Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gasdermin protein family: emerging roles in gastrointestinal health and disease

Abstract

Since the identification and characterization of gasdermin (GSDM) D as the main effector of inflammatory regulated cell death (or pyroptosis), literature on the GSDM family of pore-forming proteins is rapidly expanding, revealing novel mechanisms regulating their expression and functions that go beyond pyroptosis. Indeed, a growing body of evidence corroborates the importance of GSDMs within the gastrointestinal system, underscoring their critical contributions to the pathophysiology of gastrointestinal cancers, enteric infections and gut mucosal inflammation, such as inflammatory bowel disease. However, with this increase in knowledge, several important and controversial issues have arisen regarding basic GSDM biology and its role(s) during health and disease states. These include critical questions centred around GSDM-dependent lytic versus non-lytic functions, the biological activities of cleaved versus full-length proteins, the differential roles of GSDM-expressing mucosal immune versus epithelial cells, and whether GSDMs promote pathogenic or protective effects during specific disease settings. This Review provides a comprehensive summary and interpretation of the current literature on GSDM biology, specifically focusing on the gastrointestinal tract, highlighting the main controversial issues and their clinical implications, and addressing future areas of research to unravel the specific role(s) of this intriguing, yet enigmatic, family of proteins.

Key points

  • The gasdermin (GSDM) family of lipid-binding proteins is involved in several biological processes, with its five members (GSDMA to GSDME) serving as major factors during gastrointestinal health and disease.

  • GSDMs are primarily known as mediators of pyroptosis; however, evidence supports other roles, including the non-lytic release of inflammatory cytokines, regulation of vital cell functions and targeted bactericidal effects.

  • The contribution of each GSDM during gastrointestinal health and disease is unequivocal, albeit ambiguous, with reports of both promotion of and protection from gastrointestinal cancers, infections and immune-mediated disorders.

  • Preliminary evidence suggests potential applications for GSDMs in clinical gastrointestinal practice, with future investigation warranted to leverage their use as predictive or prognostic biomarkers and/or specific therapeutic targets.

  • Knowledge gaps and controversies exist in GSDM biology regarding their pyroptotic and non-pyroptotic functions and associated signalling pathways, the biological activities of full-length forms, and their roles in immune and non-immune cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Important features of gasdermins.
Fig. 2: Role and contribution of epithelial-derived gasdermins in gastrointestinal cancers.
Fig. 3: Role and contribution of gasdermins in gastrointestinal inflammation.

Similar content being viewed by others

References

  1. Saeki, N., Kuwahara, Y., Sasaki, H., Satoh, H. & Shiroishi, T. Gasdermin (Gsdm) localizing to mouse chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm. Genome 11, 718–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug Discov. 20, 384–405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Delmaghani, S. et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat. Genet. 38, 770–778 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Yu, J. et al. Polymorphisms in GSDMA and GSDMB are associated with asthma susceptibility, atopy and BHR. Pediatr. Pulmonol. 46, 701–708 (2011).

    Article  PubMed  Google Scholar 

  5. Das, S. et al. GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proc. Natl Acad. Sci. USA 113, 13132–13137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Runkel, F. et al. The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3. Genomics 84, 824–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Lunny, D. P. et al. Mutations in gasdermin 3 cause aberrant differentiation of the hair follicle and sebaceous gland. J. Invest. Dermatol. 124, 615–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Saeki, N. et al. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-β-dependent apoptotic signalling. Oncogene 26, 6488–6498 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Saeki, N. et al. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer 48, 261–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25, 1285–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cookson, B. T. & Brennan, M. A. Pro-inflammatory programmed cell death. Trends Microbiol. 9, 113–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tamura, M. et al. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89, 618–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Angosto-Bazarra, D. et al. Evolutionary analyses of the gasdermin family suggest conserved roles in infection response despite loss of pore-forming functionality. BMC Biol. 20, 9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chauhan, D. et al. GSDMD drives canonical inflammasome-induced neutrophil pyroptosis and is dispensable for NETosis. EMBO Rep. https://doi.org/10.15252/EMBR.202154277 (2022).

    Article  PubMed  Google Scholar 

  20. Kambara, H. et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep. 22, 2924–2936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sollberger, G. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3, eaar6689 (2018).

    Article  PubMed  Google Scholar 

  22. Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar6676 (2018).

    Article  PubMed  Google Scholar 

  23. Burgener, S. S. et al. Cathepsin G inhibition by Serpinb1 and Serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-driven inflammation. Cell Rep. 27, 3646–3656.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin, P. H., Lin, H. Y., Kuo, C. C. & Yang, L. T. N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting. J. Biomed. Sci. 22, 44 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Platnich, J. M. et al. Shiga toxin/lipopolysaccharide activates caspase-4 and Gasdermin D to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome. Cell Rep. 25, 1525–1536.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Weindel, C. G. et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 185, 3214–3231.e23 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Evavold, C. L. et al. The pore-forming protein Gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao, H. et al. Dysregulated microbiota-driven gasdermin D activation promotes colitis development by mediating IL-18 release. Front. Immunol. 12, 750841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, J. et al. Famotidine promotes inflammation by triggering cell pyroptosis in gastric cancer cells. BMC Pharmacol. Toxicol. 22, 62 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao, M. et al. Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C. Immunity https://doi.org/10.1016/J.IMMUNI.2022.03.009 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen, W. et al. Allergen protease-activated stress granule assembly and gasdermin D fragmentation control interleukin-33 secretion. Nat. Immunol. 23, 1021–1030 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Yamagishi, R. et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci. Immunol. 7, eabl7209 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. De Torre-Minguela, C., Barberà-Cremades, M., Gómez, A. I., Martín-Sánchez, F. & Pelegrín, P. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process. Sci. Rep. 6, 22586 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tan, G., Huang, C., Chen, J. & Zhi, F. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway. J. Hematol. Oncol. 13, 149 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Karmakar, M. et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun. 11, 2212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rana, N. et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell https://doi.org/10.1016/j.cell.2021.12.024 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bulek, K. et al. Epithelial-derived gasdermin D mediates nonlytic IL-1β release during experimental colitis. J. Clin. Invest. 140, 4218–4234 (2020).

    Google Scholar 

  40. De Schutter, E. et al. GSDME and its role in cancer: from behind the scenes to the front of the stage. Int. J. Cancer 148, 2872–2883 (2021).

    Article  PubMed  Google Scholar 

  41. Moussette, S. et al. Role of DNA methylation in expression control of the IKZF3-GSDMA region in human epithelial cells. PLoS ONE 12, e0172707 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Muhammad, J. S. et al. Gasdermin D hypermethylation inhibits pyroptosis and LPS-induced IL-1β release from NK92 cells. Immunotargets Ther. 8, 29–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stein, M. M. et al. A decade of research on the 17q12-21 asthma locus: piecing together the puzzle. J. Allergy Clin. Immunol. 142, 749–764.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taabazuing, C. Y., Okondo, M. C. & Bachovchin, D. A. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem. Biol. 24, 507–514.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chao, K. L., Kulakova, L. & Herzberg, O. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. Proc. Natl Acad. Sci. USA 114, E1128–E1137 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Devant, P. et al. Gasdermin D pore-forming activity is redox-sensitive. Cell Rep. 42, 112008 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu, L. et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 11, 281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bambouskova, M. et al. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Rep. 34, 108756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  Google Scholar 

  51. Santa Cruz Garcia, A. B., Schnur, K. P., Malik, A. B. & Mo, G. C. H. Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry. Nat. Commun. 13, 52 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hou, J., Hsu, J.-M. & Hung, M.-C. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity. Mol. Cell https://doi.org/10.1016/j.molcel.2021.09.003 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Privitera, G., Rana, N., Scaldaferri, F., Armuzzi, A. & Pizarro, T. T. Novel insights into the interactions between the gut microbiome, inflammasomes, and gasdermins during colorectal cancer. Front. Cell. Infect. Microbiol. 11, 806680 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wu, C. et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity 50, 1401–1411.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, X. et al. Bacterial endotoxin activates the coagulation cascade through Gasdermin D-dependent phosphatidylserine exposure. Immunity 51, 983–996.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. McDonald, B. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129, 1357–1367 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Solem, C. A., Loftus, E. V., Tremaine, W. J. & Sandborn, W. J. Venous thromboembolism in inflammatory bowel disease. Am. J. Gastroenterol. 99, 97–101 (2004).

    Article  PubMed  Google Scholar 

  58. Zou, J. et al. The versatile gasdermin family: their function and roles in diseases. Front. Immunol. 12, 751533 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tan, G., Huang, C., Chen, J., Chen, B. & Zhi, F. Gasdermin-E-mediated pyroptosis participates in the pathogenesis of Crohn’s disease by promoting intestinal inflammation. Cell Rep. 35, 109265 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Katoh, M. & Katoh, M. Identification and characterization of human DFNA5L, mouse Dfna5l, and rat Dfna5l genes in silico. Int. J. Oncol. 25, 765–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Kusumaningrum, N. et al. Gasdermin C is induced by ultraviolet light and contributes to MMP-1 expression via activation of ERK and JNK pathways. J. Dermatol. Sci. 90, 180–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Terao, C. et al. Transethnic meta-analysis identifies GSDMA and PRDM1 as susceptibility genes to systemic sclerosis. Ann. Rheum. Dis. 76, 1150–1158 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Söderman, J., Berglind, L. & Almer, S. Gene expression-genotype analysis implicates GSDMA, GSDMB, and LRRC3C as contributors to inflammatory bowel disease susceptibility. Biomed. Res. Int. 2015, 834805 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shi, P. et al. Loss of conserved Gsdma3 self-regulation causes autophagy and cell death. Biochem. J. 468, 325–336 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Deng, W. et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 602, 496–502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. LaRock, D. L. et al. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 605, 527–531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ruan, J. Structural insight of Gasdermin family driving pyroptotic cell death. Adv. Exp. Med. Biol. 1172, 189–205 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, Q. et al. GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J. Mol. Cell Biol. 11, 496–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Panganiban, R. A. et al. A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. J. Allergy Clin. Immunol. 142, 1469–1478.e2 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou, Z. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368, eaaz7548 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Zeng, R. et al. Predicting the prognosis of esophageal adenocarcinoma by a pyroptosis-related gene signature. Front. Pharmacol. 12, 3142 (2021).

    Article  Google Scholar 

  72. Komiyama, H. et al. Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB). Genes Genet. Syst. 85, 75–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Carl-McGrath, S., Schneider-Stock, R., Ebert, M. & Röcken, C. Differential expression and localisation of gasdermin-like (GSDML), a novel member of the cancer-associated GSDMDC protein family, in neoplastic and non-neoplastic gastric, hepatic, and colon tissues. Pathology 40, 13–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Hansen, J. M. et al. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 184, 3178–3191.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miguchi, M. et al. Gasdermin C is upregulated by inactivation of transforming growth factor β receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation. PLoS ONE 11, e0166422 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hou, J. et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 22, 1264–1275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, J.-Y. et al. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 31, 980–997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xi, R. et al. Up-regulation of gasdermin C in mouse small intestine is associated with lytic cell death in enterocytes in worm-induced type 2 immunity. Proc. Natl Acad. Sci. USA 118, e2026307118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dinarello, C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281, 8–27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zanoni, I., Tan, Y., Di Gioia, M., Springstead, J. R. & Kagan, J. C. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47, 697–709.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, K. W. et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 8, 570–582 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, J. et al. Epithelial Gasdermin D shapes the host-microbial interface by driving mucus layer formation. Sci. Immunol. 7, eabk2092 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Ma, Y., Chen, Y., Lin, C. & Hu, G. Biological functions and clinical significance of the newly identified long non-coding RNA RP1-85F18.6 in colorectal cancer. Oncol. Rep. 40, 2648–2658 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu, L. S. et al. LPS enhances the chemosensitivity of oxaliplatin in HT29 cells via GSDMD-mediated pyroptosis. Cancer Manag. Res. 12, 10397–10409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, W. J. et al. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. J. Dig. Dis. 19, 74–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, L. et al. Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 450, 22–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Mileykovskaya, E. & Dowhan, W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta 1788, 2084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Jorgensen, I., Zhang, Y., Krantz, B. A. & Miao, E. A. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J. Exp. Med. 213, 2113–2128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Sci 362, 1064–1069 (2018).

    Article  CAS  Google Scholar 

  92. Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl Acad. Sci. USA 115, E10888–E10897 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Demarco, B. et al. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci. Adv. 6, 3465–3483 (2020).

    Article  Google Scholar 

  94. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Jiang, M., Qi, L., Li, L. & Li, Y. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov. 6, 112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aizawa, E. et al. GSDME-dependent incomplete pyroptosis permits selective IL-1α release under caspase-1 inhibition. iScience 23, 101070 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhou, B. & Abbott, D. W. Gasdermin E permits interleukin-1 beta release in distinct sublytic and pyroptotic phases. Cell Rep. 35, 108998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, K. W. et al. RIPK1 activates distinct gasdermins in macrophages and neutrophils upon pathogen blockade of innate immune signaling. Proc. Natl Acad. Sci. USA 118, e2101189118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tan, G. et al. An IRF1-dependent pathway of TNFα-induced shedding in intestinal epithelial cells. J. Crohns Colitis 16, 133–142 (2022).

    Article  PubMed  Google Scholar 

  101. Yokomizo, K. et al. Methylation of the DFNA5 gene is frequently detected in colorectal cancer. Anticancer. Res. 32, 1319–1322 (2012).

    CAS  PubMed  Google Scholar 

  102. Wu, M. et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma. EBioMedicine 41, 244–255 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang, Z. et al. Prognostic and immunological role of Gasdermin E in pan-cancer analysis. Front. Oncol. 11, 2879 (2021).

    Google Scholar 

  104. Su, F. et al. Long non-coding RNA nuclear paraspeckle assembly transcript 1 regulates ionizing radiation-induced pyroptosis via microRNA-448/gasdermin E in colorectal cancer cells. Int. J. Oncol. 59, 79 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yu, J. et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis. 10, 193 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang, Y. et al. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem. Biophys. Res. Commun. 495, 1418–1425 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Orzalli, M. H. et al. Virus-mediated inactivation of anti-apoptotic Bcl-2 family members promotes Gasdermin-E-dependent pyroptosis in barrier epithelial cells. Immunity 54, 1447–1462.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mujtaba, G., Bukhari, I., Fatima, A. & Naz, S. A p.C343S missense mutation in PJVK causes progressive hearing loss. Gene 504, 98–101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Delmaghani, S. et al. Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163, 894–906 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Defourny, J. et al. Pejvakin-mediated pexophagy protects auditory hair cells against noise-induced damage. Proc. Natl Acad. Sci. USA 116, 8010–8017 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Spechler, S. J. Barrett esophagus and risk of esophageal cancer: a clinical review. JAMA 310, 627–636 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Correa, P. & Houghton, J. M. Carcinogenesis of Helicobacter pylori. Gastroenterology 133, 659–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Axelrad, J. E., Lichtiger, S. & Yajnik, V. Inflammatory bowel disease and cancer: the role of inflammation, immunosuppression, and cancer treatment. World J. Gastroenterol. 22, 4794 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hergueta-Redondo, M. et al. Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS ONE 9, e90099 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mu, M. et al. A pan-cancer analysis of molecular characteristics and oncogenic role of gasdermins. Cancer Cell Int. 22, 80 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Croes, L. et al. Determination of the potential tumor-suppressive effects of Gsdme in a chemically induced and in a genetically modified intestinal cancer mouse model. Cancers 11, 1214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Santiago, L. et al. Extracellular granzyme A promotes colorectal cancer development by enhancing gut inflammation. Cell Rep. 32, 107847 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Zheng, Z. Y. et al. STAT3β disrupted mitochondrial electron transport chain enhances chemosensitivity by inducing pyroptosis in esophageal squamous cell carcinoma. Cancer Lett. 522, 171–183 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Li, L. et al. Photodynamic therapy induces human esophageal carcinoma cell pyroptosis by targeting the PKM2/caspase-8/caspase-3/GSDME axis. Cancer Lett. 520, 143–159 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Tan, G. et al. Radiosensitivity of colorectal cancer and radiation-induced gut damages are regulated by gasdermin E. Cancer Lett. 529, 1–10 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Thurston, T. L. M. et al. Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death. Nat. Commun. 7, 13292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zuo, L. et al. Salmonella spvC gene inhibits pyroptosis and intestinal inflammation to aggravate systemic infection in mice. Front. Microbiol. 11, 3135 (2020).

    Article  Google Scholar 

  123. Havira, M. S. et al. Shiga toxin suppresses noncanonical inflammasome responses to cytosolic LPS. Sci. Immunol. 5, eabc0217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tsutsuki, H. et al. Subtilase cytotoxin from Shiga-toxigenic Escherichia coli impairs the inflammasome and exacerbates enteropathogenic bacterial infection. iScience 25, 104050 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Luchetti, G. et al. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 29, 1521–1530.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rauch, I. et al. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 46, 649–659 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ventayol, P. S. et al. Bacterial detection by NAIP/NLRC4 elicits prompt contractions of intestinal epithelial cell layers. Proc. Natl Acad. Sci. USA 118, e2013963118 (2021).

    Article  CAS  Google Scholar 

  128. Sellin, M. E. et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16, 237–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Knodler, L. A. et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fattinger, S. A., Sellin, M. E. & Hardt, W. D. Epithelial inflammasomes in the defense against Salmonella gut infection. Curr. Opin. Microbiol. 59, 86–94 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Fattinger, S. A. et al. Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory destruction of the gut epithelial barrier in Salmonella-infected mice. Mucosal Immunol. 14, 615–629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhong, Q. et al. Clustering of Tir during enteropathogenic E. coli infection triggers calcium influx–dependent pyroptosis in intestinal epithelial cells. PLoS Biol. 18, e3000986 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Man, S. M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15, 721–737 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shi, Y. et al. Host Gasdermin D restrains systemic endotoxemia by capturing Proteobacteria in the colon of high-fat diet-feeding mice. Gut Microbes 13, 1946369 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Quach, J., Moreau, F., Sandall, C. & Chadee, K. Entamoeba histolytica-induced IL-1β secretion is dependent on caspase-4 and gasdermin D. Mucosal Immunol. 12, 323–339 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, S., Moreau, F. & Chadee, K. The colonic pathogen Entamoeba histolytica activates caspase-4/1 that cleaves the pore-forming protein gasdermin D to regulate IL-1β secretion. PLoS Pathog. 18, e1010415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, J. et al. Insight to pyroptosis in viral infectious diseases. Health 13, 574–590 (2021).

    Article  CAS  Google Scholar 

  138. Zhu, S. et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dubois, H. et al. Nlrp3 inflammasome activation and Gasdermin D-driven pyroptosis are immunopathogenic upon gastrointestinal norovirus infection. PLoS Pathog. 15, e1007709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dong, S. et al. Gasdermin E is required for induction of pyroptosis and severe disease during enterovirus 71 infection. J. Biol. Chem. 298, 101850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lei, X. et al. Enterovirus 71 inhibits pyroptosis through cleavage of Gasdermin D. J. Virol. 91, e01069-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wang, W. et al. EV71 3D protein binds with NLRP3 and enhances the assembly of inflammasome complex. PLoS Pathog. 13, e1006123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wang, Y. et al. Pyroptosis induced by enterovirus 71 and coxsackievirus B3 infection affects viral replication and host response Sci. Rep. 8, 2887 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Briardi, B., Malireddi, R. K. S. & Kannegantii, T. D. Role of inflammasomes/pyroptosis and PANoptosis during fungal infection. PLoS Pathog. 17, e1009358 (2021).

    Article  Google Scholar 

  145. De Schutter, E. et al. Punching holes in cellular membranes: biology and evolution of gasdermins. Trends Cell Biol. 31, 500–513 (2021).

    Article  PubMed  Google Scholar 

  146. Jiang, S., Zhou, Z., Sun, Y., Zhang, T. & Sun, L. Coral gasdermin triggers pyroptosis. Sci. Immunol. 5, eabd2591 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. IBD Exomes Portal. Gene: GSDMB. IBD Exomes Browser https://dmz-ibd.broadinstitute.org/gene/ENSG00000073605 (2023).

  148. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gong, W., Liu, P. & Ren, J. GSDMB-mediated pyroptosis exacerbates intestinal inflammation by destroying intestinal epithelium in Crohn’s disease [abstract P010]. Presented at the 16th Congress of ECCO. https://www.ecco-ibd.eu/publications/congress-abstracts/item/p010-gsdmb-mediated-pyroptosis-exacerbates-intestinal-inflammation-by-destroying-intestinal-epithelium-in-crohn-s-disease.html (2021).

  150. Ma, C. et al. Gasdermin D in macrophages restrains colitis by controlling cGAS-mediated inflammation. Sci. Adv. 6, eaaz6717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schwarzer, R., Jiao, H., Wachsmuth, L., Tresch, A. & Pasparakis, M. FADD and caspase-8 regulate gut homeostasis and inflammation by controlling MLKL- and GSDMD-mediated death of intestinal epithelial cells. Immunity 52, 978–993.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Chen, X. et al. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 10, 906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gao, W. et al. TRIM21 regulates pyroptotic cell death by promoting Gasdermin D oligomerization. Cell Death Differ. 29, 439–450 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Luo, B., Lin, J., Cai, W. & Wang, M. Identification of the pyroptosis-related gene signature and risk score model for colon adenocarcinoma. Front. Genet. 12, 2450 (2021).

    Article  Google Scholar 

  155. Qiu, S., Hu, Y. & Dong, S. Pan-cancer analysis reveals the expression, genetic alteration and prognosis of pyroptosis key gene GSDMD. Int. Immunopharmacol. 101, 108270 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Wang, J. et al. Gasdermin D in different subcellular locations predicts diverse progression, immune microenvironment and prognosis in colorectal cancer. J. Inflamm. Res. 14, 6223–6235 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ibrahim, J. et al. Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer. Cancer Med. 8, 2133–2145 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fu, L. et al. Intracellular MUC20 variant 2 maintains mitochondrial calcium homeostasis and enhances drug resistance in gastric cancer. Gastric Cancer 25, 542–557 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Hergueta-Redondo, M. et al. Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer. Oncotarget 7, 56295–56308 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Gunturu, K. S., Woo, Y., Beaubier, N., Remotti, H. E. & Saif, M. W. Gastric cancer and trastuzumab: first biologic therapy in gastric cancer. Ther. Adv. Med. Oncol. 5, 143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Homsy, E. et al. Circulating Gasdermin-D in critically ill patients. Crit. Care Explor. 1, e0039 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Deng, B. B., Jiao, B. P., Liu, Y. J., Li, Y. R. & Wang, G. J. BIX-01294 enhanced chemotherapy effect in gastric cancer by inducing GSDME-mediated pyroptosis. Cell Biol. Int. 44, 1890–1899 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shen, X., Wang, H., Weng, C., Jiang, H. & Chen, J. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity. Cell Death Dis. 12, 186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Huang, Z. et al. Inhibition of caspase-3-mediated GSDME-derived pyroptosis aids in noncancerous tissue protection of squamous cell carcinoma patients during cisplatin-based chemotherapy. Am. J. Cancer Res. 10, 4287 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Jiang, S. et al. Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/caspase-1/GSDMD pyroptosis pathway. J. Steroid Biochem. Mol. Biol. 206, 105789 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Liu, Y. et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci. Immunol. 5, eaax7969 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Xiao, Y. et al. Microenvironment-responsive prodrug-induced pyroptosis boosts cancer immunotherapy. Adv. Sci. 8, 2101840 (2021).

    Article  CAS  Google Scholar 

  168. Liu, Z. et al. Apoptin induces pyroptosis of colorectal cancer cells via the GSDME-dependent pathway. Int. J. Biol. Sci. 18, 717 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Molina-Crespo, A. et al. Intracellular delivery of an antibody targeting gasdermin-B reduces HER2 breast cancer aggressiveness. Clin. Cancer Res. 25, 4846–4858 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Gámez-Chiachio, M. et al. Gasdermin B over-expression modulates HER2-targeted therapy resistance by inducing protective autophagy through Rab7 activation. J. Exp. Clin. Cancer Res. 41, 285 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Wang, Q. et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579, 421–426 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Ryder, C. B., Kondolf, H. C., O’Keefe, M. E., Zhou, B. & Abbott, D. W. Chemical modulation of gasdermin-mediated pyroptosis and therapeutic potential. J. Mol. Biol. 434, 167183 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 3, eaat2738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ou, Ate et al. Disulfiram-loaded lactoferrin nanoparticles for treating inflammatory diseases. Acta Pharmacol. Sin. 42, 1913–1920 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Feagan, B. G. et al. A comparison of methotrexate with placebo for the maintenance of remission in Crohn’s disease. N. Engl. J. Med. 342, 1627–1632 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Feagan, B. G. et al. Methotrexate for the treatment of Crohn’s disease. N. Engl. J. Med. 332, 292–297 (1995).

    Article  CAS  PubMed  Google Scholar 

  178. Privitera, G. & Pizarro, T. T. Live or let die: translational insights and clinical perspectives of gasdermin B-dependent intestinal epithelial cell fate. Clin. Transl. Med. 12, e787 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Al Mamun, A. et al. Role of pyroptosis in liver diseases. Int. Immunopharmacol. 84, 106489 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Rodríguez-Antonio, I., López-Sánchez, G. N., Uribe, M., Chávez-Tapia, N. C. & Nuño-Lámbarri, N. Role of the inflammasome, gasdermin D, and pyroptosis in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 36, 2720–2727 (2021).

    Article  PubMed  Google Scholar 

  181. Gaul, S. et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J. Hepatol. 74, 156–167 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Xu, W. F. et al. Gasdermin E-derived caspase-3 inhibitors effectively protect mice from acute hepatic failure. Acta Pharmacol. Sin. 42, 68–76 (2021).

    Article  PubMed  Google Scholar 

  183. Lin, T. et al. Downregulating Gasdermin D reduces severe acute pancreatitis associated with pyroptosis. Med. Sci. Monit. 27, e927968 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Wu, J. et al. Treatment of severe acute pancreatitis and related lung injury by targeting Gasdermin D-mediated pyroptosis. Front. Cell Dev. Biol. 9, 780142 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Chen, Y. et al. Ultraviolet B induces proteolytic cleavage of the pyroptosis inducer gasdermin E in keratinocytes. J. Dermatol. Sci. 100, 160–163 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Grossi, S. et al. Inactivation of the cytoprotective major vault protein by caspase-1 and -9 in epithelial cells during apoptosis. J. Invest. Dermatol. 140, 1335–1345.e10 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liu, Z. et al. Crystal structures of the full-length murine and human Gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity 51, 43–49.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chen, X. et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26, 1007–1020 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zheng, Z. et al. The lysosomal Rag-Ragulator complex licenses RIPK1- and caspase-8-mediated pyroptosis by Yersinia. Science 372, eabg0269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lei, M. et al. Gsdma3 is a new factor needed for TNF-α-mediated apoptosis signal pathway in mouse skin keratinocytes. Histochem. Cell Biol. 138, 385–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Kayagaki, N. et al. IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci. Signal. 12, eaax4917 (2019).

    Article  PubMed  Google Scholar 

  194. Benaoudia, S. et al. A genome-wide screen identifies IRF2 as a key regulator of caspase-4 in human cells. EMBO Rep. 20, e48235 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Saeki, N. & Hiroki, S. in Endothelium and Epithelium: Composition, Functions, and Pathology (eds Carrasco, J. & Mota, M.) 193–211 (Nova Biomedical, 2012).

  196. Pandey, A., Shen, C., Feng, S. & Man, S. M. Cell biology of inflammasome activation. Trends Cell Biol. 31, 924–939 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Pandey, A., Shen, C. & Man, S. M. Inflammasomes in colitis and colorectal cancer: mechanism of action and therapies. Yale J. Biol. Med. 92, 481–498 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Liu, Z. et al. Caspase-1 engages full-length Gasdermin D through two distinct interfaces that mediate caspase recruitment and substrate cleavage. Immunity 53, 106–114.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dinarello, C. et al. IL-1 family nomenclature. Nat. Immunol. 11, 973 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rivers-Auty, J. & Brough, D. Potassium efflux fires the canon: potassium efflux as a common trigger for canonical and noncanonical NLRP3 pathways. Eur. J. Immunol. 45, 2758–2761 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Yu, P. et al. Pyroptosis: mechanisms and diseases. Signal. Transduct. Target. Ther. 6, 128 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Bedoui, S., Herold, M. J. & Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 21, 678–695 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Labani-Motlagh, A., Ashja-Mahdavi, M. & Loskog, A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front. Immunol. 11, 940 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gül, N. et al. Macrophages eliminate circulating tumor cells after monoclonal antibody therapy. J. Clin. Invest. 124, 812–823 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Yu, J. et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J. Immunol. 190, 3783–3797 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Kobayashi, N. et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin. Cancer Res. 13, 902–911 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Hoepner, S. et al. Synergy between CD8 T cells and Th1 or Th2 polarised CD4 T cells for adoptive immunotherapy of brain tumours. PLoS ONE 8, e63933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Weigelin, B. et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat. Commun. 12, 5217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Melaiu, O., Lucarini, V., Cifaldi, L. & Fruci, D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front. Immunol. 10, 3038 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Jiang, W. et al. Exhausted CD8+ T cells in the tumor immune microenvironment: new pathways to therapy. Front. Immunol. 11, 3739 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge continued support for this work from the NIH/NIDDK and NIAID: DK091222 (P01 Project 3), DK042191, DK125293 and AI141350 (P01 Project 4) (to T.T.P.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for and wrote the article. G.P. and N.R. drafted the figures, G.P., A.A. and T.T.P. made substantial contributions to discussion of content, and T.T.P. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Theresa T. Pizarro.

Ethics declarations

Competing interests

All authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Kaiwen Chen, Hai-Bin Ruan, Xing Liu, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Apoptosis

Form of regulated cell death under the control of executioner caspases that results in the formation of intact vesicles (apoptotic bodies).

Enterovirus 71

Enterovirus with faecal–oral transmission that is the primary causative agent of ‘hand, foot and mouth disease’.

Inflammatory bowel disease

Chronic inflammatory condition with a relapsing–remitting course that affects (primarily) the gastrointestinal tract; it arises from dysregulated interactions between the host immune system and its gut microbiome, and its main clinical phenotype is represented by Crohn’s disease and ulcerative colitis.

Macroautophagy

Catabolic process characterized by the formation of intracellular vesicles (‘autophagosomes’) and aiming at the degradation of cellular components through the lysosomal system.

Mitophagy

Selective form of autophagy targeting damaged mitochondria.

Necroptosis

Form of regulated cell death mediated by mixed lineage kinase domain-like pseudokinase pores, whose activation depends on RIPK3 (and RIPK1).

NETosis

Form of regulated cell death restricted to neutrophils that results in the extrusion of neutrophil extracellular traps (NETs).

Pexophagy

Removal of damaged peroxisomes via autophagy.

Pyroptosis

Form of regulated cell death that depends on the formation of GSDM pores on the cell plasma membrane; it is often (but not always) a consequence of inflammatory caspase activation, and is usually associated with the release of inflammatory mediators into the extracellular space.

Receptosome

Intracellular vesicle that is formed via concentrative, receptor-mediated endocytosis, possibly with the ligand–receptor complex still bound to the membrane.

Regulated cell death

Form of cell death dependent on the activation of specific signal transducers and terminal effectors; it is susceptible to chemical and/or pharmacological modulations (including both apoptosis and a form of inflammatory cell death).

Salmonella enterica subsp. enterica serovar Typhimurium

Facultative intracellular pathogen that causes food-borne infectious colitis in mice; it is used as a model of human typhoid fever (caused by S. Typhi).

Secondary necrosis

Event following end-stage apoptosis in vitro or in vivo when phagocytic clearance of apoptotic bodies fails resulting in plasma membrane rupture and release of cytoplasmic contents.

Yersiniosis

Food-borne gastrointestinal infection with pathogens localizing to intestinal lymphoid tissues and mesenteric lymph nodes: it is clinically characterized by abdominal pain and diarrhoea and is usually caused by Yersinia enterocolitica; Y. pseudotuberculosis is commonly used in mouse models of yersiniosis but rarely causes yersiniosis in humans.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privitera, G., Rana, N., Armuzzi, A. et al. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol 20, 366–387 (2023). https://doi.org/10.1038/s41575-023-00743-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00743-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer