Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human intestinal B cells in inflammatory diseases

Abstract

The intestinal lumen contains an abundance of bacteria, viruses and fungi alongside ingested material that shape the chronically active intestinal immune system from early life to maintain the integrity of the gut epithelial barrier. In health, the response is intricately balanced to provide active protection against pathogen invasion whilst tolerating food and avoiding inflammation. B cells are central to achieving this protection. Their activation and maturation generates the body’s largest plasma cell population that secretes IgA, and the niches they provide support systemic immune cell specialization. For example, the gut supports the development and maturation of a splenic B cell subset — the marginal zone B cells. In addition, cells such as the T follicular helper cells, which are enriched in many autoinflammatory diseases, are intrinsically associated with the germinal centre microenvironment that is more abundant in the gut than in any other tissue in health. In this Review, we discuss intestinal B cells and their role when a loss of homeostasis results in intestinal and systemic inflammatory diseases.

Key points

  • Gut B cell responses are initiated in organized gut-associated lymphoid tissues (GALT).

  • Antibody-secreting plasma cells and their immediate precursors generated in GALT disseminate widely to diffusely populate the extensive lamina propria.

  • Although memory B cells expressing IgG in GALT are not uncommon in health, IgG-secreting intestinal plasma cells are.

  • Gut IgG plasma cells are major contributors to intestinal inflammation in inflammatory bowel disease.

  • The microbiota shapes many aspects of gut B cell responses, from determining the specificity of IgA responses to driving the functionality of regulatory B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sites of induction of intestinal B cell responses in GALT and sites of expression in the lamina propria.
Fig. 2: B cell zonation within GALT.
Fig. 3: GALT provides niches that can be occupied by specialized non-B cell immune cell types.

Similar content being viewed by others

References

  1. Brandtzaeg, P. et al. The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 171, 45–87 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gasaly, N., de Vos, P. & Hermoso, M. A. Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation. Front. Immunol. 12, 658354 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johansson, M. E. & Hansson, G. C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 16, 639–649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hasleton, P. S. The internal surface area of the adult human lung. J. Anat. 112, 391–400 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Combs, M. P. & Dickson, R. P. Turning the lungs inside out: the intersecting microbiomes of the lungs and the built environment. Am. J. Respir. Crit. Care Med. 202, 1618–1620 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Helander, H. F. & Fandriks, L. Surface area of the digestive tract – revisited. Scand. J. Gastroenterol. 49, 681–689 (2014).

    Article  PubMed  Google Scholar 

  7. Gallo, R. L. Human skin is the largest epithelial surface for interaction with microbes. J. Invest. Dermatol. 137, 1213–1214 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gustafson, C. E. et al. Limited expression of APRIL and its receptors prior to intestinal IgA plasma cell development during human infancy. Mucosal Immunol. 7, 467–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Cornes, J. S. Number, size, and distribution of Peyer’s patches in the human small intestine: Part I The development of Peyer’s patches. Gut 6, 225–229 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spencer, J. & Sollid, L. M. The human intestinal B-cell response. Mucosal Immunol. 9, 1113–1124 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Reboldi, A. & Cyster, J. G. Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol. Rev. 271, 230–245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Quartier, P. et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin. Immunol. 110, 22–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, Y. et al. Spatiotemporal segregation of human marginal zone and memory B cell populations in lymphoid tissue. Nat. Commun. 9, 3857 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Farstad, I. N., Carlsen, H., Morton, H. C. & Brandtzaeg, P. Immunoglobulin A cell distribution in the human small intestine: phenotypic and functional characteristics. Immunology 101, 354–363 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Landsverk, O. J. et al. Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 214, 309–317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barone, F. et al. IgA-producing plasma cells originate from germinal centers that are induced by B-cell receptor engagement in humans. Gastroenterology 140, 947–956 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Bergqvist, P. et al. Re-utilization of germinal centers in multiple Peyer’s patches results in highly synchronized, oligoclonal, and affinity-matured gut IgA responses. Mucosal Immunol. 6, 122–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Young, C. & Brink, R. The unique biology of germinal center B cells. Immunity 54, 1652–1664 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Spencer, J., Finn, T., Pulford, K. A., Mason, D. Y. & Isaacson, P. G. The human gut contains a novel population of B lymphocytes which resemble marginal zone cells. Clin. Exp. Immunol. 62, 607–612 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindner, C. et al. Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat. Immunol. 16, 880–888 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Stavnezer, J. & Kang, J. The surprising discovery that TGFβ specifically induces the IgA class switch. J. Immunol. 182, 5–7 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Bergqvist, P., Stensson, A., Lycke, N. Y. & Bemark, M. T cell-independent IgA class switch recombination is restricted to the GALT and occurs prior to manifest germinal center formation. J. Immunol. 184, 3545–3553 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Roco, J. A. et al. Class-switch recombination occurs infrequently in germinal centers. Immunity 51, 337–350.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Magri, G. et al. Human secretory IgM emerges from plasma cells clonally related to gut memory B cells and targets highly diverse commensals. Immunity 47, 118–134.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boursier, L., Dunn-Walters, D. K. & Spencer, J. Characteristics of IgVH genes used by human intestinal plasma cells from childhood. Immunology 97, 558–564 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Catanzaro, J. R. et al. IgA-deficient humans exhibit gut microbiota dysbiosis despite secretion of compensatory IgM. Sci. Rep. 9, 13574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nowosad, C. R. et al. Tunable dynamics of B cell selection in gut germinal centres. Nature 588, 321–326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brandtzaeg, P. & Baklien, K. Immunohistochemical studies of the immunoglobulin-producing cell systems of the human intestinal mucosa. Acta Histochem. Suppl. 21, 105–119 (1980).

    CAS  PubMed  Google Scholar 

  30. Mei, H. E. et al. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 113, 2461–2469 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. O’Leary, A. D. & Sweeney, E. C. Lymphoglandular complexes of the colon: structure and distribution. Histopathology 10, 267–283 (1986).

    Article  PubMed  Google Scholar 

  32. Shikuwa, S. et al. Magnifying videoendoscopic findings of Peyer’s patches in the terminal ileum of Crohn’s disease. Gut 56, 894–895 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. MacDonald, T. T., Spencer, J., Viney, J. L., Williams, C. B. & Walker-Smith, J. A. Selective biopsy of human Peyer’s patches during ileal endoscopy. Gastroenterology 93, 1356–1362 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Siu, J. H. Y. et al. Two subsets of human marginal zone B cells resolved by global analysis of lymphoid tissues and blood. Sci. Immunol. 7, eabm9060 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Fenton, T. M. et al. Immune profiling of human gut-associated lymphoid tissue identifies a role for isolated lymphoid follicles in priming of region-specific immunity. Immunity 52, 557–570.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jorgensen, P. B. et al. Identification, isolation and analysis of human gut-associated lymphoid tissues. Nat. Protoc. 16, 2051–2067 (2021).

    Article  PubMed  Google Scholar 

  37. Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Shlomchik, M. J. & Weisel, F. Germinal center selection and the development of memory B and plasma cells. Immunol. Rev. 247, 52–63 (2012).

    Article  PubMed  Google Scholar 

  39. Toboso-Navasa, A. et al. Restriction of memory B cell differentiation at the germinal center B cell positive selection stage. J. Exp. Med. https://doi.org/10.1084/jem.20191933 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mora, J. R. Homing imprinting and immunomodulation in the gut: role of dendritic cells and retinoids. Inflamm. Bowel Dis. 14, 275–289 (2008).

    Article  PubMed  Google Scholar 

  41. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Meng, W. et al. An atlas of B-cell clonal distribution in the human body. Nat. Biotechnol. 35, 879–884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zundler, S. et al. The α4β1 homing pathway is essential for ileal homing of Crohn’s disease effector T cells in vivo. Inflamm. Bowel Dis. 23, 379–391 (2017).

    Article  PubMed  Google Scholar 

  44. Camponeschi, A. et al. Dissecting integrin expression and function on memory B cells in mice and humans in autoimmunity. Front. Immunol. 10, 534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jovani, M. & Danese, S. Vedolizumab for the treatment of IBD: a selective therapeutic approach targeting pathogenic a4b7 cells. Curr. Drug Targets 14, 1433–1443 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Uzzan, M. et al. Anti-α4β7 therapy targets lymphoid aggregates in the gastrointestinal tract of HIV-1-infected individuals. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aau4711 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tyler, C. J. et al. Antibody secreting cells are critically dependent on integrin α4β7/MAdCAM-1 for intestinal recruitment and control of the microbiota during chronic colitis. Mucosal Immunol. 15, 109–119 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Berteloot, L. et al. Alternative pathways for the development of lymphoid structures in humans. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2108082118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stebegg, M. et al. Regulation of the germinal center response. Front. Immunol. 9, 2469 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gribonika, I. et al. Peyer’s patch TH17 cells are dispensable for gut IgA responses to oral immunization. Sci. Immunol. 7, eabc5500 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Wing, J. B. et al. A distinct subpopulation of CD25 T-follicular regulatory cells localizes in the germinal centers. Proc. Natl Acad. Sci. USA 114, E6400–E6409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wing, J. B., Tekguc, M. & Sakaguchi, S. Control of germinal center responses by T-follicular regulatory cells. Front. Immunol. 9, 1910 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Heit, A. et al. Vaccination establishes clonal relatives of germinal center T cells in the blood of humans. J. Exp. Med. 214, 2139–2152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hill, D. L. et al. The adjuvant GLA-SE promotes human Tfh cell expansion and emergence of public TCRβ clonotypes. J. Exp. Med. 216, 1857–1873 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hiyama, S. et al. Endoscopic alterations in Peyer’s patches in patients with ulcerative colitis: a prospective, multicenter study. J. Gastroenterol. Hepatol. 35, 1143–1149 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Morson, B. C. The early histological lesion of Crohn’s disease. Proc. R. Soc. Med. 65, 71–72 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fujimura, Y., Kamoi, R. & Iida, M. Pathogenesis of aphthoid ulcers in Crohn’s disease: correlative findings by magnifying colonoscopy, electron microscopy, and immunohistochemistry. Gut 38, 724–732 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Russel, M. G. et al. Appendectomy and the risk of developing ulcerative colitis or Crohn’s disease: results of a large case-control study. South Limburg Inflammatory Bowel Disease Study Group. Gastroenterology 113, 377–382 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Andersson, R. E., Olaison, G., Tysk, C. & Ekbom, A. Appendectomy and protection against ulcerative colitis. N. Engl. J. Med. 344, 808–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Parian, A. et al. Appendectomy does not decrease the risk of future colectomy in UC: results from a large cohort and meta-analysis. Gut https://doi.org/10.1136/gutjnl-2016-311550 (2016).

    Article  PubMed  Google Scholar 

  62. Reijntjes, M. A. et al. Clinical relevance of endoscopic peri-appendiceal red patch in ulcerative colitis patients. Ther. Adv. Gastroenterol. 15, 17562848221098849 (2022).

    Article  Google Scholar 

  63. Di Sabatino, A. et al. Splenic hypofunction and the spectrum of autoimmune and malignant complications in celiac disease. Clin. Gastroenterol. Hepatol. 4, 179–186 (2006).

    Article  PubMed  Google Scholar 

  64. Pararasa, C. et al. Reduced CD27IgD B cells in blood and raised CD27IgD B cells in gut-associated lymphoid tissue in inflammatory bowel disease. Front. Immunol. 10, 361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kosoy, R. et al. Deep analysis of the peripheral immune system in IBD reveals new insight in disease subtyping and response to monotherapy or combination therapy. Cell Mol. Gastroenterol. Hepatol. 12, 599–632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Glass, D. R. et al. An integrated multi-omic single-cell atlas of human B cell identity. Immunity 53, 217–232.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Descatoire, M. et al. Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties. J. Exp. Med. 211, 987–1000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Berkowska, M. A. et al. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood 118, 2150–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rubio, C. A. et al. Lymphoid aggregates in Crohn’s colitis and mucosal immunity. Virchows Arch. 463, 637–642 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Fell, J. M., Walker-Smith, J. A., Spencer, J. & MacDonald, T. T. The distribution of dividing T cells throughout the intestinal wall in inflammatory bowel disease (IBD). Clin. Exp. Immunol. 104, 280–285 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dohi, T. et al. Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J. Exp. Med. 189, 1169–1180 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Spahn, T. W. et al. Induction of colitis in mice deficient of Peyer’s patches and mesenteric lymph nodes is associated with increased disease severity and formation of colonic lymphoid patches. Am. J. Pathol. 161, 2273–2282 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Uzzan, M. et al. Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat. Med. 28, 766–779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dey, A. et al. Human circulating antibody-producing B cell as a predictive measure of mucosal immunity to poliovirus. PLoS ONE 11, e0146010 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bemark, M. et al. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization. Nat. Commun. 7, 12698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sterlin, D., Fadlallah, J., Slack, E. & Gorochov, G. The antibody/microbiota interface in health and disease. Mucosal Immunol. 13, 3–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Dunn-Walters, D. K., Isaacson, P. G. & Spencer, J. Sequence analysis of human IgVH genes indicates that ileal lamina propria plasma cells are derived from Peyer’s patches. Eur. J. Immunol. 27, 463–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21, 343–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kabbert, J. et al. High microbiota reactivity of adult human intestinal IgA requires somatic mutations. J. Exp. Med. https://doi.org/10.1084/jem.20200275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kraj, M. Immunoglobulin heavy chain/light chain pairs (HLC, Hevylite) assays for diagnosing and monitoring monoclonal gammopathies. Adv. Clin. Exp. Med. 23, 127–133 (2014).

    Article  PubMed  Google Scholar 

  81. Su, W. et al. Lambda light chain revision in the human intestinal IgA response. J. Immunol. 181, 1264–1271 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thoree, V. C. et al. Related IgA1 and IgG producing cells in blood and diseased mucosa in ulcerative colitis. Gut 51, 44–50 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weisel, N. M. et al. Comprehensive analyses of B-cell compartments across the human body reveal novel subsets and a gut-resident memory phenotype. Blood 136, 2774–2785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lindner, C. et al. Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J. Exp. Med. 209, 365–377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dunn-Walters, D. K., Boursier, L. & Spencer, J. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur. J. Immunol. 27, 2959–2964 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Brandtzaeg, P., Carlsen, H. S. & Halstensen, T. S. The B-cell system in inflammatory bowel disease. Adv. Exp. Med. Biol. 579, 149–167 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Baklien, K. & Brandtzaeg, P. Immunohistochemical characterization of local immunoglobulin formation in Crohn’s disease of the ileum. Scand. J. Gastroenterol. 11, 447–457 (1976).

    Article  CAS  PubMed  Google Scholar 

  89. Brandtzaeg, P., Baklien, K., Fausa, O. & Hoel, P. S. Immunohistochemical characterization of local immunoglobulin formation in ulcerative colitis. Gastroenterology 66, 1123–1136 (1974).

    Article  CAS  PubMed  Google Scholar 

  90. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dunn-Walters, D. K., Boursier, L., Hackett, M. & Spencer, J. Biased JH usage in plasma cell immunoglobulin gene sequences from colonic mucosa in ulcerative colitis but not in Crohn’s disease. Gut 44, 382–386 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abb4432 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Roozendaal, C. & Kallenberg, C. G. Are anti-neutrophil cytoplasmic antibodies (ANCA) clinically useful in inflammatory bowel disease (IBD)? Clin. Exp. Immunol. 116, 206–213 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Onuma, E. K., Amenta, P. S., Ramaswamy, K., Lin, J. J. & Das, K. M. Autoimmunity in ulcerative colitis (UC): a predominant colonic mucosal B cell response against human tropomyosin isoform 5. Clin. Exp. Immunol. 121, 466–471 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ebert, E. C., Geng, X., Lin, J. & Das, K. M. Autoantibodies against human tropomyosin isoform 5 in ulcerative colitis destroys colonic epithelial cells through antibody and complement-mediated lysis. Cell Immunol. 244, 43–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Kuwada, T. et al. Identification of an anti-integrin αvβ6 autoantibody in patients with ulcerative colitis. Gastroenterology 160, 2383–2394.e21 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Baklien, K. & Brandtzaeg, P. Letter: Immunohistochemical localization of complement in intestinal mucosa. Lancet 2, 1087–1088 (1974).

    Article  CAS  PubMed  Google Scholar 

  98. Castro-Dopico, T. & Clatworthy, M. R. Mucosal IgG in inflammatory bowel disease–a question of (sub)class? Gut Microbes 12, 1–9 (2020).

    Article  PubMed  Google Scholar 

  99. Castro-Dopico, T., Colombel, J. F. & Mehandru, S. Targeting B cells for inflammatory bowel disease treatment: back to the future. Curr. Opin. Pharmacol. 55, 90–98 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Castro-Dopico, T. et al. Anti-commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity 50, 1099–1114.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Edwards, J. C. & Cambridge, G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat. Rev. Immunol. 6, 394–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Leiper, K. et al. Randomised placebo-controlled trial of rituximab (anti-CD20) in active ulcerative colitis. Gut 60, 1520–1526 (2011).

    Article  PubMed  Google Scholar 

  104. Ben-Horin, S. Randomised placebo-controlled trial of rituximab (anti-CD20) in active ulcerative colitis. Gut 61, 327 (2012).

    Article  PubMed  Google Scholar 

  105. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Stamnaes, J. & Sollid, L. M. Celiac disease: autoimmunity in response to food antigen. Semin. Immunol. 27, 343–352 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Di Niro, R. et al. High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat. Med. 18, 441–445 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Iversen, R. et al. Evidence that pathogenic transglutaminase 2 in celiac disease derives from enterocytes. Gastroenterology 159, 788–790 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Jabri, B. & Sollid, L. M. T cells in celiac disease. J. Immunol. 198, 3005–3014 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Xu, H. et al. The dynamic interplay between the gut microbiota and autoimmune diseases. J. Immunol. Res. 2019, 7546047 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tull, T. J. et al. Human marginal zone B cell development from early T2 progenitors. J. Exp. Med. https://doi.org/10.1084/jem.20202001 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Weller, S. et al. IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88-, and TIRAP- but not UNC-93B-deficient patients. Blood 120, 4992–5001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Maglione, P. J. et al. IRAK-4 and MyD88 deficiencies impair IgM responses against T-independent bacterial antigens. Blood 124, 3561–3571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Greenblatt, H. K., Kim, H. A., Bettner, L. F. & Deane, K. D. Preclinical rheumatoid arthritis and rheumatoid arthritis prevention. Curr. Opin. Rheumatol. 32, 289–296 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2, e01202 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Erttmann, S. F. et al. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity 55, 847–861.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Menon, M., Rosser, E. C. & Mauri, C. Identification and isolation of regulatory B cells in mouse and human. Methods Mol. Biol. 1899, 55–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Rosser, E. C. et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat. Med. 20, 1334–1339 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Piper, C. J. M. et al. Aryl hydrocarbon receptor contributes to the transcriptional program of IL-10-producing regulatory B cells. Cell Rep. 29, 1878–1892.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rosser, E. C. et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab. 31, 837–851.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Liang, L. et al. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway. Clin. Sci. 136, 291–307 (2022).

    Article  CAS  Google Scholar 

  124. Long, Y., Zhao, X., Liu, C., Xia, C. & Liu, C. Activated inducible co-stimulator-positive programmed cell death 1-positive follicular helper T cells indicate disease activity and severity in ulcerative colitis patients. Clin. Exp. Immunol. 202, 106–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Long, Y. et al. The imbalance of circulating follicular helper T cells and follicular regulatory T cells is associated with disease activity in patients with ulcerative colitis. Front. Immunol. 11, 104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stolfi, C. et al. Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J. Exp. Med. 208, 2279–2290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Monteleone, G. et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-γ production in Crohn’s disease. Gastroenterology 128, 687–694 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Sarra, M. et al. Interferon-γ-expressing cells are a major source of interleukin-21 in inflammatory bowel diseases. Inflamm. Bowel Dis. 16, 1332–1339 (2010).

    Article  PubMed  Google Scholar 

  129. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Long, Y. et al. Increased circulating PD-1hiCXCR5 peripheral helper T cells are associated with disease severity of active ulcerative colitis patients. Immunol. Lett. 233, 2–10 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Voskens, C. et al. Autologous regulatory T-cell transfer in refractory ulcerative colitis with concomitant primary sclerosing cholangitis. Gut 72, 49–53 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Barnes, M. J. & Powrie, F. Regulatory T cells reinforce intestinal homeostasis. Immunity 31, 401–411 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Maloy, K. J. & Powrie, F. Fueling regulation: IL-2 keeps CD4+ Treg cells fit. Nat. Immunol. 6, 1071–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Sun, H. et al. β7 Integrin inhibition can increase intestinal inflammation by impairing homing of CD25hiFoxP3+ regulatory T cells. Cell Mol. Gastroenterol. Hepatol. 9, 369–385 (2020).

    Article  PubMed  Google Scholar 

  135. Sharonov, G. V., Serebrovskaya, E. O., Yuzhakova, D. V., Britanova, O. V. & Chudakov, D. M. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat. Rev. Immunol. 20, 294–307 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Chiaruttini, G. et al. B cells and the humoral response in melanoma: the overlooked players of the tumor microenvironment. Oncoimmunology 6, e1294296 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Mazor, R. D. et al. Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 185, 1208–1222.e21 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Noel, G. et al. Functional Th1-oriented T follicular helper cells that infiltrate human breast cancer promote effective adaptive immunity. J. Clin. Invest. https://doi.org/10.1172/JCI139905 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Goc, J. et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res. 74, 705–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Wotherspoon, A. C., Ortiz-Hidalgo, C., Falzon, M. R. & Isaacson, P. G. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 338, 1175–1176 (1991).

    Article  CAS  PubMed  Google Scholar 

  144. Small, S., Barnea Slonim, L., Williams, C. & Karmali, R. B cell lymphomas of the GI tract. Curr. Gastroenterol. Rep. 23, 9 (2021).

    Article  PubMed  Google Scholar 

  145. Matysiak-Budnik, T. et al. Primary gastrointestinal follicular lymphomas: a prospective study of 31 patients with long-term follow-up registered in the French Gastrointestinal Lymphoma Study Group (GELD) of the French Federation of Digestive Oncology (FFCD). Gut Liver 16, 207–215 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kuppers, R. & Stevenson, F. K. Critical influences on the pathogenesis of follicular lymphoma. Blood 131, 2297–2306 (2018).

    Article  PubMed  Google Scholar 

  147. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 40, 413–442 (2022).

    Article  PubMed  Google Scholar 

  148. Liu, Y. J. et al. Germinal center cells express bcl-2 protein after activation by signals which prevent their entry into apoptosis. Eur. J. Immunol. 21, 1905–1910 (1991).

    Article  CAS  PubMed  Google Scholar 

  149. Su, W., Spencer, J. & Wotherspoon, A. C. Relative distribution of tumour cells and reactive cells in follicular lymphoma. J. Pathol. 193, 498–504 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Ravetch, J. V. Fc receptors. Curr. Opin. Immunol. 9, 121–125 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jo Spencer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Britta Siegmund, Kathryn Knoop and Hiroshi Ohno for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spencer, J., Bemark, M. Human intestinal B cells in inflammatory diseases. Nat Rev Gastroenterol Hepatol 20, 254–265 (2023). https://doi.org/10.1038/s41575-023-00755-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00755-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing