Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunology and immunotherapy of cholangiocarcinoma

Abstract

Cholangiocarcinoma is the second most common primary liver cancer. Its incidence is low in the Western world but is rising globally. Surgery, chemotherapy and radiation therapy have been the only treatment options for decades. Progress in our molecular understanding of the disease and the identification of druggable targets, such as IDH1 mutations and FGFR2 fusions, has provided new treatment options. Immunotherapy has emerged as a potent strategy for many different types of cancer and has shown efficacy in combination with chemotherapy for cholangiocarcinoma. In this Review, we discuss findings related to key immunological aspects of cholangiocarcinoma, including the heterogeneous landscape of immune cells within the tumour microenvironment, the immunomodulatory effect of the microbiota and IDH1 mutations, and the association of immune-related signatures and patient outcomes. We introduce findings from preclinical immunotherapy studies, discuss future immune-mediated treatment options, and provide a summary of results from clinical trials testing immune-based approaches in patients with cholangiocarcinoma. This Review provides a thorough survey of our knowledge on immune signatures and immunotherapy in cholangiocarcinoma.

Key points

  • Biliary tumours are surrounded by a desmoplastic tumour microenvironment dominated by cancer-associated fibroblasts and myeloid and macrophage cell populations with immunosuppressive function.

  • Different molecular subtypes based on immune profiles have been described for patients with cholangiocarcinoma and might be usable for patient stratification.

  • The advent of mouse cholangiocarcinoma models in immunocompetent mice allows the development and testing of novel immune-based treatment options for cholangiocarcinoma.

  • Combined chemotherapy with immunotherapy has become the standard-of-care systemic frontline treatment option for patients with cholangiocarcinoma.

  • Various immune-based therapies are currently being tested in patients with cholangiocarcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The immune tumour microenvironment in cholangiocarcinoma.
Fig. 2: Cancer-associated fibroblast subtypes and interacting cells in cholangiocarcinoma.
Fig. 3: Cancer immunotherapy in cholangiocarcinoma.

Similar content being viewed by others

References

  1. Valle, J. W., Kelley, R. K., Nervi, B., Oh, D.-Y. & Zhu, A. X. Biliary tract cancer. Lancet 397, 428–444 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Rizvi, S., Khan, S. A., Hallemeier, C. L., Kelley, R. K. & Gores, G. J. Cholangiocarcinoma — evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 15, 95–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Banales, J. M. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 17, 557–588 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bertuccio, P. et al. Global trends and predictions in hepatocellular carcinoma mortality. J. Hepatol. 67, 302–309 (2017).

    Article  PubMed  Google Scholar 

  5. Sithithaworn, P., Yongvanit, P., Duenngai, K., Kiatsopit, N. & Pairojkul, C. Roles of liver fluke infection as risk factor for cholangiocarcinoma. J. Hepatobiliary Pancreat. Sci. 21, 301–308 (2014).

    Article  PubMed  Google Scholar 

  6. Izquierdo-Sanchez, L. et al. Cholangiocarcinoma landscape in Europe: diagnostic, prognostic and therapeutic insights from the ENSCCA registry. J. Hepatol. 76, 1109–1121 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Clements, O., Eliahoo, J., Kim, J. U., Taylor-Robinson, S. D. & Khan, S. A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J. Hepatol. 72, 95–103 (2020).

    Article  PubMed  Google Scholar 

  8. Song, J. et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis (PSC): a comprehensive review. Clin. Rev. Allergy Immunol. 58, 134–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Welzel, T. M. et al. Metabolic syndrome increases the risk of primary liver cancer in the United States: a study in the SEER-Medicare database. Hepatology 54, 463–471 (2011).

    Article  PubMed  Google Scholar 

  10. De Lorenzo, S. et al. Non-alcoholic steatohepatitis as a risk factor for intrahepatic cholangiocarcinoma and its prognostic role. Cancers 12, 1382 (2020).

    Article  Google Scholar 

  11. Welzel, T. M. et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case–control study. Clin. Gastroenterol. Hepatol. 5, 1221–1228 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Grainge, M. J., West, J., Solaymani-Dodaran, M., Aithal, G. P. & Card, T. R. The antecedents of biliary cancer: a primary care case-control study in the United Kingdom. Br. J. Cancer 100, 178–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, Y. T. et al. Comparison of clinical features and outcomes between intrahepatic cholangiocarcinoma and hepatocellular carcinoma in the United States. Hepatology 74, 2622–2632 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Benson, A. B. et al. Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 19, 541–565 (2021).

    Article  Google Scholar 

  15. Kelley, R. K., Bridgewater, J., Gores, G. J. & Zhu, A. X. Systemic therapies for intrahepatic cholangiocarcinoma. J. Hepatol. 72, 353–363 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Lamarca, A., Edeline, J. & Goyal, L. How I treat biliary tract cancer. ESMO Open 7, 100378 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oh, D.-Y. et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer. NEJM Evid. https://doi.org/10.1056/EVIDoa2200015 (2022).

    Article  Google Scholar 

  18. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Macias, R. I. R. et al. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut 71, 1669–1683 (2022).

    CAS  PubMed  Google Scholar 

  21. Martin-Serrano, M. A. et al. Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications. Gut https://doi.org/10.1136/gutjnl-2021-326514 (2022).

    Article  PubMed  Google Scholar 

  22. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hogdall, D., Lewinska, M. & Andersen, J. B. Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma. Trends Cancer 4, 239–255 (2018).

    Article  PubMed  Google Scholar 

  24. Hasita, H. et al. Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci. 101, 1913–1919 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, S. et al. Multiomic analysis reveals comprehensive tumor heterogeneity and distinct immune subtypes in multifocal intrahepatic cholangiocarcinoma. Clin. Cancer Res. 28, 1896–1910 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the rosetta stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Job, S. et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology 72, 965–981 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Montal, R. et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J. Hepatol. 73, 315–327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carapeto, F. et al. The immunogenomic landscape of resected intrahepatic cholangiocarcinoma. Hepatology 75, 297–308 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Bao, X. et al. Molecular subgroups of intrahepatic cholangiocarcinoma discovered by single-cell RNA sequencing-assisted multiomics analysis. Cancer Immunol. Res. 10, 811–828 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Ding, G. Y. et al. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma. J. Hepatol. 76, 608–618 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Calderaro, J. et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J. Hepatol. 70, 58–65 (2019).

    Article  PubMed  Google Scholar 

  34. Finkin, S. et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat. Immunol. 16, 1235–1244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chaisaingmongkol, J. et al. Common molecular subtypes among Asian hepatocellular carcinoma and cholangiocarcinoma. Cancer Cell 32, 57–70.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao, N. et al. Intratumoral γδ T-cell infiltrates, chemokine (C-C motif) ligand 4/chemokine (C-C motif) ligand 5 protein expression and survival in patients with hepatocellular carcinoma. Hepatology 73, 1045–1060 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Heinrich, S. et al. Understanding tumour cell heterogeneity and its implication for immunotherapy in liver cancer using single-cell analysis. J. Hepatol. 74, 700–715 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Ma, L. et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 75, 1397–1408 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845.e20 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    Article  PubMed  Google Scholar 

  42. Sawant, D. V. et al. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat. Immunol. 20, 724–735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. O’Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Holzel, M., Bovier, A. & Tuting, T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance. Nat. Rev. Cancer 13, 365–376 (2013).

    Article  PubMed  Google Scholar 

  45. Bluestone, J. A., Mackay, C. R., O’Shea, J. J. & Stockinger, B. The functional plasticity of T cell subsets. Nat. Rev. Immunol. 9, 811–816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma, L. et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell 36, 418–430.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, R. D. et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer. JAMA Oncol. 6, 888–894 (2020).

    Article  PubMed  Google Scholar 

  48. Monge, C. et al. A phase II study of pembrolizumab in combination with capecitabine and oxaliplatin with molecular profiling in patients with advanced biliary tract carcinoma. Oncologist 27, e273–e285 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 1346–1358 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, C. G. et al. Dynamic changes in circulating PD-1+CD8+ T lymphocytes for predicting treatment response to PD-1 blockade in patients with non-small-cell lung cancer. Eur. J. Cancer 143, 113–126 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Motzer, R. J. et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 126, 4156–4167 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leslie, J. et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 71, 2093–2106 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J. C. et al. Regulatory T cell control of systemic immunity and immunotherapy response in liver metastasis. Sci. Immunol. 5, eaba0759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Han, J. et al. Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. Nat. Cancer 2, 300–311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Daassi, D., Mahoney, K. M. & Freeman, G. J. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol. 20, 209–215 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Cabel, L. et al. Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy. Nat. Rev. Clin. Oncol. 15, 639–650 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33, 570–580 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mandal, R. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364, 485–491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Affo, S., Yu, L. X. & Schwabe, R. F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol. 12, 153–186 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Desbois, M. & Wang, Y. Cancer-associated fibroblasts: key players in shaping the tumor immune microenvironment. Immunol. Rev. 302, 241–258 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Filliol, A. et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 610, 356–365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma, C., Zhang, Q. & Greten, T. F. MDSCs in liver cancer: a critical tumor-promoting player and a potential therapeutic target. Cell Immunol. 361, 104295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zimmer, C. L. et al. Mucosal-associated invariant T-cell tumor infiltration predicts long-term survival in cholangiocarcinoma. Hepatology 75, 1154–1168 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Kitano, Y. et al. Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma. Br. J. Cancer 118, 171–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Loeuillard, E. et al. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J. Clin. Invest. 130, 5380–5396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sabbatino, F. et al. PD-L1 and HLA class I antigen expression and clinical course of the disease in intrahepatic cholangiocarcinoma. Clin. Cancer Res. 22, 470–478 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Mao, Z. Y., Zhu, G. Q., Xiong, M., Ren, L. & Bai, L. Prognostic value of neutrophil distribution in cholangiocarcinoma. World J. Gastroenterol. 21, 4961–4968 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhou, Z. et al. Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J. Immunother. Cancer 9, e001946 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Konishi, D. et al. Regulatory T cells induce a suppressive immune milieu and promote lymph node metastasis in intrahepatic cholangiocarcinoma. Br. J. Cancer 127, 757–765 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Affo, S. et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 39, 866–882.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, M. et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J. Hepatol. 73, 1118–1130 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Mertens, J. C. et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res. 73, 897–907 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Dong, L. et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell 40, 70–87.e15 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Utispan, K. et al. Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Mol. Cancer 9, 13 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bhattacharjee, S. et al. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Invest. 131, e146987 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin, Y. et al. CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase. Hepatology 75, 28–42 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Gentilini, A. et al. Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma. J. Hepatol. 57, 813–820 (2012).

    Article  PubMed  Google Scholar 

  85. Yang, X. et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76, 4124–4135 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Lin, Y. et al. Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment. Neoplasia 21, 1133–1142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tavianatou, A. G. et al. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 286, 2883–2908 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Leitinger, B. Transmembrane collagen receptors. Annu. Rev. Cell Dev. Biol. 27, 265–290 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Meyaard, L. The inhibitory collagen receptor LAIR-1 (CD305). J. Leukoc. Biol. 83, 799–803 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cowman, M. K. Hyaluronan and hyaluronan fragments. Adv. Carbohydr. Chem. Biochem. 74, 1–59 (2017).

    Article  PubMed  Google Scholar 

  92. Zhu, A. X. et al. Final overall survival efficacy results of ivosidenib for patients with advanced cholangiocarcinoma with IDH1 mutation: the phase 3 randomized clinical ClarIDHy trial. JAMA Oncol. 7, 1669–1677 (2021).

    Article  PubMed  Google Scholar 

  93. Wu, M. J., Shi, L., Merritt, J., Zhu, A. X. & Bardeesy, N. Biology of IDH mutant cholangiocarcinoma. Hepatology 75, 1322–1337 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Pirozzi, C. J. & Yan, H. The implications of IDH mutations for cancer development and therapy. Nat. Rev. Clin. Oncol. 18, 645–661 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e814 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu, M. J. et al. Mutant IDH inhibits IFNγ–TET2 signaling to promote immunoevasion and tumor maintenance in cholangiocarcinoma. Cancer Discov. 12, 812–835 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sia, D. et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology 144, 829–840 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Xiang, X. et al. IDH mutation subgroup status associates with intratumor heterogeneity and the tumor microenvironment in intrahepatic cholangiocarcinoma. Adv. Sci. 8, e2101230 (2021).

    Article  Google Scholar 

  99. Saatcioglu, D. et al. CHharacteristics of the tumor microenvironment in IDH1 mutated cholangiocarcinoma patients from ClarIDHy trial. J. Immunother. Cancer 10, A552 (2022).

    Google Scholar 

  100. Kohanbash, G. et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J. Clin. Invest. 127, 1425–1437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660.e1617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mathewson, N. D. et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184, 1281–1298.e1226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Amankulor, N. M. et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev. 31, 774–786 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Alghamri, M. S. et al. G-CSF secreted by mutant IDH1 glioma stem cells abolishes myeloid cell immunosuppression and enhances the efficacy of immunotherapy. Sci. Adv. 7, eabh3243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kadiyala, P. et al. Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. J. Clin. Invest. 131, e139542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bunse, L. et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat. Med. 24, 1192–1203 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Friedrich, M. et al. Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nat. Cancer 2, 723–740 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Fan, B. et al. Clinical pharmacokinetics and pharmacodynamics of ivosidenib, an oral, targeted inhibitor of mutant IDH1, in patients with advanced solid tumors. Invest. N. Drugs 38, 433–444 (2020).

    Article  CAS  Google Scholar 

  109. Cullin, N., Azevedo Antunes, C., Straussman, R., Stein-Thoeringer, C. K. & Elinav, E. Microbiome and cancer. Cancer Cell 39, 1317–1341 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Silveira, M. A. D., Bilodeau, S., Greten, T. F., Wang, X. W. & Trinchieri, G. The gut–liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends Cancer 8, 583–597 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Dzutsev, A. et al. Microbes and cancer. Annu. Rev. Immunol. 35, 199–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Roy, S. & Trinchieri, G. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer 17, 271–285 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. He, Y. et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33, 988–1000.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Tilg, H., Adolph, T. E. & Trauner, M. Gut–liver axis: pathophysiological concepts and clinical implications. Cell Metab. 34, 1700–1718 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Tripathi, A. et al. The gut–liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dangtakot, R. et al. Profiling of bile microbiome identifies district microbial population between choledocholithiasis and cholangiocarcinoma patients. Asian Pacif. J. Cancer Prev. 22, 233–240 (2021).

    Article  CAS  Google Scholar 

  121. Saab, M. et al. Characterization of biliary microbiota dysbiosis in extrahepatic cholangiocarcinoma. PLoS ONE 16, e0247798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jia, X. et al. Characterization of gut microbiota, bile acid metabolism, and cytokines in intrahepatic cholangiocarcinoma. Hepatology 71, 893–906 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Mao, J. et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. J. Immunother. Cancer 9, e003334 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806.e712 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sabino, J. et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut 65, 1681–1689 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, Q. et al. Gut microbiome directs hepatocytes to recruit MDSCs and promote cholangiocarcinoma. Cancer Discov. 11, 1248–1267 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    Article  PubMed  Google Scholar 

  130. Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, Y. & Tian, Z. Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol. Immunol. 18, 57–72 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Loeuillard, E., Fischbach, S. R., Gores, G. J. & Rizvi, S. Animal models of cholangiocarcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 982–992 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, Z. et al. Establishment and drug screening of patient-derived extrahepatic biliary tract carcinoma organoids. Cancer Cell Int. 21, 519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Massa, A. et al. Evolution of the experimental models of cholangiocarcinoma. Cancers 12, 2308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shek, D., Chen, D., Read, S. A. & Ahlenstiel, G. Examining the gut–liver axis in liver cancer using organoid models. Cancer Lett. 510, 48–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Wu, Q. et al. EGFR inhibition potentiates FGFR inhibitor therapy and overcomes resistance in FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 12, 1378–1395 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lang, F., Schrors, B., Lower, M., Tureci, O. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Scanlan, M. J., Gure, A. O., Jungbluth, A. A., Old, L. J. & Chen, Y. T. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol. Rev. 188, 22–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Utsunomiya, T. et al. Expression of cancer-testis antigen (CTA) genes in intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 11, 934–940 (2004).

    Article  PubMed  Google Scholar 

  140. Balachandran, V. P. et al. Phase I trial of adjuvant autogene cevumeran, an individualized mRNA neoantigen vaccine, for pancreatic ductal adenocarcinoma. J. Clin. Oncol. 40, 2516–2516 (2022).

    Article  Google Scholar 

  141. Huang, X., Tang, T., Zhang, G. & Liang, T. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol. Cancer 20, 50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rojas-Sepulveda, D. et al. Tumor lysate-based vaccines: on the road to immunotherapy for gallbladder cancer. Cancer Immunol. Immunother. 67, 1897–1910 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shirahama, T. et al. A randomized phase II trial of personalized peptide vaccine with low dose cyclophosphamide in biliary tract cancer. Cancer Sci. 108, 838–845 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Aruga, A. et al. Long-term vaccination with multiple peptides derived from cancer-testis antigens can maintain a specific T-cell response and achieve disease stability in advanced biliary tract cancer. Clin. Cancer Res. 19, 2224–2231 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Loffler, M. W. et al. Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. J. Hepatol. 65, 849–855 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Guo, Y. et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin. Cancer Res. 24, 1277–1286 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Supimon, K. et al. Anti-mucin 1 chimeric antigen receptor T cells for adoptive T cell therapy of cholangiocarcinoma. Sci. Rep. 11, 6276 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sangsuwannukul, T. et al. Anti-tumour effect of the fourth-generation chimeric antigen receptor T cells targeting CD133 against cholangiocarcinoma cells. Int. Immunopharmacol. 89, 107069 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Valle, J. W., Lamarca, A., Goyal, L., Barriuso, J. & Zhu, A. X. New horizons for precision medicine in biliary tract cancers. Cancer Discov. 7, 943–962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Feng, K. et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell 9, 838–847 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Yu, L. et al. Mesothelin as a potential therapeutic target in human cholangiocarcinoma. J. Cancer 1, 141–149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Baeuerle, P. A. et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10, 2087 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hong, D. S. et al. 959O Gavocabtagene autoleucel (gavo-cel, TC-210) dose escalation in refractory mesothelin-expressing solid tumors. Ann. Oncol. https://doi.org/10.1016/j.annonc.2021.08.1344 (2021).

    Article  PubMed  Google Scholar 

  156. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Blery, M. & Vivier, E. NKG2D–MICA interaction: a paradigm shift in innate recognition. J. Immunol. 200, 2229–2230 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Oliviero, B. et al. MICA/B-targeted antibody promotes NK cell-driven tumor immunity in patients with intrahepatic cholangiocarcinoma. Oncoimmunology 11, 2035919 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Goebeler, M. E. & Bargou, R. C. T cell-engaging therapies — BiTEs and beyond. Nat. Rev. Clin. Oncol. 17, 418–434 (2020).

    Article  PubMed  Google Scholar 

  160. Wathikthinnakon, M. et al. Combination gemcitabine and PD-L1xCD3 bispecific T cell engager (BiTE) enhances T lymphocyte cytotoxicity against cholangiocarcinoma cells. Sci. Rep. 12, 6154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Diggs, L. P. et al. CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma. J. Hepatol. 74, 1145–1154 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Keenan, B. P. et al. Circulating monocytes associated with anti-PD-1 resistance in human biliary cancer induce T cell paralysis. Cell Rep. 40, 111384 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wabitsch, S. et al. Anti-PD-1 in combination with trametinib suppresses tumor growth and improves survival of intrahepatic cholangiocarcinoma in mice. Cell Mol. Gastroenterol. Hepatol. 12, 1166–1178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Paillet, J. et al. Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. J. Exp. Med. 218, e20200853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Piha-Paul, S. A. et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: results from the KEYNOTE-158 and KEYNOTE-028 studies. Int. J. Cancer 147, 2190–2198 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Ueno, M. et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol. Hepatol. 4, 611–621 (2019).

    Article  PubMed  Google Scholar 

  167. Ioka, T. et al. Evaluation of safety and tolerability of durvalumab (D) with or without tremelimumab (T) in patients (pts) with biliary tract cancer (BTC). J. Clin. Oncol. 37, 387–387 (2019).

    Article  Google Scholar 

  168. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Israel, M. A. et al. Comparative genomic analysis of intrahepatic cholangiocarcinoma: biopsy type, ancestry, and testing patterns. Oncologist 26, 787–796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ju, J. Y. et al. Mismatch repair protein deficiency/microsatellite instability is rare in cholangiocarcinomas and associated with distinctive morphologies. Am. J. Clin. Pathol. 153, 598–604 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Goeppert, B. et al. Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. Br. J. Cancer 120, 109–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Kim, H. et al. Tumor mutational burden as a biomarker for advanced biliary tract cancer. Technol. Cancer Res. Treat. 20, 15330338211062324 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Weinberg, B. A. et al. Molecular profiling of biliary cancers reveals distinct molecular alterations and potential therapeutic targets. J. Gastrointest. Oncol. 10, 652–662 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ott, P. A., Hodi, F. S., Kaufman, H. L., Wigginton, J. M. & Wolchok, J. D. Combination immunotherapy: a road map. J. Immunother. Cancer 5, 16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Yuan, J. et al. Current strategies for intratumoural immunotherapy — beyond immune checkpoint inhibition. Eur. J. Cancer 157, 493–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Datta, M., Coussens, L. M., Nishikawa, H., Hodi, F. S. & Jain, R. K. Reprogramming the tumor microenvironment to improve immunotherapy: emerging strategies and combination therapies. Am. Soc. Clin. Oncol. Educ. Book. 39, 165–174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Rahma, O. E. & Hodi, F. S. The intersection between tumor angiogenesis and immune suppression. Clin. Cancer Res. 25, 5449–5457 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Sahai, V., Griffith, K. A. & Zalupski, M. A multicenter randomized phase II study of nivolumab in combination with gemcitabine/cisplatin or ipilimumab as first-line therapy for patients with advanced unresectable biliary tract cancer. J. Clin. Oncol. 36, TPS541–TPS541 (2018).

    Article  Google Scholar 

  180. Oh, D.-Y. et al. Gemcitabine and cisplatin plus durvalumab with or without tremelimumab in chemotherapy-naive patients with advanced biliary tract cancer: an open-label, single-centre, phase 2 study. Lancet Gastroenterol. Hepatol. 7, 522–532 (2022).

    Article  PubMed  Google Scholar 

  181. Yarchoan, M. et al. Multicenter randomized phase II trial of atezolizumab with or without cobimetinib in biliary tract cancers. J. Clin. Invest. 131, e152670 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhu, S. et al. A retrospective study of lenvatinib monotherapy or combined with programmed cell death protein 1 antibody in the treatment of patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma in China. Front. Oncol. 11, 788635 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Cousin, S. et al. Regorafenib-avelumab combination in patients with biliary tract cancer (REGOMUNE): a single-arm, open-label, phase II trial. Eur. J. Cancer 162, 161–169 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Arkenau, H. T. et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: nonrandomized, open-label, phase I trial (JVDF). Oncologist 23, 1407–e1136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yoo, C. et al. Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in patients with pretreated biliary tract cancer. J. Immunother. Cancer 8, e000564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Merck. Merck Statement on Phase II Study of Bintrafusp Alfa in First-Line Treatment of Biliary Tract Cancer. Merck https://www.merckgroup.com/en/news/bintrafusp-alfa-update-23-08-2021.html (2021).

  187. Hack, S. P. et al. IMbrave 151: a randomized phase II trial of atezolizumab combined with bevacizumab and chemotherapy in patients with advanced biliary tract cancer. Ther. Adv. Med. Oncol. 13, 17588359211036544 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Klein, O. et al. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: subgroup analysis of a phase 2 nonrandomized clinical trial. JAMA Oncol. 6, 1405–1409 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Kreidieh, M., Zeidan, Y. H. & Shamseddine, A. The combination of stereotactic body radiation therapy and immunotherapy in primary liver tumors. J. Oncol. 2019, 4304817 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Xie, C. et al. Tremelimumab in combination with microwave ablation in patients with refractory biliary tract cancer. Hepatology 69, 2048–2060 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Liu, Z. et al. LKB1 inhibits intrahepatic cholangiocarcinoma by repressing the transcriptional activity of the immune checkpoint PD-L1. Life Sci. 257, 118068 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Patil, R. S. et al. IL17 producing γδT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int. J. Cancer 139, 869–881 (2016).

    Article  PubMed  Google Scholar 

  193. Chellappa, S. et al. CD8+ T cells that coexpress RORγt and T-bet are functionally impaired and expand in patients with distal bile duct cancer. J. Immunol. 198, 1729–1739 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Fluxa, P. et al. High CD8+ and absence of Foxp3+ T lymphocytes infiltration in gallbladder tumors correlate with prolonged patients survival. BMC Cancer 18, 243 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Xia, T. et al. Immune cell atlas of cholangiocarcinomas reveals distinct tumor microenvironments and associated prognoses. J. Hematol. Oncol. 15, 37 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Fontugne, J. et al. PD-L1 expression in perihilar and intrahepatic cholangiocarcinoma. Oncotarget 8, 24644–24651 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tian, L. et al. PD-1/PD-L1 expression profiles within intrahepatic cholangiocarcinoma predict clinical outcome. World J. Surg. Oncol. 18, 303 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Gani, F. et al. Program death 1 immune checkpoint and tumor microenvironment: implications for patients with intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 23, 2610–2617 (2016).

    Article  PubMed  Google Scholar 

  199. Chen, X. et al. Genomic alterations in biliary tract cancer predict prognosis and immunotherapy outcomes. J. Immunother. Cancer 9, e003214 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Huang, Y. H. et al. Clinicopathologic features, tumor immune microenvironment and genomic landscape of Epstein–Barr virus-associated intrahepatic cholangiocarcinoma. J. Hepatol. 74, 838–849 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Chen, Z. et al. PNOC expressed by B cells in cholangiocarcinoma was survival related and LAIR2 could be a T cell exhaustion biomarker in tumor microenvironment: characterization of immune microenvironment combining single-cell and bulk sequencing technology. Front. Immunol. 12, 647209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wu, T. et al. Distinct immune signatures in peripheral blood predict chemosensitivity in intrahepatic cholangiocarcinoma patients. Engineering 7, 1381–1392 (2021).

    Article  CAS  Google Scholar 

  203. Robbrecht, D. et al. First-in-human phase 1 dose-escalation study of CAN04, a first-in-class interleukin-1 receptor accessory protein (IL1RAP) antibody in patients with solid tumours. Br. J. Cancer 126, 1010–1017 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. Marabelle, A. et al. 807 A multicenter open-label phase I/lb study of SO-C101 as monotherapy and in combination with pembrolizumab in patients with selected advanced/metastatic solid tumors. J. Immunother. Cancer 8, A483 (2020).

    Google Scholar 

  205. Merchant, R. et al. Fine-tuned long-acting interleukin-2 superkine potentiates durable immune responses in mice and non-human primate. J. Immunother. Cancer 10, e003155 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Van Cutsem, E. et al. Randomized phase III trial of pegvorhyaluronidase alfa with Nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38, 3185–3194 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Emens, L. et al. 317 A phase 1/1b study of SBT6050, a HER2-directed monoclonal antibody conjugated to a toll-like receptor 8 agonist, in subjects with advanced HER2-expressing solid tumors. J. Immunother. Cancer 8, A195 (2020).

    Google Scholar 

  208. Sharma, M. R. et al. Abstract CT218: Phase 1/2 study of a novel HER2 targeting TLR7/8 immune-stimulating antibody conjugate (ISAC), BDC-1001, alone and in combination with pembrolizumab (pembro) in patients (pts) with HER2-expressing advanced solid tumors. Cancer Res. 81, CT218 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

T.F.G., L.M. and X.W.W. are supported by the NIH Intramural Research Program (grants ZIA BC 011345 and ZIA BC 010313). R.S. is supported by grant NIH R01CA228483 and the Columbia University Digestive and Liver Disease Research Center grant 1P30DK132710-01. L.G. receives funding from the American Cancer Society (Clinical Scientist Development Grant 134013‐CSDG‐19‐163‐01‐TBG) and the NIH/NCI Gastrointestinal Cancer grant SPORE P50 CA127003.

Author information

Authors and Affiliations

Authors

Contributions

R.S., N.B., L.M., L.G., R.K.K. and X.W.W. researched data for the article. R.S., N.B., L.M., L.G., R.K.K. and X.W.W. contributed substantially to discussion of the content. All authors wrote the article. R.S., N.B., L.M., L.G., R.K.K. and X.W.W. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Tim F. Greten.

Ethics declarations

Competing interests

R.K.K. has received research funding (to institution) from Agios, AstraZeneca, Bayer, Bristol Myers Squibb, Eli Lilly, EMD Serono, Exelixis, Genentech/Roche, Loxo Oncology, Merck, Novartis, Partner Therapeutics, QED, Relay Therapeutics, Surface Oncology and Taiho Oncology. R.K.K. has received payments for consulting or advisory board membership (to institution) from Agios, AstraZeneca, Exelixis, Ipsen, Merck and (to self) from Exact Sciences and Kinnate. L.G. has received research funding (to institution) from Adaptimmune, Bayer, Eisai, Merck, Macrogenics, Genentech, Novartis, Incyte, Eli Lilly, Loxo Oncology, Relay Therapeutics, QED, Servier, Taiho Oncology, Leap Therapeutics, Bristol Myers Squibb and Nucana; and serves as an adviser/consultant to Alentis Therapeutics, AstraZeneca, Black Diamond, Exelixis, Genentech, H3Biomedicine, Incyte Corporation, Kinnate, QED Therapeutics, Servier, Sirtex Medical Ltd, TranstheraBio and Taiho Oncology Inc. N.B. receives research funding from Kinnate Biopharma, Taiho Oncology, Relay, Bristol Myers Squibb and Servier Laboratories. T.F.G. receives research funding (to institution) from Merck and AstraZeneca. R.S., X.W.W. and L.M. declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Giovanni Brandi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cancer Cell Line Encyclopedia cancer cell line database: https://sites.broadinstitute.org/ccle

CancerLivER: https://webs.iiitd.edu.in/raghava/cancerliver/

cBioPortal: https://www.cbioportal.org/

GWAS Catalogue database: https://www.ebi.ac.uk/gwas/

GWAS Central database: https://www.gwascentral.org

ICGC: https://dcc.icgc.org/

NCT03907852: https://clinicaltrials.gov/ct2/show/NCT03907852

NCT04003636: https://clinicaltrials.gov/ct2/show/NCT04003636

NCT04677504: https://clinicaltrials.gov/ct2/show/NCT04677504

scAtlasLC: https://scatlaslc.ccr.cancer.gov/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greten, T.F., Schwabe, R., Bardeesy, N. et al. Immunology and immunotherapy of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 20, 349–365 (2023). https://doi.org/10.1038/s41575-022-00741-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00741-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing