (2008).

    PubMed  Google Scholar 

  227. Bedogni, G. et al. Incidence and natural course of fatty liver in the general population: the Dionysos study. Hepatology 46, 1387–1391 (2007).

    PubMed  Google Scholar 

  228. Dixon, J. B., Bhathal, P. S. & O’Brien, P. E. Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 121, 91–100 (2001).

    CAS  PubMed  Google Scholar 

  229. Bellentani, S. et al. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann. Intern. Med. 132, 112–117 (2000).

    CAS  PubMed  Google Scholar 

  230. Bellentani, S. et al. Drinking habits as cofactors of risk for alcohol induced liver damage. The Dionysos Study Group. Gut 41, 845–850 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Becker, U. et al. Prediction of risk of liver disease by alcohol intake, sex, and age: a prospective population study. Hepatology 23, 1025–1029 (1996).

    CAS  PubMed  Google Scholar 

  232. Salameh, H. et al. PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am. J. Gastroenterol. 110, 846–856 (2015).

    CAS  PubMed  Google Scholar 

  233. Liu, Y.-L. et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 4309 (2014).

    CAS  PubMed  Google Scholar 

  234. Buch, S. et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat. Genet. 47, 1443–1448 (2015).

    CAS  PubMed  Google Scholar 

  235. Valenti, L., Alisi, A. & Nobili, V. Unraveling the genetics of fatty liver in obese children: additive effect of P446L GCKR and I148M PNPLA3 polymorphisms. Hepatology 55, 661–663 (2012).

    PubMed  Google Scholar 

  236. Al-Serri, A. et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J. Hepatol. 56, 448–454 (2012).

    CAS  PubMed  Google Scholar 

  237. Huang, Y.-S., Wang, L. Y., Chang, C.-H., Perng, C.-L. & Lin, H.-C. Superoxide dismutase 2 genetic variation as a susceptibility risk factor for alcoholic cirrhosis. Alcohol Alcohol. 51, 633–637 (2016).

    CAS  PubMed  Google Scholar 

  238. Loomba, R., Friedman, S. L. & Shulman, G. I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184, 2537–2564 (2021).

    CAS  PubMed  Google Scholar 

  239. Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. https://doi.org/10.1016/j.aohep.2023.101133 (2023).

    Article  PubMed  Google Scholar 

  240. Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. https://doi.org/10.1016/j.jhep.2023.06.003 (2023).

    Article  PubMed  Google Scholar 

  241. Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology https://doi.org/10.1097/HEP.0000000000000520 (2023).

    Article  PubMed  Google Scholar 

  242. American Association for the Study of Liver Disease. NAFLD Nomenclature Consensus Meeting High-Level Output. AASLD https://www.aasld.org/news/nafld-nomenclature-consensus-meeting-high-level-output (2022).

  243. Eslam, M., Sanyal, A. J. & George, J. International consensus panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158, 1999–2014.e1 (2020).

    CAS  PubMed  Google Scholar 

  244. Eslam, M. et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J. Hepatol. 73, 202–209 (2020).

    PubMed  Google Scholar 

  245. Kim, D. et al. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J. Hepatol. 75, 1284–1291 (2021).

    CAS  PubMed  Google Scholar 

  246. Nguyen, V. H., Le, M. H., Cheung, R. C. & Nguyen, M. H. Differential clinical characteristics and mortality outcomes in persons with NAFLD and/or MAFLD. Clin. Gastroenterol. Hepatol. 19, 2172–2181.e6 (2021).

    PubMed  Google Scholar 

  247. van Kleef, L. A., de Knegt, R. J. & Brouwer, W. P. Metabolic dysfunction-associated fatty liver disease and excessive alcohol consumption are both independent risk factors for mortality. Hepatology 77, 942–948 (2023).

    PubMed  Google Scholar 

  248. Méndez-Sánchez, N. et al. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol. Hepatol. 7, 388–390 (2022).

    PubMed  Google Scholar 

  249. Younossi, Z. M. et al. From NAFLD to MAFLD: implications of a premature change in terminology. Hepatology 73, 1194–1198 (2021).

    PubMed  Google Scholar 

  250. Ratziu, V. et al. The times they are a-changin’ (for NAFLD as well). J. Hepatol. 73, 1307–1309 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors were partially supported by the Chilean government through the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT projects 1200227 to J.P.A. and 1191145 to M.A.). R.B. is supported by grants from the National Institutes of Alcohol and Alcoholism (NIAAA U01AA021908 and U01AA020821).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Marco Arrese.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Helena Cortez-Pinto, Rohit Loomba and Hidekazu Tsukamoto for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, L.A., Arab, J.P., Louvet, A. et al. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 20, 764–783 (2023). https://doi.org/10.1038/s41575-023-00822-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00822-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing