Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology

Abstract

A wide variety of liver functions are regulated daily by the liver circadian clock and via systemic circadian control by other organs and cells within the gastrointestinal tract as well as the microbiome and immune cells. Disruption of the circadian system, as occurs during jetlag, shift work or an unhealthy lifestyle, is implicated in several liver-related pathologies, ranging from metabolic diseases such as obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease to liver malignancies such as hepatocellular carcinoma. In this Review, we cover the molecular, cellular and organismal aspects of various liver pathologies from a circadian viewpoint, and in particular how circadian dysregulation has a role in the development and progression of these diseases. Finally, we discuss therapeutic and lifestyle interventions that carry health benefits through support of a functional circadian clock that acts in synchrony with the environment.

Key points

  • Liver physiology and metabolism exhibit daily rhythmicity under the governance of the circadian clock.

  • Circadian clocks are implicated in metabolic diseases, such as obesity and diabetes, through hepatic and hepatic-associated mechanisms.

  • Clock components have a role in the pathophysiology of a wide variety of liver pathologies, from nonalcoholic fatty liver disease to hepatocellular carcinoma.

  • The microbiome and the immune system are emerging clock-controlled regulators of metabolic health.

  • Circadian-based medicine in the form of time-of-day nutritional and pharmacological interventions carries health benefits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The circadian clock system.
Fig. 2: Involvement of circadian rhythmicity in the pathophysiology of liver diseases.
Fig. 3: The role of circadian regulation in HCC development.
Fig. 4: Time-restricted eating as a chronobiological health intervention.

Similar content being viewed by others

References

  1. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Albrecht, U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Roenneberg, T. & Merrow, M. The circadian clock and human health. Curr. Biol. 26, R432–R443 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kramer, A. et al. Foundations of circadian medicine. PLoS Biol. 20, e3001567 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reinke, H. & Asher, G. Crosstalk between metabolism and circadian clocks. Nat. Rev. Mol. Cell Biol. 20, 227–241 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012). This study demonstrates that TRE carries metabolic benefits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Allison, K. C. et al. Prolonged, controlled daytime versus delayed eating impacts weight and metabolism. Curr. Biol. 31, 650–657.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Manoogian, E. N. C. et al. Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-h shift workers: the Healthy Heroes randomized control trial. Cell Metab. 34, 1442–1456.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Reinke, H. & Asher, G. Circadian clock control of liver metabolic functions. Gastroenterology 150, 574–580 (2016).

    Article  PubMed  Google Scholar 

  16. Segers, A. & Depoortere, I. Circadian clocks in the digestive system. Nat. Rev. Gastroenterol. Hepatol. 18, 239–251 (2021).

    Article  PubMed  Google Scholar 

  17. Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Stojkovic, K., Wing, S. S. & Cermakian, N. A central role for ubiquitination within a circadian clock protein modification code. Front. Mol. Neurosci. 7, 69 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao, X. et al. Nuclear receptors rock around the clock. EMBO Rep. 15, 518–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaucher, J., Montellier, E. & Sassone-Corsi, P. Molecular Cogs: interplay between circadian clock and cell cycle. Trends Cell Biol. 28, 368–379 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, X. et al. Rheostatic balance of circadian rhythm and autophagy in metabolism and disease. Front. Cell Dev. Biol. 8, 616434 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Manella, G. et al. Hypoxia induces a time- and tissue-specific response that elicits intertissue circadian clock misalignment. Proc. Natl Acad. Sci. USA 117, 779–786 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z., Shui, G. & Li, M.-D. Time to eat reveals the hierarchy of peripheral clocks. Trends Cell Biol. 31, 869–872 (2021).

    Article  PubMed  Google Scholar 

  24. Manella, G. et al. The liver-clock coordinates rhythmicity of peripheral tissues in response to feeding. Nat. Metab. 3, 829–842 (2021). This study addresses the effect of the liver clock on the rhythmicity of other peripheral tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vollmers, C. et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl Acad. Sci. USA 106, 21453–21458 (2009). These studies (refs. 25,26) highlight the prominent role of feeding on the liver clock and overall rhythmic gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xin, H. et al. A multi-tissue multi-omics analysis reveals distinct kineztics in entrainment of diurnal transcriptomes by inverted feeding. iScience 24, 102335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Landgraf, D. et al. Oxyntomodulin regulates resetting of the liver circadian clock by food. eLife 4, e06253 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Koronowski, K. B. et al. Defining the independence of the liver circadian clock. Cell 177, 1448–1462.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sinturel, F. et al. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev. 35, 329–334 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Greco, C. M. et al. Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Sci. Adv. 7, eabi7828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guan, D. et al. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science 369, 1388–1394 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koronowski, K. B. & Sassone-Corsi, P. Communicating clocks shape circadian homeostasis. Science 371, eabd0951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Levine, D. C. et al. NAD+ controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol. Cell 78, 835–849.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Asher, G. et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Guan, D. et al. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell 174, 831–842.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luciano, A. K. et al. CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues. J. Biol. Chem. 293, 9126–9136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, C., Li, S., Liu, T., Borjigin, J. & Lin, J. D. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447, 477–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hildebrandt, F. et al. Spatial transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat. Commun. 12, 7046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hurni, C., Weger, B. D., Gobet, C. & Naef, F. Comprehensive analysis of the circadian nuclear and cytoplasmic transcriptome in mouse liver. PLoS Genet. 18, e1009903 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349–354 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robles, M. S., Cox, J. & Mann, M. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet. 10, e1004047 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mauvoisin, D. et al. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc. Natl Acad. Sci. USA 111, 167–172 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Robles, M. S., Humphrey, S. J. & Mann, M. Phosphorylation is a central mechanism for circadian control of metabolism and physiology. Cell Metab. 25, 118–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J. et al. Nuclear proteomics uncovers diurnal regulatory landscapes in mouse liver. Cell Metab. 25, 102–117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang, Y. et al. A proteomics landscape of circadian clock in mouse liver. Nat. Commun. 9, 1553 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mauvoisin, D. et al. Circadian and feeding rhythms orchestrate the diurnal liver acetylome. Cell Rep. 20, 1729–1743 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eckel-Mahan, K. L. et al. Coordination of the transcriptome and metabolome by the circadian clock. Proc. Natl Acad. Sci. USA 109, 5541–5546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aviram, R. et al. Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Mol. Cell 62, 636–648 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Adamovich, Y. et al. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 19, 319–330 (2014). This study demonstrates the different roles of feeding and the circadian clock in hepatic triglyceride metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Atger, F. et al. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1515308112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Janich, P., Arpat, A. B., Castelo-Szekely, V., Lopes, M. & Gatfield, D. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res. https://doi.org/10.1101/gr.195404.115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. van der Valk, E. S., Savas, M. & van Rossum, E. F. C. Stress and obesity: are there more susceptible individuals? Curr. Obes. Rep. 7, 193–203 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lin, X. & Li, H. Obesity: epidemiology, pathophysiology, and therapeutics. Front. Endocrinol. 12, 706978 (2021).

    Article  Google Scholar 

  57. Heeren, J. & Scheja, L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol. Metab. 50, 101238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nurjhan, N., Campbell, P. J., Kennedy, F. P., Miles, J. M. & Gerich, J. E. Insulin dose-response characteristics for suppression of glycerol release and conversion to glucose in humans. Diabetes 35, 1326–1331 (1986).

    Article  CAS  PubMed  Google Scholar 

  60. Ruderman, N. B. & Dean, D. Malonyl CoA, long chain fatty acyl CoA and insulin resistance in skeletal muscle. J. Basic Clin. Physiol. Pharmacol. 9, 295–308 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Rabe, K., Lehrke, M., Parhofer, K. G. & Broedl, U. C. Adipokines and insulin resistance. Mol. Med. 14, 741–751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guan, D. & Lazar, M. A. Interconnections between circadian clocks and metabolism. J. Clin. Invest. 131, 148278 (2021).

    Article  Google Scholar 

  63. Turek, F. W. et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043–1045 (2005). This study put forward the idea that loss of core clock gene function renders animals susceptible to metabolic pathologies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pan, X., Queiroz, J. & Hussain, M. M. Nonalcoholic fatty liver disease in CLOCK mutant mice. J. Clin. Invest. 130, 4282–4300 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang, S. et al. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150, 2153–2160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zani, F. et al. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression. Mol. Metab. 2, 292–305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grimaldi, B. et al. PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab. 12, 509–520 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fontaine, C. et al. The orphan nuclear receptor Rev-Erbα is a peroxisome proliferator-activated receptor (PPAR) γ target gene and promotes PPARγ-induced adipocyte differentiation. J. Biol. Chem. 278, 37672–37680 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Yin, L., Wu, N. & Lazar, M. A. Nuclear receptor Rev-erbα: a heme receptor that coordinates circadian rhythm and metabolism. Nucl. Recept. Signal. 8, e001 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bugge, A. et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657–667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fang, B. & Lazar, M. A. Dissecting the Rev-erbα cistrome and the mechanisms controlling circadian transcription in liver. Cold Spring Harb. Symp. Quant. Biol. https://doi.org/10.1101/sqb.2015.80.027508 (2015).

    Article  PubMed  Google Scholar 

  73. Hunter, A. L. et al. Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism. Proc. Natl Acad. Sci. USA 117, 25869–25879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lamia, K. A., Storch, K. F. & Weitz, C. J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl Acad. Sci. USA 105, 15172–15177 (2008). Demonstration of an integrated role for the liver circadian clock in mammalian glucose homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guo, B. et al. The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway. FASEB J. 26, 3453–3463 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shimba, S. et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 6, e25231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20, 1868–1873 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jouffe, C. et al. Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. Proc. Natl Acad. Sci. USA 119, e2200083119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peek, C. B. et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342, 1243417 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rudic, R. D. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shimba, S. et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl Acad. Sci. USA 102, 12071–12076 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jacobi, D. et al. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab. https://doi.org/10.1016/j.cmet.2015.08.006 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sookoian, S. et al. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am. J. Clin. Nutr. 87, 1606–1615 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Scott, E. M., Carter, A. M. & Grant, P. J. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int. J. Obes. 32, 658–662 (2008).

    Article  CAS  Google Scholar 

  85. Riestra, P. et al. Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: findings from the Jackson heart study. BMC Genet. 18, 58 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Galbete, C. et al. Physical activity and sex modulate obesity risk linked to 3111T/C gene variant of the CLOCK gene in an elderly population: the SUN Project. Chronobiol. Int. 29, 1397–1404 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Garaulet, M. et al. CLOCK genetic variation and metabolic syndrome risk: modulation by monounsaturated fatty acids. Am. J. Clin. Nutr. 90, 1466–1475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Škrlec, I. et al. The association between circadian clock gene polymorphisms and metabolic syndrome: a systematic review and meta-analysis. Biology 11, 20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Corella, D. et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial. Cardiovasc. Diabetol. 15, 4 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ruano, E. G., Canivell, S. & Vieira, E. REV-ERB ALPHA polymorphism is associated with obesity in the Spanish obese male population. PLoS One 9, e104065 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Garaulet, M. et al. REV-ERB-ALPHA circadian gene variant associates with obesity in two independent populations: Mediterranean and North American. Mol. Nutr. Food Res. 58, 821–829 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Goumidi, L. et al. Impact of REV-ERB alpha gene polymorphisms on obesity phenotypes in adult and adolescent samples. Int. J. Obes. 37, 666–672 (2013).

    Article  CAS  Google Scholar 

  93. Nascimento Ferreira, M. V. et al. Associations between REV-ERBα, sleep duration and body mass index in European adolescents. Sleep Med. 46, 56–60 (2018).

    Article  PubMed  Google Scholar 

  94. Woon, P. Y. et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl Acad. Sci. USA 104, 14412–14417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lane, J. M. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49, 274–281 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, J. et al. Assessing the causal role of sleep traits on glycated hemoglobin: a Mendelian randomization study. Diabetes Care 45, 772–781 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dashti, H. S. et al. Assessment of MTNR1B type 2 diabetes genetic risk modification by shift work and morningness-eveningness preference in the UK Biobank. Diabetes 69, 259–266 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Jones, S. E. et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 10, 343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, E. E. et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16, 1152–1156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lamia, K. A. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gatfield, D. & Schibler, U. Circadian glucose homeostasis requires compensatory interference between brain and liver clocks. Proc. Natl Acad. Sci. USA 105, 14753–14754 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yin, L. et al. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318, 1786–1789 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, Y. et al. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488–1492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Caratti, G. et al. REVERBa couples the circadian clock to hepatic glucocorticoid action. J. Clin. Invest. 128, 4454–4471 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Doi, R., Oishi, K. & Ishida, N. CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. J. Biol. Chem. 285, 22114–22121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Petrenko, V. et al. In pancreatic islets from type 2 diabetes patients, the dampened circadian oscillators lead to reduced insulin and glucagon exocytosis. Proc. Natl Acad. Sci. USA 117, 2484–2495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Petrenko, V. et al. Type 2 diabetes disrupts circadian orchestration of lipid metabolism and membrane fluidity in human pancreatic islets. PLoS Biol. 20, e3001725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Reutrakul, S. et al. Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes Care 36, 2523–2529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Koopman, A. D. M. et al. The association between social jetlag, the metabolic syndrome, and type 2 diabetes mellitus in the general population: the new Hoorn Study. J. Biol. Rhythm. 32, 359–368 (2017).

    Article  Google Scholar 

  111. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  112. Adamovich, Y., Aviram, R. & Asher, G. The emerging roles of lipids in circadian control. Biochim. Biophys. Acta 1851, 1017–1025 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Shi, D. et al. Circadian clock genes in the metabolism of non-alcoholic fatty liver disease. Front. Physiol. 10, 423 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Marjot, T., Ray, D. W. & Tomlinson, J. W. Is it time for chronopharmacology in NASH? J. Hepatol. 76, 1215–1224 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Sebti, Y., Hebras, A., Pourcet, B., Staels, B. & Duez, H. The circadian clock and obesity. Handb. Exp. Pharmacol. 274, 29–56 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: convergent physiology — divergent pathophysiology. Nat. Rev. Endocrinol. 13, 710–730 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Ipsen, D. H., Lykkesfeldt, J. & Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 75, 3313–3327 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Le Martelot, G. et al. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 7, e1000181 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gilardi, F. et al. Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals. PLoS Genet. 10, e1004155 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Green, C. B. et al. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl Acad. Sci. USA 104, 9888–9893 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 155, 1464–1478 (2013). Demonstration of widespread effects of a HFD on circadian rhythmicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chaix, A., Lin, T., Le, H. D., Chang, M. W. & Panda, S. Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab. 29, 303–319.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, Y. et al. The hepatic circadian clock fine-tunes the lipogenic response to feeding through RORα/γ. Genes Dev. 31, 1202–1211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jang, H. et al. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat. Commun. 7, 12180 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shirai, H., Oishi, K., Kudo, T., Shibata, S. & Ishida, N. PPARα is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders. Biochem. Biophys. Res. Commun. 357, 679–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Schmutz, I., Ripperger, J. A., Baeriswyl-Aebischer, S. & Albrecht, U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24, 345–357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, L. & Yang, G. PPARs integrate the mammalian clock and energy metabolism. PPAR Res. 2014, 653017 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Davies, S. P., Carling, D., Munday, M. R. & Hardie, D. G. Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur. J. Biochem. 203, 615–623 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kudo, T., Kawashima, M., Tamagawa, T. & Shibata, S. Clock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet. Am. J. Physiol. Endocrinol. Metab. 294, E120–E130 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Duez, H. et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbα. Gastroenterology 135, 689–698 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Davis, S., Mirick, D. K. & Stevens, R. G. Night shift work, light at night, and risk of breast cancer. J. Natl Cancer Inst. 93, 1557–1562 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Schernhammer, E. S. et al. Night-shift work and risk of colorectal cancer in the nurses’ health study. J. Natl Cancer Inst. 95, 825–828 (2003).

    Article  PubMed  Google Scholar 

  134. Relles, D. et al. Circadian gene expression and clinicopathologic correlates in pancreatic cancer. J. Gastrointest. Surg. 17, 443–450 (2013).

    Article  PubMed  Google Scholar 

  135. Taniguchi, H. et al. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 69, 8447–8454 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Kettner, N. M., Katchy, C. A. & Fu, L. Circadian gene variants in cancer. Ann. Med. 46, 208–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. El-Serag, H. B. Hepatocellular carcinoma. N. Engl. J. Med. 365, 1118–1127 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Siegel, A. B. & Zhu, A. X. Metabolic syndrome and hepatocellular carcinoma: two growing epidemics with a potential link. Cancer 115, 5651–5661 (2009).

    Article  PubMed  Google Scholar 

  139. Kettner, N. M. et al. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 30, 909–924 (2016). This paper proposes a mechanism leading from circadian disruption to HCC in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mteyrek, A., Filipski, E., Guettier, C., Okyar, A. & Lévi, F. Clock gene Per2 as a controller of liver carcinogenesis. Oncotarget 7, 85832–85847 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mteyrek, A. et al. Critical cholangiocarcinogenesis control by cryptochrome clock genes. Int. J. Cancer 140, 2473–2483 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Balakrishnan, M., El-Serag, H. B., Kanwal, F. & Thrift, A. P. Shiftwork is not associated with increased risk of NAFLD: findings from the national health and nutrition examination survey. Dig. Dis. Sci. 62, 526–533 (2017).

    Article  PubMed  Google Scholar 

  143. Zhang, S. et al. Rotating night shift work and non-alcoholic fatty liver disease among steelworkers in China: a cross-sectional survey. Occup. Env. Med. 77, 333–339 (2020).

    Article  Google Scholar 

  144. Maidstone, R., Rutter, M. K., Marjot, T., Ray, D. W. & Baxter, M. Shift work and evening chronotype are Related to prevalent non-alcoholic fatty liver disease in 282,303 UK biobank participants. medRxiv https://doi.org/10.1101/2022.05.19.22275307 (2022).

    Article  Google Scholar 

  145. Filipski, E. & Lévi, F. Circadian disruption in experimental cancer processes. Integr. Cancer Ther. 8, 298–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Fekry, B. et al. Incompatibility of the circadian protein BMAL1 and HNF4α in hepatocellular carcinoma. Nat. Commun. 9, 4349 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Qu, M. et al. Circadian regulator BMAL1::CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle. Proc. Natl Acad. Sci. USA 120, e2214829120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wicks, E. E. & Semenza, G. L. Hypoxia-inducible factors: cancer progression and clinical translation. J. Clin. Invest. 132, e159839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Guo, Y. et al. Hypoxia-inducible factors in hepatocellular carcinoma (Review). Oncol. Rep. 43, 3–15 (2020).

    CAS  PubMed  Google Scholar 

  150. Adamovich, Y., Ladeuix, B., Golik, M., Koeners, M. P. & Asher, G. Rhythmic oxygen levels reset Circadian clocks through HIF1α. Cell Metab. 25, 93–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Peek, C. B. et al. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 25, 86–92 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Adamovich, Y. et al. Oxygen and carbon dioxide rhythms are circadian clock controlled and differentially directed by behavioral signals. Cell Metab. 29, 1092–1103.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Sas, Z., Cendrowicz, E., Weinhäuser, I. & Rygiel, T. P. Tumor microenvironment of hepatocellular carcinoma: challenges and opportunities for new treatment options. Int. J. Mol. Sci. 23, 3778 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Crespo, M. et al. Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. eLife 9, e59258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Szczepańska, E. & Gietka-Czernel, M. FGF21: a novel regulator of glucose and lipid metabolism and whole-body energy balance. Horm. Metab. Res. 54, 203–211 (2022).

    Article  PubMed  Google Scholar 

  156. Keinicke, H. et al. FGF21 regulates hepatic metabolic pathways to improve steatosis and inflammation. Endocr. Connect. 9, 755–768 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Singhal, G. et al. Deficiency of fibroblast growth factor 21 (FGF21) promotes hepatocellular carcinoma (HCC) in mice on a long term obesogenic diet. Mol. Metab. 13, 56–66 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schmidt-Arras, D. & Rose-John, S. IL-6 pathway in the liver: from physiopathology to therapy. J. Hepatol. 64, 1403–1415 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Hammerich, L. & Tacke, F. Interleukins in chronic liver disease: lessons learned from experimental mouse models. Clin. Exp. Gastroenterol. 7, 297–306 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Born, J., Lange, T., Hansen, K., Mölle, M. & Fehm, H. L. Effects of sleep and circadian rhythm on human circulating immune cells. J. Immunol. 158, 4454–4464 (1997).

    Article  CAS  PubMed  Google Scholar 

  161. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Scheiermann, C. et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37, 290–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gibbs, J. et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 20, 919–926 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chong, S. Z. et al. CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. J. Exp. Med. 213, 2293–2314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Keller, M. et al. A circadian clock in macrophages controls inflammatory immune responses. Proc. Natl Acad. Sci. USA 106, 21407–21412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Oliva-Ramírez, J., Moreno-Altamirano, M. M. B., Pineda-Olvera, B., Cauich-Sánchez, P. & Sánchez-García, F. J. Crosstalk between circadian rhythmicity, mitochondrial dynamics and macrophage bactericidal activity. Immunology 143, 490–497 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kitchen, G. B. et al. The clock gene Bmal1 inhibits macrophage motility, phagocytosis, and impairs defense against pneumonia. Proc. Natl Acad. Sci. USA 117, 1543–1551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sato, S. et al. A circadian clock gene, Rev-Erbα, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J. Immunol. 192, 407–417 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Scheiermann, C., Gibbs, J., Ince, L. & Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 18, 423–437 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Manoogian, E. N. C., Chow, L. S., Taub, P. R., Laferrère, B. & Panda, S. Time-restricted eating for the prevention and management of metabolic diseases. Endocr. Rev. 43, 405–436 (2022).

    Article  PubMed  Google Scholar 

  172. Lopez-Minguez, J., Gómez-Abellán, P. & Garaulet, M. Timing of breakfast, lunch, and dinner. Effects on obesity and metabolic risk. Nutrients 11, E2624 (2019).

    Article  Google Scholar 

  173. Sutton, E. F. et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 27, 1212–1221.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Carlson, O. et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 56, 1729–1734 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tinsley, G. M. et al. Time-restricted feeding in young men performing resistance training: a randomized controlled trial. Eur. J. Sport Sci. 17, 200–207 (2017).

    Article  PubMed  Google Scholar 

  176. Morris, C. J. et al. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc. Natl Acad. Sci. USA 112, E2225–E2234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jakubowicz, D., Barnea, M., Wainstein, J. & Froy, O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity 21, 2504–2512 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Bo, S. et al. Consuming more of daily caloric intake at dinner predisposes to obesity. A 6-year population-based prospective cohort study. PLoS One 9, e108467 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kant, A. K. & Graubard, B. I. Association of self-reported sleep duration with eating behaviors of American adults: NHANES 2005-2010. Am. J. Clin. Nutr. 100, 938–947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gill, S. & Panda, S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 22, 789–798 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Scheer, F. A. J. L., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Buxton, O. M. et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 4, 129ra43 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kirkpatrick, C. F. et al. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: a scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J. Clin. Lipidol. 13, 689–711.e1 (2019).

    Article  PubMed  Google Scholar 

  184. Murakami, M. & Tognini, P. Molecular mechanisms underlying the bioactive properties of a ketogenic diet. Nutrients 14, 782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Genzer, Y., Dadon, M., Burg, C., Chapnik, N. & Froy, O. Ketogenic diet delays the phase of circadian rhythms and does not affect AMP-activated protein kinase (AMPK) in mouse liver. Mol. Cell Endocrinol. 417, 124–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Tognini, P. et al. Distinct circadian signatures in liver and gut clocks revealed by Ketogenic diet. Cell Metab. 26, 523–538.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Kohsaka, A. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6, 414–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014). This study demonstrated that the circadian clock controls rhythms in the microbiome through feeding cycles.

    Article  CAS  PubMed  Google Scholar 

  189. Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Murakami, M. et al. Gut microbiota directs PPARγ-driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Rep. 17, 1292–1303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chen, Z., Yoo, S.-H. & Takahashi, J. S. Development and therapeutic potential of small-molecule modulators of circadian systems. Annu. Rev. Pharmacol. Toxicol. 58, 231–252 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Kumar, N. et al. Regulation of adipogenesis by natural and synthetic REV-ERB ligands. Endocrinology 151, 3015–3025 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Solt, L. A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Griffett, K., Hayes, M. E., Boeckman, M. P. & Burris, T. P. The role of REV-ERB in NASH. Acta Pharmacol. Sin. 43, 1133–1140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Huang, S. et al. Recent advances in modulators of circadian rhythms: an update and perspective. J. Enzym. Inhib. Med. Chem. 35, 1267–1286 (2020).

    Article  CAS  Google Scholar 

  198. Helleboid, S. et al. The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORα (NR1F1). J. Biomol. Screen. 19, 399–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. He, B. et al. The small molecule nobiletin targets the molecular oscillator to enhance Circadian rhythms and protect against metabolic syndrome. Cell Metab. 23, 610–621 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Manella, G., Aizik, D., Aviram, R., Golik, M. & Asher, G. Circa-SCOPE: high-throughput live single-cell imaging method for analysis of circadian clock resetting. Nat. Commun. 12, 5903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Manella, G., Bolshette, N., Golik, M. & Asher, G. Input integration by the circadian clock exhibits nonadditivity and fold-change detection. Proc. Natl Acad. Sci. USA 119, e2209933119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Valdes, A. M., Walter, J., Segal, E. & Spector, T. D. Role of the gut microbiota in nutrition and health. Br. Med. J. 361, k2179 (2018).

    Article  Google Scholar 

  205. Teichman, E. M., O’Riordan, K. J., Gahan, C. G. M., Dinan, T. G. & Cryan, J. F. When rhythms meet the blues: Circadian interactions with the microbiota-gut-brain axis. Cell Metab. 31, 448–471 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Cui, Y., Li, S., Yin, Y., Li, X. & Li, X. Daytime restricted feeding promotes circadian desynchrony and metabolic disruption with changes in bile acids profiles and gut microbiota in C57BL/6 male mice. J. Nutr. Biochem. 109, 109121 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Daas, M. C. & de Roos, N. M. Intermittent fasting contributes to aligned circadian rhythms through interactions with the gut microbiome. Benef. Microbes 12, 147–161 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Liang, X., Bushman, F. D. & FitzGerald, G. A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1501305112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Montagner, A. et al. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Sci. Rep. 6, 20127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Weger, B. D. et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 29, 362–382.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ganesan, R., Jeong, J.-J., Kim, D. J. & Suk, K. T. Recent trends of microbiota-based microbial metabolites metabolism in liver disease. Front. Med. 9, 841281 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all members of the Asher and Reinke labs for their comments on the manuscript. G.A. is supported by a grant from the European Research Council (ERC-2017 CIRCOMMUNICATION 770869), Abisch Frenkel Foundation for the Promotion of Life Sciences, Adelis Foundation, and Susan and Michael Stern.

Author information

Authors and Affiliations

Authors

Contributions

G.A. and H.R. made a substantial contribution to the discussion of content, wrote the article, and reviewed and edited the manuscript before submission. N.B. and H.I. researched data for the article, made a substantial contribution to the discussion of content, and wrote the article.

Corresponding authors

Correspondence to Hans Reinke or Gad Asher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks David Ray and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolshette, N., Ibrahim, H., Reinke, H. et al. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology. Nat Rev Gastroenterol Hepatol 20, 695–707 (2023). https://doi.org/10.1038/s41575-023-00792-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00792-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing