Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene therapy for liver diseases — progress and challenges

Abstract

Gene therapy is poised to revolutionize modern medicine, with seemingly unlimited potential for treating and curing genetic disorders. For otherwise incurable indications, including most inherited metabolic liver disorders, gene therapy provides a realistic therapeutic option. In this Review, we discuss gene supplementation and gene editing involving the use of recombinant adeno-associated virus (rAAV) vectors for the treatment of inherited liver diseases, including updates on several ongoing clinical trials that are producing promising results. Clinical testing has been essential in highlighting many key translational challenges associated with this transformative therapy. In particular, the interaction of a patient’s immune system with the vector raises issues of safety and the duration of treatment efficacy. Furthermore, several serious adverse events after the administration of high doses of rAAVs suggest greater involvement of innate immune responses and pre-existing hepatic conditions than initially anticipated. Finally, permanent modification of the host genome associated with rAAV genome integration and gene editing raises concerns about the risk of oncogenicity that require careful evaluation. We summarize the main progress, challenges and pathways forward for gene therapy for liver diseases.

Key points

  • Gene therapy mediated by recombinant adeno-associated virus (rAAV) vectors has emerged as a therapeutic option, with inherited liver disorders being prime targets for this strategy.

  • The first gene therapy for haemophilia B has been approved by the FDA, another for haemophilia A is nearing approval, and trials of several other rAAV-based liver-targeted gene therapies have produced promising results.

  • High rAAV doses (>1 × 1014 vg/kg) seem to be associated with severe adverse effects, including hepatotoxicity and immune response-associated sequelae.

  • Due to the primarily non-integrative nature of rAAV genomes, loss of vector genomes during cell turnover is of essential concern for the durability of therapeutic effect, particularly in paediatric patients.

  • Gene-editing strategies offer the most powerful tools for permanently correcting genetic disorders via direct modification of the genome but pose additional safety risks, such as oncogenicity, owing to insertional mutagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The process of developing recombinant AAV gene delivery vectors.
Fig. 2: Immunological barriers to recombinant AAV-mediated gene therapy and current mitigation strategies.
Fig. 3: Strategies for liver genome editing with AAV vectors.
Fig. 4: Wild-type and recombinant AAV liver oncogenicity findings in preclinical models and in humans.

Similar content being viewed by others

References

  1. Schulze, R. J., Schott, M. B., Casey, C. A., Tuma, P. L. & McNiven, M. A. The cell biology of the hepatocyte: a membrane trafficking machine. J. Cell Biol. 218, 2096–2112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, L. et al. AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice. Mol. Genet. Metab. 120, 299–305 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Unzu, C. et al. Sustained enzymatic correction by rAAV-mediated liver gene therapy protects against induced motor neuropathy in acute porphyria mice. Mol. Ther. 19, 243–250 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Kaiser, R. A. et al. Use of an adeno-associated virus serotype Anc80 to provide durable cure of phenylketonuria in a mouse model. J. Inherit. Metab. Dis. 44, 1369–1381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weber, N. D. et al. Gene therapy for progressive familial intrahepatic cholestasis type 3 in a clinically relevant mouse model. Nat. Commun. 10, 5694 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wojnarowska, F. The disfigured patient. Practitioner 232, 1022–1025 (1988).

    CAS  PubMed  Google Scholar 

  7. Puzzo, F. et al. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid alpha-glucosidase. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aam6375 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ronzitti, G. et al. A translationally optimized AAV-UGT1A1 vector drives safe and long-lasting correction of Crigler-Najjar syndrome. Mol. Ther. Methods Clin. Dev. 3, 16049 (2016). In this study, in vitro and in vivo testing of non-coding and codon-optimized transgene sequences revealed a great deal about vector construct design and about producing long-lasting disease correction in multiple animal models.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Le Quellec, S. et al. Recombinant adeno-associated viral vectors expressing human coagulation FIX-E456H variant in Hemophilia B mice. Thromb. Haemost. 119, 1956–1967 (2019).

    Article  PubMed  Google Scholar 

  10. McIntosh, J. et al. Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood 121, 3335–3344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Friedmann, T. & Roblin, R. Gene therapy for human genetic disease? Science 175, 949–955 (1972).

    Article  CAS  PubMed  Google Scholar 

  12. Jackson, D. A., Symons, R. H. & Berg, P. Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. 1972. Biotechnology 24, 11–16 (1992).

    CAS  PubMed  Google Scholar 

  13. Mertz, J. E. & Davis, R. W. Cleavage of DNA by R 1 restriction endonuclease generates cohesive ends. Proc. Natl Acad. Sci. USA 69, 3370–3374 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lobban, P. E. & Kaiser, A. D. Enzymatic end-to end joining of DNA molecules. J. Mol. Biol. 78, 453–471 (1973).

    Article  CAS  PubMed  Google Scholar 

  15. Cohen, S. N., Chang, A. C., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blaese, R. M. et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270, 475–480 (1995). This study was a first-in-human gene therapy clinical trial, in which a patient with severe immunodeficiency received T cells modified with a retroviral vector carrying the therapeutic gene.

    Article  CAS  PubMed  Google Scholar 

  17. Shahryari, A. et al. Development and clinical translation of approved gene therapy products for genetic disorders. Front. Genet. 10, 868 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anguela, X. M. & High, K. A. Entering the modern era of gene therapy. Annu. Rev. Med. 70, 273–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Zabaleta, N., Hommel, M., Salas, D. & Gonzalez-Aseguinolaza, G. Genetic-based approaches to inherited metabolic liver diseases. Hum. Gene Ther. 30, 1190–1203 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Alkhouri, N. & Gawrieh, S. A perspective on RNA interference-based therapeutics for metabolic liver diseases. Expert. Opin. Investig. Drugs 30, 237–244 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. CSL Behring. FDA Accepts CSL Behring’s Biologics License Application for Etranacogene Dezaparvovec for Priority Review https://www.cslbehring.com/newsroom/2022/fda-bla-etranacogene-dezaparvovec (2022).

  25. European Medicines Agency. First Gene Therapy to Treat Severe Haemophilia A https://www.ema.europa.eu/en/news/first-gene-therapy-treat-severe-haemophilia (2022).

  26. Srivastava, A., Lusby, E. W. & Berns, K. I. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J. Virol. 45, 555–564 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Atchison, R. W., Casto, B. C. & Hammon, W. M. Adenovirus-associated defective virus particles. Science 149, 754–756 (1965).

    Article  CAS  PubMed  Google Scholar 

  28. Gao, G. et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shirley, J. L., de Jong, Y. P., Terhorst, C. & Herzog, R. W. Immune responses to viral gene therapy vectors. Mol. Ther. 28, 709–722 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mendell, J. R. et al. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 29, 464–488 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samulski, R. J. & Muzyczka, N. AAV-mediated gene therapy for research and therapeutic purposes. Annu. Rev. Virol. 1, 427–451 (2014).

    Article  PubMed  Google Scholar 

  33. Flotte, T. R., Afione, S. A. & Zeitlin, P. L. Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am. J. Respir. Cell Mol. Biol. 11, 517–521 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Vincent-Lacaze, N. et al. Structure of adeno-associated virus vector DNA following transduction of the skeletal muscle. J. Virol. 73, 1949–1955 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, J. et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J. Virol. 73, 9468–9477 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maestro, S., Weber, N. D., Zabaleta, N., Aldabe, R. & Gonzalez-Aseguinolaza, G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep. 3, 100300 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gao, G., Vandenberghe, L. H. & Wilson, J. M. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 5, 285–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Tiegs, G. & Lohse, A. W. Immune tolerance: what is unique about the liver. J. Autoimmun. 34, 1–6 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Keeler, G. D., Markusic, D. M. & Hoffman, B. E. Liver induced transgene tolerance with AAV vectors. Cell Immunol. 342, 103728 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Crispe, I. N. Immune tolerance in liver disease. Hepatology 60, 2109–2117 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Lerut, J. & Sanchez-Fueyo, A. An appraisal of tolerance in liver transplantation. Am. J. Transpl. 6, 1774–1780 (2006).

    Article  CAS  Google Scholar 

  42. Protzer, U., Maini, M. K. & Knolle, P. A. Living in the liver: hepatic infections. Nat. Rev. Immunol. 12, 201–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Crispe, I. N. Hepatic T cells and liver tolerance. Nat. Rev. Immunol. 3, 51–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, P. et al. Immunodominant liver-specific expression suppresses transgene-directed immune responses in murine pompe disease. Hum. Gene Ther. 23, 460–472 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu, Z. et al. Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol. Ther. 16, 280–289 (2008).

    Article  PubMed  Google Scholar 

  46. Szafranska, K., Kruse, L. D., Holte, C. F., McCourt, P. & Zapotoczny, B. The whole story about fenestrations in LSEC. Front. Physiol. 12, 735573 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Von Drygalski, A. et al. Etranacogene dezaparvovec (AMT-061 phase 2b): normal/near normal FIX activity and bleed cessation in hemophilia B. Blood Adv. 3, 3241–3247 (2019).

    Article  Google Scholar 

  48. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03569891 (2018).

  49. US Food and Drug Administration. BLA approval letter for etranacogene dezaparvovec. FDA https://www.fda.gov/media/163466/download (2022).

  50. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03861273 (2019).

  51. Robinson, M. M. et al. Factor IX assay discrepancies in the setting of liver gene therapy using a hyperfunctional variant factor IX-Padua. J. Thromb. Haemost. 19, 1212–1218 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Konkle, B. A. et al. Updated follow-up of the Alta study, a phase 1/2, open label, adaptive, dose-ranging study to assess the safety and tolerability of SB-525 gene therapy in adult patients with severe hemophilia A. Blood 134, 2060 (2019).

    Article  Google Scholar 

  53. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04370054 (2020).

  54. Pasi, K. J. et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N. Engl. J. Med. 382, 29–40 (2020). Results from the clinical trial of roctavian, the first approved AAV-based gene therapy drug directed to the liver.

    Article  CAS  PubMed  Google Scholar 

  55. Pasi, K. J. et al. Persistence of haemostatic response following gene therapy with valoctocogene roxaparvovec in severe haemophilia A. Haemophilia 27, 947–956 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04323098 (2020).

  57. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03370913 (2017).

  58. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03392974 (2018).

  59. Kassim, S. H. et al. Gene therapy in a humanized mouse model of familial hypercholesterolemia leads to marked regression of atherosclerosis. PLoS ONE 5, e13424 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Murillo, O. et al. Liver expression of a MiniATP7B gene results in long-term restoration of copper homeostasis in a Wilson disease model in mice. Hepatology 70, 108–126 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Lee, Y. M. et al. Long-term safety and efficacy of AAV gene therapy in the canine model of glycogen storage disease type Ia. J. Inherit. Metab. Dis. 41, 977–984 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Ilyinskii, P. O. et al. ImmTOR nanoparticles enhance AAV transgene expression after initial and repeat dosing in a mouse model of methylmalonic acidemia. Mol. Ther. Methods Clin. Dev. 22, 279–292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02991144 (2016).

  64. Geberhiwot, T. in ESGCT Collaborative Virtual Congress Vol. A1-A152 (European Society of Gene & Cell Therapy, 2021).

  65. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03952156 (2019).

  66. Bodamer, O. 2021 ACMG Annual Clinical Genetics Meeting. Mol. Gen. Metabol. 132, S1–S382 (2021).

    Google Scholar 

  67. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03517085 (2018).

  68. Couce Pico, M. L. in ESGCT Collaborative Virtual Congress Vol. 32 A1-A152 (ESGCT, 2021).

  69. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03466463 (2018).

  70. D’Antiga, L. ESGCT Collaborative Virtual Congress 19–22 October 2021 Abstracts. Hum. Gene Ther. 32, A1–A152 (2021).

    Google Scholar 

  71. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05345171 (2022).

  72. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05139316 (2021).

  73. Verdera, H. C., Kuranda, K. & Mingozzi, F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol. Ther. 28, 723–746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, C. et al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther. 19, 288–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Perocheau, D. P. et al. Age-related seroprevalence of antibodies against AAV-LK03 in a UK population cohort. Hum. Gene Ther. 30, 79–87 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Calcedo, R. & Wilson, J. M. AAV natural infection induces broad cross-neutralizing antibody responses to multiple AAV serotypes in chimpanzees. Hum. Gene Ther. Clin. Dev. 27, 79–82 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scallan, C. D. et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 107, 1810–1817 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Mingozzi, F. & High, K. A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122, 23–36 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chicoine, L. G. et al. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery. Mol. Ther. 22, 338–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Salas, D. et al. Immunoadsorption enables successful rAAV5-mediated repeated hepatic gene delivery in nonhuman primates. Blood Adv. 3, 2632–2641 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mingozzi, F. et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl. Med. 5, 194ra192 (2013).

    Article  Google Scholar 

  83. Bertin, B. et al. Capsid-specific removal of circulating antibodies to adeno-associated virus vectors. Sci. Rep. 10, 864 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Leborgne, C. et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat. Med. 26, 1096–1101 (2020). This study demonstrated that the use of bacterial proteins with capacity to cleave human IgG might open the door for the treatment of patients with antibodies against AAV, currently excluded from gene therapy clinical trials.

    Article  CAS  PubMed  Google Scholar 

  85. von Pawel-Rammingen, U., Johansson, B. P. & Bjorck, L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J. 21, 1607–1615 (2002).

    Article  Google Scholar 

  86. Elmore, Z. C., Oh, D. K., Simon, E. E., Fanous, M. M. & Asokan, A. Rescuing AAV gene transfer from neutralizing antibodies with an IgG-degrading enzyme. JCI Insight 5, e139881 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Winstedt, L. et al. Complete removal of extracellular IgG antibodies in a randomized dose-escalation phase I study with the bacterial enzyme IdeS — a novel therapeutic opportunity. PLoS ONE 10, e0132011 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tseng, Y. S. & Agbandje-McKenna, M. Mapping the AAV capsid host antibody response toward the development of second generation gene delivery vectors. Front. Immunol. 5, 9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Meliani, A. et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nat. Commun. 9, 4098 (2018). This study showed that the use of lipid nanoparticles containing rapamycin can prevent antibody formation after the first dose of a viral vector, allowing vector re-administration.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mingozzi, F. et al. CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat. Med. 13, 419–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Li, H. et al. Capsid-specific T-cell responses to natural infections with adeno-associated viruses in humans differ from those of nonhuman primates. Mol. Ther. 19, 2021–2030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006). The first AAV-mediated clinical trial targeting the liver for the correction of haemophilia B. This trial highlighted the importance of controlling the cellular immune response against the capsid to achieve sustained transgene expression.

    Article  CAS  PubMed  Google Scholar 

  93. Nathwani, A. C. et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med. 365, 2357–2365 (2011). This study demonstrated long-term factor IX expression after AAV injection in several patients thanks to the use of corticoids to block anti-AAV T cell responses and prevent the disappearance of the transduced cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. George, L. A. et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N. Engl. J. Med. 377, 2215–2227 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Konkle, B. A. et al. BAX 335 hemophilia B gene therapy clinical trial results: potential impact of CpG sequences on gene expression. Blood 137, 763–774 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chai, Z. et al. Optimization of dexamethasone administration for maintaining global transduction efficacy of adeno-associated virus serotype 9. Hum. Gene Ther. 30, 829–840 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schroeder, H. 25th Annual Meeting of the American Society of Gene & Cell Therapy. Mol. Ther. 30 (Suppl. 1), 1–592 (2022).

    Google Scholar 

  98. Hosel, M. et al. Toll-like receptor 2-mediated innate immune response in human nonparenchymal liver cells toward adeno-associated viral vectors. Hepatology 55, 287–297 (2012).

    Article  PubMed  Google Scholar 

  99. Zhu, J., Huang, X. & Yang, Y. The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. J. Clin. Invest. 119, 2388–2398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rogers, G. L. et al. Unique roles of TLR9- and MyD88-dependent and -independent pathways in adaptive immune responses to AAV-mediated gene transfer. J. Innate Immun. 7, 302–314 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Earley, L. F. et al. Adeno-associated virus serotype-specific inverted terminal repeat sequence role in vector transgene expression. Hum. Gene Ther. 31, 151–162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Flotte, T. R. et al. Gene expression from adeno-associated virus vectors in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 7, 349–356 (1992).

    Article  CAS  PubMed  Google Scholar 

  103. Shao, W. et al. Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction. JCI Insight 3, e120474 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Faust, S. M. et al. CpG-depleted adeno-associated virus vectors evade immune detection. J. Clin. Invest. 123, 2994–3001 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xiang, Z. et al. The effect of CpG sequences on capsid-specific CD8+ T cell responses to AAV vector gene transfer. Mol. Ther. 28, 771–783 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Flotte, T. R. Revisiting the “new” inflammatory toxicities of adeno-associated virus vectors. Hum. Gene Ther. 31, 398–399 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Grieger, J. C., Soltys, S. M. & Samulski, R. J. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol. Ther. 24, 287–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Schnodt, M. & Buning, H. Improving the quality of adeno-associated viral vector preparations: the challenge of product-related impurities. Hum. Gene Ther. Methods 28, 101–108 (2017).

    Article  PubMed  Google Scholar 

  109. Pierson, E. E., Keifer, D. Z., Asokan, A. & Jarrold, M. F. Resolving adeno-associated viral particle diversity with charge detection mass spectrometry. Anal. Chem. 88, 6718–6725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mullard, A. Gene therapy community grapples with toxicity issues, as pipeline matures. Nat. Rev. Drug Discov. 20, 804–805 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Chand, D. et al. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J. Hepatol. 74, 560–566 (2021). In this study, systemic administration of high doses of recombinant AAV vector to treat a neuromuscular disease resulted in severe liver damage.

    Article  CAS  PubMed  Google Scholar 

  112. Feldman, A. G. et al. Subacute liver failure following gene replacement therapy for spinal muscular atrophy type 1. J. Pediatr. 225, 252–258.e1 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Morales, L., Gambhir, Y., Bennett, J. & Stedman, H. H. Broader implications of progressive liver dysfunction and lethal sepsis in two boys following systemic high-dose AAV. Mol. Ther. 28, 1753–1755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hinderer, C. et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther. 29, 285–298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Palazzi, X. et al. Biodistribution and tolerability of AAV-PHP.B-CBh-SMN1 in Wistar Han rats and cynomolgus macaques reveal different toxicologic profiles. Hum. Gene Ther. 33, 175–187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chand, D. H. et al. Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J. Pediatr. 231, 265–268 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Muhuri, M. et al. Overcoming innate immune barriers that impede AAV gene therapy vectors. J. Clin. Invest. https://doi.org/10.1172/JCI143780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zaiss, A. K. et al. Complement is an essential component of the immune response to adeno-associated virus vectors. J. Virol. 82, 2727–2740 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Smith, C. J. et al. Pre-existing humoral immunity and complement pathway contribute to immunogenicity of adeno-associated virus (AAV) vector in human blood. Front. Immunol. 13, 999021 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Agrawal, P. et al. The imitation game: a viral strategy to subvert the complement system. FEBS Lett. 594, 2518–2542 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Guillou, J. et al. Fatal thrombotic microangiopathy case following adeno-associated viral SMN gene therapy. Blood Adv. https://doi.org/10.1182/bloodadvances.2021006419 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. PR Newswire. LogicBio Therapeutics Provides Update on LB-001 Clinical Development Program https://www.prnewswire.com/news-releases/logicbio-therapeutics-provides-update-on-lb-001-clinical-development-program-301473512.html (2022).

  123. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04581785 (2020).

  124. FDA. Cellular, Tissue, and Gene Therapies Advisory Committee September 2, 2021 Meeting Presentation- Toxicity Risks of Adeno-associated Virus (AAV) Vectors for Gene Therapy (GT) www.fda.gov (2021).

  125. Hordeaux, J. et al. Adeno-associated virus-induced dorsal root ganglion pathology. Hum. Gene Ther. 31, 808–818 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Hordeaux, J. et al. MicroRNA-mediated inhibition of transgene expression reduces dorsal root ganglion toxicity by AAV vectors in primates. Sci. Transl. Med. 12, eaba9188 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Zolotukhin, S. & Vandenberghe, L. H. AAV capsid design: a Goldilocks challenge. Trends Mol. Med. 28, 183–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Barzel, A. et al. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517, 360–364 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Heinke, P. et al. Diploid hepatocytes drive physiological liver renewal in adult humans. Cell Syst. 13, 499–507.e12 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Hagedorn, C. et al. S/MAR element facilitates episomal long-term persistence of adeno-associated virus vector genomes in proliferating cells. Hum. Gene Ther. 28, 1169–1179 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Follenzi, A., Sabatino, G., Lombardo, A., Boccaccio, C. & Naldini, L. Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum. Gene Ther. 13, 243–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Milani, M. et al. Liver-directed lentiviral gene therapy corrects hemophilia A mice and achieves normal-range factor VIII activity in non-human primates. Nat. Commun. 13, 2454 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021). The first clinical trial in which CRISPR was used to target the liver for treatment of an inherited disorder.

    Article  CAS  PubMed  Google Scholar 

  135. Ohmori, T. et al. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci. Rep. 7, 4159 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34, 334–338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Richards, D. Y. et al. AAV-Mediated CRISPR/Cas9 gene editing in murine phenylketonuria. Mol. Ther. Methods Clin. Dev. 17, 234–245 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Awan, M. J. A., Ali, Z., Amin, I. & Mansoor, S. Twin prime editor: seamless repair without damage. Trends Biotechnol. 40, 374–376 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Yang, L. & Chen, J. A tale of two moieties: rapidly evolving CRISPR/Cas-based genome editing. Trends Biochem. Sci. 45, 874–888 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Krooss, S. A. et al. Ex vivo/in vivo gene editing in hepatocytes using “All-in-One” CRISPR-adeno-associated virus vectors with a self-linearizing repair template. iScience 23, 100764 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Suzuki, K. & Izpisua Belmonte, J. C. In vivo genome editing via the HITI method as a tool for gene therapy. J. Hum. Genet. 63, 157–164 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Intellia. Intellia Therapeutics Achieves Normal Human Alpha-1 Antitrypsin Protein Levels in Non-Human Primates Through Targeted Gene Insertion for the Treatment of AAT Deficiency https://ir.intelliatx.com/news-releases/news-release-details/intellia-therapeutics-achieves-normal-human-alpha-1-antitrypsin (2020).

  148. Porro, F. et al. Promoterless gene targeting without nucleases rescues lethality of a Crigler-Najjar syndrome mouse model. EMBO Mol. Med. 9, 1346–1355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Borel, F. et al. Survival advantage of both human hepatocyte xenografts and genome-edited hepatocytes for treatment of alpha-1 antitrypsin deficiency. Mol. Ther. 25, 2477–2489 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chandler, R. J. et al. Promoterless, nuclease-free genome editing confers a growth advantage for corrected hepatocytes in mice with methylmalonic acidemia. Hepatology 73, 2223–2237 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Cantore, A. et al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Sci. Transl. Med. 7, 277ra228 (2015).

    Article  Google Scholar 

  152. Cozmescu, A. C., Counsell, J. & Gissen, P. Gene therapies targeting the liver. J. Hepatol. 74, 235–236 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Paneda, A. et al. Safety and liver transduction efficacy of rAAV5-cohPBGD in nonhuman primates: a potential therapy for acute intermittent porphyria. Hum. Gene Ther. 24, 1007–1017 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Gao, G. et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol. Ther. 13, 77–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Greig, J. A. et al. Determining the minimally effective dose of a clinical candidate AAV vector in a mouse model of Crigler-Najjar syndrome. Mol. Ther. Methods Clin. Dev. 10, 237–244 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, L. et al. Prednisolone reduces the interferon response to AAV in cynomolgus macaques and may increase liver gene expression. Mol. Ther. Methods Clin. Dev. 24, 292–305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. D’Avola, D. et al. Phase I open label liver-directed gene therapy clinical trial for acute intermittent porphyria. J. Hepatol. 65, 776–783 (2016). The first clinical trial of AAV for the treatment of an inherited metabolic liver disorder.

    Article  PubMed  Google Scholar 

  158. Baruteau, J. et al. Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys. Mol. Ther. Methods Clin. Dev. 23, 135–146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bell, P. et al. Inverse zonation of hepatocyte transduction with AAV vectors between mice and non-human primates. Mol. Genet. Metab. 104, 395–403 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ramachandran, P., Matchett, K. P., Dobie, R., Wilson-Kanamori, J. R. & Henderson, N. C. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat. Rev. Gastroenterol. Hepatol. 17, 457–472 (2020).

    Article  PubMed  Google Scholar 

  161. Kang, Y. B. A., Eo, J., Mert, S., Yarmush, M. L. & Usta, O. B. Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci. Rep. 8, 8951 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lisowski, L. et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Grompe, M. & Strom, S. Mice with human livers. Gastroenterology 145, 1209–1214 (2013).

    Article  PubMed  Google Scholar 

  164. Cabanes-Creus, M. et al. Preclinical evaluation of AAV vectors in an ex vivo human whole liver explant confirms the potential of bioengineered AAVs as clinically relevant hepatotropic vectors. Mol. Ther. 30, 387 (2022).

    Google Scholar 

  165. George, L. A. et al. Multiyear factor VIII expression after AAV gene transfer for hemophilia A. N. Engl. J. Med. 385, 1961–1973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Schutgens, R. E. G. Gene therapy for hemophilia A: how long will it last? Hemasphere 6, e720 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Takeda. TAK-754 and TAK-748 Clinical Studies https://www.hemophiliafed.org/uploads/Takeda-Letter-GT-Trials-Update-August-2020-HFA.pdf (2022).

  168. Cheung, A. K., Hoggan, M. D., Hauswirth, W. W. & Berns, K. I. Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J. Virol. 33, 739–748 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kotin, R. M. et al. Site-specific integration by adeno-associated virus. Proc. Natl Acad. Sci. USA 87, 2211–2215 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chiorini, J. A. et al. Biologically active Rep proteins of adeno-associated virus type 2 produced as fusion proteins in Escherichia coli. J. Virol. 68, 797–804 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Weitzman, M. D., Kyostio, S. R., Kotin, R. M. & Owens, R. A. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc. Natl Acad. Sci. USA 91, 5808–5812 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Janovitz, T. et al. High-throughput sequencing reveals principles of adeno-associated virus serotype 2 integration. J. Virol. 87, 8559–8568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nault, J. C. et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47, 1187–1193 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Smith, J. R. et al. Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cell 26, 496–504 (2008).

    Article  CAS  Google Scholar 

  175. Logan, G. J. et al. Identification of liver-specific enhancer-promoter activity in the 3’ untranslated region of the wild-type AAV2 genome. Nat. Genet. 49, 1267–1273 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. La Bella, T. et al. Adeno-associated virus in the liver: natural history and consequences in tumour development. Gut 69, 737–747 (2020).

    Article  PubMed  Google Scholar 

  177. Tatsuno, K. et al. Impact of AAV2 and hepatitis B virus integration into genome on development of hepatocellular carcinoma in patients with prior hepatitis B virus infection. Clin. Cancer Res. 25, 6217–6227 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Park, K. J. et al. Adeno-associated virus 2-mediated hepatocellular carcinoma is very rare in Korean patients. Ann. Lab. Med. 36, 469–474 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Nault, J. C. et al. Wild-type AAV insertions in hepatocellular carcinoma do not inform debate over genotoxicity risk of vectorized AAV. Mol. Ther. 24, 660–661 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Schmidt, M., Gil-Farina, I. & Buning, H. Reply to “Wild-type AAV insertions in hepatocellular carcinoma do not inform debate over genotoxicity risk of vectorized AAV”. Mol. Ther. 24, 661–662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schaffer, A. A. et al. Integration of adeno-associated virus (AAV) into the genomes of most Thai and Mongolian liver cancer patients does not induce oncogenesis. BMC Genomics 22, 814 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bayard, Q. et al. Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress. Nat. Commun. 9, 5235 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cantalupo, P. G., Katz, J. P. & Pipas, J. M. Viral sequences in human cancer. Virology 513, 208–216 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Zapatka, M. et al. The landscape of viral associations in human cancers. Nat. Genet. 52, 320–330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Srivastava, A. & Carter, B. J. AAV infection: protection from cancer. Hum. Gene Ther. 28, 323–327 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ostrove, J. M., Duckworth, D. H. & Berns, K. I. Inhibition of adenovirus-transformed cell oncogenicity by adeno-associated virus. Virology 113, 521–533 (1981).

    Article  CAS  PubMed  Google Scholar 

  187. Raj, K., Ogston, P. & Beard, P. Virus-mediated killing of cells that lack p53 activity. Nature 412, 914–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  188. Mayor, H. D., Drake, S., Stahmann, J. & Mumford, D. M. Antibodies to adeno-associated satellite virus and herpes simplex in sera from cancer patients and normal adults. Am. J. Obstet. Gynecol. 126, 100–104 (1976).

    Article  CAS  PubMed  Google Scholar 

  189. Sabatino, D. E. et al. Evaluating the state of the science for adeno-associated virus (AAV) integration: an integrated perspective. Mol. Ther. https://doi.org/10.1016/j.ymthe.2022.06.004 (2022). This article provides the perspectives of leading experts in the field of AAV integration about the safety of AAVs and their potential genotoxicity.

    Article  PubMed  Google Scholar 

  190. Rutledge, E. A. & Russell, D. W. Adeno-associated virus vector integration junctions. J. Virol. 71, 8429–8436 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Miller, D. G., Petek, L. M. & Russell, D. W. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat. Genet. 36, 767–773 (2004). In this study, an elegant system was developed for testing the hypothesis that AAV vectors integrate at existing DNA double-strand breaks without causing breaks themselves.

    Article  CAS  PubMed  Google Scholar 

  192. Philpott, N. J., Gomos, J. & Falck-Pedersen, E. Transgene expression after rep-mediated site-specific integration into chromosome 19. Hum. Gene Ther. 15, 47–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Chen, W. Y. & Townes, T. M. Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin condensation. Proc. Natl Acad. Sci. USA 97, 377–382 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Nakai, H. et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J. Virol. 75, 6969–6976 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568–8577 (1998). This study showed the episomal nature of recombinant AAV genomes responsible for long-term transgene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Nakai, H. et al. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat. Genet. 34, 297–302 (2003). The first study to establish the techniques to characterize the integration pattern of AAV vectors.

    Article  CAS  PubMed  Google Scholar 

  197. Nakai, H. et al. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J. Virol. 79, 3606–3614 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Inagaki, K. et al. DNA palindromes with a modest arm length of greater, similar 20 base pairs are a significant target for recombinant adeno-associated virus vector integration in the liver, muscles, and heart in mice. J. Virol. 81, 11290–11303 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Donsante, A. et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Ther. 8, 1343–1346 (2001).

    Article  CAS  PubMed  Google Scholar 

  200. Bell, P. et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol. Ther. 14, 34–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Donsante, A. et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 317, 477 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Chandler, R. J. et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J. Clin. Invest. 125, 870–880 (2015). The most comprehensive preclinical study of the risk of genotoxicity with liver-directed AAV therapies, in which some of the important factors influencing genotoxicity are defined.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Dalwadi, D. A. et al. Liver injury increases the incidence of HCC following AAV gene therapy in mice. Mol. Ther. 29, 680–690 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Dalwadi, D. A. et al. AAV integration in human hepatocytes. Mol. Ther. 29, 2898–2909 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Inagaki, K., Piao, C., Kotchey, N. M., Wu, X. & Nakai, H. Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J. Virol. 82, 9513–9524 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhong, L. et al. Recombinant adeno-associated virus integration sites in murine liver after ornithine transcarbamylase gene correction. Hum. Gene Ther. 24, 520–525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Rosas, L. E. et al. Patterns of scAAV vector insertion associated with oncogenic events in a mouse model for genotoxicity. Mol. Ther. 20, 2098–2110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Bell, P. et al. No evidence for tumorigenesis of AAV vectors in a large-scale study in mice. Mol. Ther. 12, 299–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  209. Li, H. et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood 117, 3311–3319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. BioMarin. U.S. FDA Placed a Clinical Hold on BMN 307 Phearless Phase ½ Gene Therapy Study in Adults with PKU Based on Interim Pre-clinical Study Findings https://investors.biomarin.com/2021-09-06-U-S-FDA-Placed-a-Clinical-Hold-on-BMN-307-Phearless-Phase-1-2-Gene-Therapy-Study-in-Adults-with-PKU-Based-on-Interim-Pre-clinical-Study-Findings (2021).

  211. Nguyen, G. N. et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat. Biotechnol. 39, 47–55 (2021). A 10-year follow-up of AAV gene therapy in dogs that provided long-term safety and expression data and a thorough analysis of vector integration characteristics.

    Article  CAS  PubMed  Google Scholar 

  212. Nowrouzi, A. et al. Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver. Mol. Ther. 20, 1177–1186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Gil-Farina, I. et al. Recombinant AAV integration is not associated with hepatic genotoxicity in nonhuman primates and patients. Mol. Ther. 24, 1100–1105 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kaeppel, C. et al. A largely random AAV integration profile after LPLD gene therapy. Nat. Med. 19, 889–891 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Euroland. uniQure Announces Clinical Update on Hemophilia B Gene Therapy Program. uniQure https://uniqure.gcs-web.com/node/10231/pdf (2021).

  216. Hordeaux, J. et al. Safe and sustained expression of human iduronidase after intrathecal administration of adeno-associated virus serotype 9 in infant Rhesus monkeys. Hum. Gene Ther. 30, 957–966 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kang, H. R. et al. Pathogenesis of hepatic tumors following gene therapy in murine and canine models of glycogen storage disease. Mol. Ther. Methods Clin. Dev. 15, 383–391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Chen, S., Yao, Y., Zhang, Y. & Fan, G. CRISPR system: discovery, development and off-target detection. Cell Signal. 70, 109577 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Muller, H. P. & Schaffner, W. Transcriptional enhancers can act in trans. Trends Genet. 6, 300–304 (1990).

    Article  CAS  PubMed  Google Scholar 

  222. Kadauke, S. & Blobel, G. A. Chromatin loops in gene regulation. Biochim. Biophys. Acta 1789, 17–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Schmidt, F., Kern, F. & Schulz, M. H. Integrative prediction of gene expression with chromatin accessibility and conformation data. Epigenetics Chromatin 13, 4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT00076557 (2004).

  225. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT00979238 (2009).

  226. Nathwani, A. C. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  227. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02396342 (2015).

  228. Miesbach, W. et al. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B. Blood 131, 1022–1031 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT01687608 (2012).

  230. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03489291 (2018).

  231. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03369444 (2017).

  232. Chowdary, P. et al. Phase 1-2 trial of AAVS3 gene therapy in patients with hemophilia B. N. Engl. J. Med. 387, 237–247 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02618915 (2018).

  234. Pipe, S. in AHS Annual Meeting & Exposition Vol. 130, 3331 (AHS, 2017).

  235. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02576795 (2015).

  236. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03003533 (2016).

  237. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03061201 (2022).

  238. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03588299 (2018).

  239. Pipe, S. W. in ASH Annual Meeting & Exposition Vol. 136, 44–45 (2020).

  240. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03370172 (2017).

  241. GlobeNewswire. Ultragenyx Completes Successful End-of-Phase 2 Meeting with FDA and Finalizes Phase 3 Study Design for DTX301 Ornithine Transcarbamylase (OTC) Gene Therapy Program https://www.globenewswire.com/news-release/2021/04/22/2215092/20739/en/Ultragenyx-Completes-Successful-End-of-Phase-2-Meeting-with-FDA-and-Finalizes-Phase-3-Study-Design-for-DTX301-Ornithine-Transcarbamylase-OTC-Gene-Therapy-Program.html (2021).

  242. GlobeNewswire. Homology Medicines Announces Presentation of Positive Data from the Dose-Escalation Phase of the pheNIX Gene Therapy Trial for Adults with PKU https://www.globenewswire.com/news-release/2020/11/06/2122133/0/en/Homology-Medicines-Announces-Presentation-of-Positive-Data-from-the-Dose-Escalation-Phase-of-the-pheNIX-Gene-Therapy-Trial-for-Adults-with-PKU.html (2020).

  243. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04480567 (2020).

  244. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04452513 (2020).

  245. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05222178 (2022).

  246. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02082860 (2014).

  247. PR Newswire. LogicBio Therapeutics Announces FDA Lifts Clinical Hold on SUNRISE Trial in Pediatric Patients with Methylmalonic Acidemia https://www.prnewswire.com/news-releases/logicbio-therapeutics-announces-fda-lifts-clinical-hold-on-sunrise-trial-in-pediatric-patients-with-methylmalonic-acidemia-301542452.html (2022).

  248. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02651675 (2016).

  249. Ultragenix. Ultragenix announces positive data from Phase 1/2 study of DTX401 gene therapy in Glycogen Storage Disease type Ia https://ir.ultragenyx.com/news-releases/news-release-details/ultragenyx-announces-positive-data-phase-12-study-dtx401-gene (2019).

  250. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04537377 (2020).

  251. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04884815 (2021).

  252. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04601051 (2020).

  253. Bonnemann, C. G. A Collaborative Analysis by Clinical Trial Sponsors and Academic Experts of Anti-transgene SAEs in Studies of Gene Therapy for DMD in 25th Annual Meeting of the American Society of Gene & Cell Therapy. Mol. Ther. 30, S1–S592 (2022).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.Z., C.U. and G.G.-A. researched data for the article. All authors made substantia contributions to the discussion of content, contributed to writing, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Gloria Gonzalez-Aseguinolaza.

Ethics declarations

Competing interests

N.D.W. and G.G-A. are employees and shareholders of Vivet Therapeutics. The views expressed in this Review belong to the authors alone and do not reflect the opinions of Vivet Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks M. Grompe, G. Ronzitti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabaleta, N., Unzu, C., Weber, N.D. et al. Gene therapy for liver diseases — progress and challenges. Nat Rev Gastroenterol Hepatol 20, 288–305 (2023). https://doi.org/10.1038/s41575-022-00729-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00729-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research