Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

A Roadmap for the Human Gut Cell Atlas

Abstract

The number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups. In this Roadmap, we discuss a comprehensive forward-thinking direction for the generation of the HGCA on behalf of the Gut Biological Network of the Human Cell Atlas. Based on the consensus opinion of experts from across the globe, we outline the main requirements for the first complete HGCA by summarizing existing data sets and highlighting anatomical regions and/or tissues with limited coverage. We provide recommendations for future studies and discuss key methodologies and the importance of integrating the healthy gut atlas with related diseases and gut organoids. Importantly, we critically overview the computational tools available and provide recommendations to overcome key challenges.

Key points

  • The number of studies applying single-cell sequencing methods to human intestinal tissue has been rapidly increasing, providing a unique opportunity to generate a complete map of the human intestine.

  • Generation of the Human Gut Cell Atlas (HGCA) requires the coordinated efforts of groups across the globe and the integration of various data sets followed by their computational analyses.

  • This article provides a roadmap for the generation of the HGCA based on the expertise and recommendations of the Gut Biological Network of the Human Cell Atlas.

  • The HGCA will provide a unique and highly valuable reference map enhancing research in intestinal health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Profiling the human gastrointestinal tract.
Fig. 2: Summary of main tissue types and sampling strategies available.
Fig. 3: Template metadata for gut-related single-cell studies.
Fig. 4: Data integration, processing and analysing strategies.
Fig. 5: Current applications for the Human Gut Cell Atlas Common Coordinate Framework.
Fig. 6: HGCA in health and disease.

Similar content being viewed by others

References

  1. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Knight, R. et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Makki, K., Deehan, E. C., Walter, J. & Backhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Khalili, H. et al. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 15, 525–535 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Safi-Stibler, S. & Gabory, A. Epigenetics and the developmental origins of health and disease: parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin. Cell Dev. Biol. 97, 172–180 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Perrone, F. & Zilbauer, M. Biobanking of human gut organoids for translational research. Exp. Mol. Med. 53, 1451–1458 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Enns, R. A. et al. Clinical practice guidelines for the use of video capsule endoscopy. Gastroenterology 152, 497–514 (2017).

    Article  PubMed  Google Scholar 

  9. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pilonis, N. D., Januszewicz, W. & di Pietro, M. Confocal laser endomicroscopy in gastro-intestinal endoscopy: technical aspects and clinical applications. Transl. Gastroenterol. Hepatol. 7, 7 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  11. Chen, W. C. & Wallace, M. B. Endoscopic management of mucosal lesions in the gastrointestinal tract. Expert. Rev. Gastroenterol. Hepatol. 10, 481–495 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Pensold, D. & Zimmer-Bensch, G. Methods for single-cell isolation and preparation. Adv. Exp. Med. Biol. 1255, 7–27 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The human cell atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Skinnider, M. A., Squair, J. W. & Courtine, G. Enabling reproducible re-analysis of single-cell data. Genome Biol. 22, 215 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Füllgrabe, A. et al. Guidelines for reporting single-cell RNA-seq experiments. Nat. Biotechnol. 38, 1384–1386 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  17. Burger, A. et al. Towards a clinically-based common coordinate framework for the human gut cell atlas: the gut models. BMC Med. Inform. Decis. Mak. 23, 36 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783.e5 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lee, S. S. J. The ethics of consent in a shifting genomic ecosystem. Annu. Rev. Biomed. Data Sci. 4, 145–164 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  20. EUR-Lex, The European Parliament and the Council of the European Union. General Data Protection Regulation (EU) 2016/679 (GDPR) https://eur-lex.europa.eu/eli/reg/2016/679/oj (2016).

  21. Bledsoe, M. J. & Grizzle, W. E. Use of human specimens in research: the evolving United States regulatory, policy, and scientific landscape. Diagn. Histopathol. 19, 322–330 (2013).

    Article  Google Scholar 

  22. Shore, N. et al. Understanding community-based processes for research ethics review: a national study. Am. J. Public Health 101, S359–S364 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  23. Editorial. Tackling helicopter research. Nat. Geosci. 15, 597 (2022).

    Article  Google Scholar 

  24. Mikesell, L., Bromley, E. & Khodyakov, D. Ethical community-engaged research: a literature review. Am. J. Public Health 103, e7–e14 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Camp, J. G., Platt, R. & Treutlein, B. Mapping human cell phenotypes to genotypes with single-cell genomics. Science 365, 1401–1405 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hao, Y. H. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–357 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Pott, S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife https://doi.org/10.7554/eLife.23203 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  32. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  33. Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622.e23 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Setliff, I. et al. High-throughput mapping of B cell receptor sequences to antigen specificity. Cell 179, 1636–1646.e15 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Slyper, M. et al. A single-cell and single-nucleus RNA-seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792–802 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Xia, C., Babcock, H. P., Moffitt, J. R. & Zhuang, X. Multiplexed detection of RNA using MERFISH and branched DNA amplification. Sci. Rep. 9, 7721 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  38. Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Haniffa, M. et al. A roadmap for the human developmental cell atlas. Nature 597, 196–205 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zou, Z. et al. A single-cell transcriptomic atlas of human skin aging. Dev. Cell 56, 383–397.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 1–14 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zappia, L., Phipson, B. & Oshlack, A. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLoS Comput. Biol. 14, e1006245 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Moreno, P. et al. User-friendly, scalable tools and workflows for single-cell RNA-seq analysis. Nat. Methods 18, 327–328 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Wilbrey-Clark, A., Roberts, K. & Teichmann, S. A. Cell Atlas technologies and insights into tissue architecture. Biochem. J. 477, 1427–1442 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Ke, M., Elshenawy, B., Sheldon, H., Arora, A. & Buffa, F. M. Single cell RNA-sequencing: a powerful yet still challenging technology to study cellular heterogeneity. Bioessays 44, e2200084 (2022).

    Article  PubMed  Google Scholar 

  47. Su, M. et al. Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications. Mil. Med. Res. 9, 68 (2022).

    PubMed Central  PubMed  Google Scholar 

  48. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Liu, J. et al. Jointly defining cell types from multiple single-cell datasets using LIGER. Nat. Protoc. 15, 3632–3662 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ryu, Y., Han, G. H., Jung, E. & Hwang, D. Integration of single-cell RNA-seq datasets: a review of computational methods. Mol. Cell 46, 106–119 (2023).

    Article  CAS  Google Scholar 

  53. Cao, Z. J. & Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01284-4 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  54. Argelaguet, R. et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 21, 111 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  55. Gong, B., Zhou, Y. & Purdom, E. Cobolt: integrative analysis of multimodal single-cell sequencing data. Genome Biol. 22, 351 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  57. Xu, Y., Baumgart, S. J., Stegmann, C. M. & Hayat, S. MACA: marker-based automatic cell-type annotation for single cell expression data. Bioinformatics https://doi.org/10.1093/bioinformatics/btab840 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  58. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Ianevski, A., Giri, A. K. & Aittokallio, T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat. Commun. 13, 1246 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Delaney, C. et al. Combinatorial prediction of marker panels from single-cell transcriptomic data. Mol. Syst. Biol. 15, e9005 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Dai, M., Pei, X. & Wang, X.-J. Accurate and fast cell marker gene identification with COSG. Brief. Bioinform. https://doi.org/10.1093/bib/bbab579 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  62. Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 565 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  63. David, F. P. A., Litovchenko, M., Deplancke, B. & Gardeux, V. ASAP 2020 update: an open, scalable and interactive web-based portal for (single-cell) omics analyses. Nucleic Acids Res. 48, W403–W414 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Moriel, N. et al. NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. Nat. Protoc. 16, 4177–4200 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01139-4 (2022).

    Article  PubMed  Google Scholar 

  66. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat. Methods 15, 343–346 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G.-C. Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nat. Biotechnol. 36, 1183–1190 (2018).

    Article  CAS  Google Scholar 

  71. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e15 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Kang, R., Park, B., Eady, M., Ouyang, Q. & Chen, K. J. Single-cell classification of foodborne pathogens using hyperspectral microscope imaging coupled with deep learning frameworks. Sens. Actuators B Chem. 309, 127789 (2020).

    Article  CAS  Google Scholar 

  75. Chattopadhyay, P. K., Roederer, M. & Bolton, D. L. A deadly dance: the choreography of host-pathogen interactions, as revealed by single-cell technologies. Nat. Commun. 9, 4638 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  76. Liao, C., Wang, T., Maslov, S. & Xavier, J. B. Modeling microbial cross-feeding at intermediate scale portrays community dynamics and species coexistence. PLoS Comput. Biol. 16, e1008135 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Galeano Niño, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  78. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Chan, T. E., Stumpf, M. P. H. & Babtie, A. C. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 5, 251–267.e3 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T. M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 17, 147–154 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–71 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Cakir, B. et al. Comparison of visualization tools for single-cell RNAseq data. NAR Genom. Bioinform. 2, lqaa052 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  84. Megill, C. et al. chanzuckerberg/cellxgene: Release 0.15.0. https://doi.org/10.5281/ZENODO.3710410 (2020).

  85. Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783.e5 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Moreno, P. et al. Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Res. 50, D129–D140 (2021).

    Article  PubMed Central  Google Scholar 

  87. Rood, J. E. et al. Toward a common coordinate framework for the human body. Cell 179, 1455–1467 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Schiller, H. B. et al. The human lung cell atlas: a high-resolution reference map of the human lung in health and disease. Am. J. Respir. Cell Mol. Biol. 61, 31–41 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 24, 584–594 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Weber, G. M., Ju, Y. N. & Borner, K. Considerations for using the vasculature as a coordinate system to map all the cells in the human body. Front. Cardiovasc. Med. 7, 29 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  91. Moreno, P. et al. Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Res. 50, D129–D140 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Williams, D. W. et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 184, 4090–4104.e15 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Zhao, R. W. et al. Function of normal oral mucosa revealed by single-cell RNA sequencing. J. Cell. Biochem. 123, 1481–1494 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Caetano, A. J. et al. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. eLife 10, e62810 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Busslinger, G. A. et al. Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Rep. 34, 108819 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Nowicki-Osuch, K. et al. Molecular phenotyping reveals the identity of Barrett’s esophagus and its malignant transition. Science 373, 760–767 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Zhang, M. et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut 70, 464–475 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Sorini, C. et al. Metagenomic and single-cell RNA-Seq survey of the Helicobacter pylori-infected stomach in asymptomatic individuals. JCI Insight https://doi.org/10.1172/jci.insight.161042 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  99. Foong, D. et al. Single-cell RNA sequencing predicts motility networks in purified human gastric interstitial cells of Cajal. Neurogastroenterol. Motil. 34, e14303 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Kumar, V. et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 12, 670–691 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Atlasy, N. et al. Single cell transcriptomic analysis of the immune cell compartment in the human small intestine and in Celiac disease. Nat. Commun. 13, 4920 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Egozi, A. et al. Single cell atlas of the neonatal small intestine with necrotizing enterocolitis. bioRxiv https://doi.org/10.1101/2022.03.01.482508 (2022).

    Article  Google Scholar 

  103. Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  104. Burclaff, J. et al. A proximal-to-distal survey of healthy adult human small intestine and colon epithelium by single-cell transcriptomics. Cell. Mol. Gastroenterol. Hepatol. 13, 1554–1589 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Wang, Y. L. et al. Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J. Exp. Med. https://doi.org/10.1084/jem.20191130 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  106. Jaeger, N. et al. Single-cell analyses of Crohn’s disease tissues reveal intestinal intraepithelial T cells heterogeneity and altered subset distributions. Nat. Commun. 12, 1921 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  107. Kong, L. et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity 56, 444–458.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Kondo, A. et al. Highly multiplexed image analysis of intestinal tissue sections in patients with inflammatory bowel disease. Gastroenterology 161, 1940–1952 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Huang, B. et al. Mucosal profiling of pediatric-onset colitis and IBD reveals common pathogenics and therapeutic pathways. Cell 179, 1160–1176.e24 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386.e17 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Parikh, K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567, 49–55 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Corridoni, D. et al. Single-cell atlas of colonic CD8+ T cells in ulcerative colitis. Nat. Med. 26, 1480–1490 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21, 343–353 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Lee, H. O. et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat. Genet. 52, 594–603 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Uzzan, M. et al. Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat. Med. 28, 766–779 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Chen, B. et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 184, 6262–6280.e26 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Domanska, D. et al. Single-cell transcriptomic analysis of human colonic macrophages reveals niche-specific subsets. J. Exp. Med. https://doi.org/10.1084/jem.20211846 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  122. Uhlitz, F. et al. Mitogen-activated protein kinase activity drives cell trajectories in colorectal cancer. EMBO Mol. Med. 13, e14123 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Che, L. H. et al. A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy. Cell Discov. 7, 80 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  125. Becker, W. R. et al. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat. Genet. 54, 985–995 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Joanito, I. et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat. Genet. 54, 963–975 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Beumer, J. et al. High-resolution mRNA and secretome atlas of human enteroendocrine cells. Cell 181, 1291–1306.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. He, G. W. et al. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell 29, 1333–1345.e6 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Holloway, E. M. et al. Mapping development of the human intestinal niche at single-cell resolution. Cell Stem Cell 28, 568–580.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Yu, Q. H. et al. Charting human development using a multi-endodermal organ atlas and organoid models. Cell 184, 3281–3298.e22 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Gao, S. et al. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat. Cell Biol. 20, 1227 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Sanchez, J. G., Enriquez, J. R. & Wells, J. M. Enteroendocrine cell differentiation and function in the intestine. Curr. Opin. Endocrinol. Diabetes Obes. 29, 169–176 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Du, Y. et al. An update on the biological characteristics and functions of tuft cells in the gut. Front. Cell Dev. Biol. 10, 1102978 (2022).

    Article  PubMed  Google Scholar 

  135. Bolton, C. et al. An integrated taxonomy for monogenic inflammatory bowel disease. Gastroenterology 162, 859–876 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Kanke, M. et al. Single-cell analysis reveals unexpected cellular changes and transposon expression signatures in the colonic epithelium of treatment-naive adult Crohn’s disease patients. Cell Mol. Gastroenterol. Hepatol. 13, 1717–1740 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508.e20 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Uniken Venema, W. T. et al. Single-cell RNA sequencing of blood and ileal T cells from patients with Crohn’s disease reveals tissue-specific characteristics and drug targets. Gastroenterology 156, 812–815.e22 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Chen, E. et al. Inflamed ulcerative colitis regions associated with MRGPRX2-mediated mast cell degranulation and cell activation modules, defining a new therapeutic target. Gastroenterology 160, 1709–1724 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Devlin, J. C. et al. Single-cell transcriptional survey of ileal-anal pouch immune cells from ulcerative colitis patients. Gastroenterology 160, 1679–1693 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Mitsialis, V. et al. Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn’s disease. Gastroenterology 159, 591–608.e10 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Qi, J. J. et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Goulet, O., Pigneur, B. & Charbit-Henrion, F. Congenital enteropathies involving defects in enterocyte structure or differentiation. Best Pract. Res. Clin. Gastroenterol. 56-57, 101784 (2022).

    Article  PubMed  Google Scholar 

  144. Kelsen, J. R. & Baldassano, R. N. The role of monogenic disease in children with very early onset inflammatory bowel disease. Curr. Opin. Pediatr. 29, 566–571 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  145. Karim, A., Tang, C. S. & Tam, P. K. The emerging genetic landscape of Hirschsprung disease and its potential clinical applications. Front. Pediatr. 9, 638093 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  146. Gunther, C., Winner, B., Neurath, M. F. & Stappenbeck, T. S. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 71, 1892–1908 (2022).

    Article  PubMed  Google Scholar 

  147. Ishikawa, K. et al. Identification of quiescent LGR5+ stem cells in the human colon. Gastroenterology https://doi.org/10.1053/j.gastro.2022.07.081 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  148. Dmitrieva-Posocco, O. et al. β-Hydroxybutyrate suppresses colorectal cancer. Nature 605, 160–165 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–81 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Li, N. et al. Memory CD4+ T cells are generated in the human fetal intestine. Nat. Immunol. 20, 301–312 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Nguyen, Q. H., Pervolarakis, N., Nee, K. & Kessenbrock, K. Experimental considerations for single-cell RNA sequencing approaches. Front. Cell Dev. Biol. 6, 108 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  153. Haque, A., Engel, J., Teichmann, S. A. & Lonnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This publication is part of the Human Cell Atlas (HCA) www.humancellatlas.org/publications. The HCA initiative receives funding from The Wellcome Trust, the UK Research and Innovation Medical Research Council, EU Horizon 2020, INSERM (HuDeCA), and the Knut and Alice Wallenberg and Erling-Persson foundations. We thank the HCA Executive Office for their support. The Gut Cell Atlas is organized by The Leona M. and Harry B. Helmsley Charitable Trust and provides funding for members in the form of project grants. M.Z. was supported by an MRC New Investigator research grant (MR/T001917/1) and a project grant from the Great Ormond Street Hospital Children’s Charity, Sparks (V4519); K.S.L. was supported by NIDDK R01DK103831, and The Helmsley Trust — G-1903-03793. S.T.M. received funding from National Institutes of Health USA R01DK115806 and P30DK034987. T.S. was supported by the Japanese Science and Technology (JST) FOREST and the Japanese Society for the Promotion of Science (JSPS) (21K18272). L.A.C. and K.T.W. were supported by The Helmsley Charitable Trust — G-1903-03793. K.T.W. was also supported by NIDDK R01DK128200. L.A.C. was supported by a Veterans Affairs Merit Award 1I01BX004366. M.K. was supported by the National Research Foundation, South Africa grant no: 129356.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.Z., K.R.J., M.K., S.P., Z.L., A.B., J.R.T., J.B., F.L.J., F.P., A. Ross, N.S., R.B.C., E.S.B., R.Z., B.X., K.L., S.D., S.T.M., Q.Y., S.B., M.J.A., A.D-.S., L.C., J.G., R.B., I.P., J.O-.M., S.A.T., M.P.S. and K.T.W. researched data for the article. M.Z., K.R.J., M.K., S.P., Z.L., A.B., J.R.T., J.B., F.L.J., F.P., A. Ross, G.M., N.S., T.S., A.M., R.B.C., E.S.B., R.Z., B.X., K.L., S.D., S.T.M., Q.Y., S.B., M.J.A., A.D-.S., L.C., J.G., R.B., I.P., J.O-.M., G.E.B., A.H., S.A.T., A. Regev, R.J.X., M.P.S. and K.T.W. contributed substantially to discussion of the content. M.Z., K.R.J., M.K., S.P., Z.L., A.B., J.R.T., J.B., F.L.J., F.P., A. Ross, N.S., T.S., R.B.C., E.S.B., R.Z., B.X., K.L., S.D., S.T.M., Q.Y., S.B., M.J.A., A.D-.S., L.C., J.G., R.B., I.P., G.E.B., S.A.T., M.P.S. and K.T.W. wrote the article. M.Z., K.R.J., M.K., S.P., Z.L., A.B., J.R.T., J.B., F.L.J., F.P., A. Ross, G.M., T.S., A.M., R.B.C., E.S.B., R.Z., B.X., K.L., S.D., S.T.M., Q.Y., S.B., M.J.A., A.D-.S., L.C., J.G., R.B., I.P., J.O-.M., G.E.B., A.H., S.A.T., A. Regev, R.J.X., A.S., M.P.S. and K.T.W reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Matthias Zilbauer.

Ethics declarations

Competing interests

In the past 3 years, S.A.T. has consulted or been a member of scientific advisory boards at Roche, Genentech, Biogen, GlaxoSmithKline, Qiagen and ForeSite Labs and is an equity holder of Transition Bio. G.M. has received grant funding from Boehringer Ingelheim. A. Regev is a co-founder and equity holder of Celsius Therapeutics, an equity holder in Immunitas, and was a SAB member of ThermoFisher Scientific, Syros Pharmaceuticals, Neogene Therapeutics and Asimov until 31 July 2020. Since 1 August 2020, A. Regev has been an employee of Genentech and has equity in Roche. A. Regev is an inventor on patents and patent applications filed at the Broad Institute related to single-cell genomics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Reviews Gastroenterology & Hepatology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Gut Cell Atlas: https://www.gutcellatlas.org

HCA Gut Bionetwork: https://www.humancellatlas.org/biological-networks/

Helmsley Charitable Trust (Gut Cell Atlas): https://helmsleytrust.org/our-focus-areas/crohns-disease/crohns-disease-therapeutics/gut-cell-atlas/

HuBMAP Portal: https://portal.hubmapconsortium.org/

Human BioMolecular Atlas Program: https://hubmapconsortium.github.io/ccf/pages/ccf-3d-reference-library.html

Single Cell Expression Atlas: https://www.ebi.ac.uk/gxa/sc/home

Single Cell Portal: https://singlecell.broadinstitute.org/single_cell

Tabula Sapiens: https://tabula-sapiens-portal.ds.czbiohub.org

The Human Cell Atlas – Metadata: https://data.humancellatlas.org/metadata

University of California at Santa Cruz (UCSC) Cell Browser: https://cells.ucsc.edu

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zilbauer, M., James, K.R., Kaur, M. et al. A Roadmap for the Human Gut Cell Atlas. Nat Rev Gastroenterol Hepatol 20, 597–614 (2023). https://doi.org/10.1038/s41575-023-00784-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00784-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research