Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Artificial intelligence and automation in endoscopy and surgery

Abstract

Modern endoscopy relies on digital technology, from high-resolution imaging sensors and displays to electronics connecting configurable illumination and actuation systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic interventions, the digitization of the procedural toolset enables video data capture of the internal human anatomy at unprecedented levels. Interventional video data encapsulate functional and structural information about a patient’s anatomy as well as events, activity and action logs about the surgical process. This detailed but difficult-to-interpret record from endoscopic procedures can be linked to preoperative and postoperative records or patient imaging information. Rapid advances in artificial intelligence, especially in supervised deep learning, can utilize data from endoscopic procedures to develop systems for assisting procedures leading to computer-assisted interventions that can enable better navigation during procedures, automation of image interpretation and robotically assisted tool manipulation. In this Perspective, we summarize state-of-the-art artificial intelligence for computer-assisted interventions in gastroenterology and surgery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Artificial intelligence-based CAIs in gastrointestinal MIS.
Fig. 2: Artificial intelligence-based CADe and CADx systems.
Fig. 3: Artificial intelligence-based computer-assisted navigation.
Fig. 4: Example of artificial intelligence-based gesture recognition for robotic surgery suturing.
Fig. 5: Artifical intelligence-based robotically assisted surgery.

Similar content being viewed by others

References

  1. Darzi, A. & Munz, Y. The impact of minimally invasive surgical techniques. Annu. Rev. Med. 55, 223–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Clancy, N. T., Jones, G., Maier-Hein, L., Elson, D. S. & Stoyanov, D. Surgical spectral imaging. Med. Image Anal. 63, 101699 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stoyanov, D. Surgical vision. Ann. Biomed. Eng. 40, 332–345 (2012).

    Article  PubMed  Google Scholar 

  4. Ahmad, O. F. et al. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions. Lancet Gastroenterol. Hepatol. 4, 71–80 (2019).

    Article  PubMed  Google Scholar 

  5. Kaul, V., Enslin, S. & Gross, S. A. History of artificial intelligence in medicine. Gastrointest. Endosc. 92, 807–812 (2020).

    Article  PubMed  Google Scholar 

  6. Jin, Z. et al. Deep learning for gastroscopic images: computer-aided techniques for clinicians. Biomed. Eng. Online https://doi.org/10.1186/s12938-022-00979-8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maier-Hein, L. et al. Surgical data science-from concepts toward clinical translation. Med. Image Anal. 76, 102306 (2022).

    Article  PubMed  Google Scholar 

  8. Maier-Hein, L. et al. Surgical data science for next-generation interventions. Nat. Biomed. Eng. 1, 691–696 (2017).

    Article  PubMed  Google Scholar 

  9. Vercauteren, T., Unberath, M., Padoy, N. & Navab, N. CAI4CAI: the rise of contextual artificial intelligence in computer-assisted interventions. Proc. IEEE Inst. Electr. Electron. Eng. 108, 198–214 (2020).

    Article  PubMed  Google Scholar 

  10. Le Berre, C. et al. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology 158, 76–94 (2019).

    Article  PubMed  Google Scholar 

  11. Chadebecq, F., Vasconcelos, F., Mazomenos, E. & Stoyanov, D. Computer vision in the surgical operating room. Visc. Med. 36, 456–462 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goodfellow, I.J. & Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  13. Mori, Y. et al. Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointest. Endosc. 81, 621–629 (2015).

    Article  PubMed  Google Scholar 

  14. Bernal, J. et al. Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge. IEEE Trans. Med. Imaging 36, 1231–1249 (2017).

    Article  PubMed  Google Scholar 

  15. Singh, H. et al. The reduction in colorectal cancer mortality after colonoscopy varies by site of the cancer. Gastroenterology 139, 1128–1137 (2010).

    Article  PubMed  Google Scholar 

  16. Zhao, S. et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology 156, 1661–1674 (2019).

    Article  PubMed  Google Scholar 

  17. Castaneda, D., Popov, V. B., Verheyen, E., Wander, P. & Gross, S. A. New technologies improve adenoma detection rate, adenoma miss rate, and polyp detection rate: a systematic review and meta-analysis. Gastrointest. Endosc. 88, 209–222 (2018).

    Article  PubMed  Google Scholar 

  18. Sánchez-Peralta, L. F., Bote-Curiel, L., Picón, A., Sánchez-Margallo, F. M. & Pagador, J. B. Deep learning to find colorectal polyps in colonoscopy: a systematic literature review. Artif. Intell. Med. 108, 101823 (2020).

    Article  Google Scholar 

  19. Wang, P. et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat. Biomed. Eng. 2, 741–748 (2018).

    Article  PubMed  Google Scholar 

  20. Areia, M. et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digit. Health 4, 436–444 (2022).

    Article  Google Scholar 

  21. Bernal, J., Sánchez, J. & Vilariño, F. Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 45, 3166–3182 (2012).

    Article  Google Scholar 

  22. Vazquez, D. et al. A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017, 1–9 (2017).

    Article  Google Scholar 

  23. Yuan, Z. et al. Automatic polyp detection in colonoscopy videos. J. Med. Imaging 10133, 1–10 (2017).

    Google Scholar 

  24. Mo, X., Tao, K., Wang, Q. & Wang, G. An efficient approach for polyps detection in endoscopic videos based on faster R-CNN. Int. Conf. Pattern Recognit. 2018, 3929–3934 (2018).

    Google Scholar 

  25. Lee, J. Y. et al. Real-time detection of colon polyps during colonoscopy using deep learning: systematic validation with four independent datasets. Sci. Rep. 10, 8379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spadaccini, M. et al. Computer-aided detection versus advanced imaging for detection of colorectal neoplasia: a systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 6, 794–802 (2021).

    Article  Google Scholar 

  27. Hussein, M. et al. A new artificial intelligence system successfully detects and localises early neoplasia in Barrett’s esophagus by using convolutional neural networks. United European Gastroenterol. J. 10, 528–537 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hou, W. et al. Early neoplasia identification in Barrett’s esophagus via attentive hierarchical aggregation and self-distillation. Med. Image Anal. 72, 102092 (2021).

    Article  PubMed  Google Scholar 

  29. Maier-Hein, L. et al. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat. Commun. 9, 5217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wallace, M. B. et al. Impact of artificial intelligence on miss rate of colorectal neoplasia. Gastroenterology 163, 295–304 (2022).

    Article  PubMed  Google Scholar 

  31. Van Berkel, N. et al. Initial responses to false positives in AI-supported continuous interactions: a colonoscopy case study. ACM Trans. Interact. Intell. Syst. 12, 1–18 (2022).

    Article  Google Scholar 

  32. Pannala, R. et al. Artificial intelligence in gastrointestinal endoscopy. Videogie 5, 598–613 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Singh, D. & Singh, B. Effective and efficient classification of gastrointestinal lesions: combining data preprocessing, feature weighting, and improved ant lion optimization. J. Ambient. Intell. Humaniz. Comput. 12, 8683–8698 (2021).

    Article  Google Scholar 

  34. Mesejo, P. et al. Computer-aided classification of gastrointestinal lesions in regular colonoscopy. IEEE Trans. Med. Imaging 35, 2051–2063 (2016).

    Article  PubMed  Google Scholar 

  35. Byrne, M. F. et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 68, 94–100 (2019).

    Article  PubMed  Google Scholar 

  36. Patel, K. et al. A comparative study on polyp classification using convolutional neural networks. PLoS ONE 15, 1–16 (2020).

    Article  Google Scholar 

  37. Li, K. et al. Colonoscopy polyp detection and classification: dataset creation and comparative evaluations. PLoS ONE 16, 1–26 (2021).

    Google Scholar 

  38. Nogueira-Rodríguez, A. et al. Deep neural networks approaches for detecting and classifying colorectal polyps. Neurocomputing 423, 721–734 (2021).

    Article  Google Scholar 

  39. Ozawa, T. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks. Ther. Adv. Gastroenterol. 13, 1–13 (2020).

    Article  Google Scholar 

  40. Zorron Cheng Tao Pu, L. et al. Randomised controlled trial comparing modified Sano’s and narrow band imaging international colorectal endoscopic classifications for colorectal lesions. World J. Gastrointest. Endosc. 10, 210–218 (2018).

    Article  Google Scholar 

  41. Zorron Cheng Tao Pu, L. et al. Computer-aided diagnosis for characterization of colorectal lesions: comprehensive software that includes differentiation of serrated lesions. Gastrointest. Endosc. 92, 891–899 (2020).

    Article  PubMed  Google Scholar 

  42. Takeda, K. et al. Accuracy of diagnosing invasive colorectal cancer using computer-aided endocytoscopy. Endoscopy 49, 798–802 (2017).

    Article  PubMed  Google Scholar 

  43. Ito, N. et al. Endoscopic diagnostic support system for cT1b colorectal cancer using deep learning. Oncology 96, 44–50 (2019).

    Article  PubMed  Google Scholar 

  44. Ahmad, O. F. et al. Performance of artificial intelligence for detection of subtle and advanced colorectal neoplasia. Dig. Endosc. 34, 862–869 (2022).

    Article  PubMed  Google Scholar 

  45. Endoscopic Classification Review Group. Update on the Paris classification of superficial neoplastic lesions in the digestive tract. Endoscopy 37, 570–578 (2005).

    Article  Google Scholar 

  46. Kominami, Y. et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest. Endosc. 83, 643–649 (2016).

    Article  PubMed  Google Scholar 

  47. Jin, E. H. et al. Improved accuracy in optical diagnosis of colorectal polyps using convolutional neural networks with visual explanations. Gastroenterology 158, 2169–2179 (2020).

    Article  PubMed  Google Scholar 

  48. Cybernet. EndoBRAIN®-EYE, AI-equipped colorectal endoscopy diagnosis support software part 2; acquisition of approval under Pharmaceutical and Medical Device act (PMD act). Cybernet https://www.cybernet.jp/english/documents/pdf/news/press/2020/20200129.pdf (2020).

  49. Münzer, B., Schoeffmann, K. & Böszörmenyi, L. Content-based processing and analysis of endoscopic images and videos: a survey. Multimed. Tools Appl. 77, 1323–1362 (2018).

    Article  Google Scholar 

  50. Wu, H. et al. Semantic SLAM based on deep learning in endocavity environment. Symmetry 14, 614 (2022).

    Article  Google Scholar 

  51. Freedman, D. et al. Detecting deficient coverage in colonoscopies. IEEE Trans. Med. Imaging 39, 3451–3462 (2020).

    Article  PubMed  Google Scholar 

  52. Hartley, R. & Zisserman, A. Multiple View Geometry in Computer Vision 2nd edn (Cambridge University Press, 2003).

  53. Mur-Artal, R., Montiel, J. M. M. & Tardos, J. D. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31, 1147–1163 (2015).

    Article  Google Scholar 

  54. Mahmoud, N. et al. in Computer-Assisted and Robotic Endoscopy CARE 2016 Vol. 10170, 72–83 (Springer, 2017).

  55. Mahmoud, N. et al. SLAM based quasi dense reconstruction for minimally invasive surgery scenes. IEEE Int. Conf. Robot. Autom. Workshop C4 2017, 1–5 (2017).

    Google Scholar 

  56. Mahmoud, N. et al. Live tracking and dense reconstruction for handheld monocular endoscopy. IEEE Trans. Med. Imaging 38, 79–89 (2019).

    Article  PubMed  Google Scholar 

  57. Docea, R. et al. Simultaneous localisation and mapping for laparoscopic liver navigation: a comparative evaluation study. J. Med. Imaging 11598, 62–76 (2021).

    Google Scholar 

  58. Parashar, S., Pizarro, D. & Bartoli, A. Isometric non-rigid shape-from motion with Riemannian geometry solved in linear time. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2442–2454 (2018).

    Article  PubMed  Google Scholar 

  59. Lamarca, J., Parashar, S., Bartoli, A. & Montiel, J. M. M. DefSLAM: tracking and mapping of deforming scenes from monocular sequences. IEEE Trans. Robot. 37, 291–303 (2020).

    Article  Google Scholar 

  60. Rodriguez, J. J. G., Lamarca, J., Morlana, J., Tardos, J. D. & Montiel, J. M. M. Sd-defslam: semi-direct monocular slam for deformable and intracorporeal scenes. IEEE Int. Conf. Robot. Autom. 2021, 5170–5177 (2021).

    Google Scholar 

  61. Sengupta, A. & Bartoli, A. Colonoscopic 3D reconstruction by tubular non-rigid structure-from-motion. Int. J. Comput. Assist. Radiol. Surg. 16, 1237–1241 (2021).

    Article  PubMed  Google Scholar 

  62. Lin, J. et al. Dual-modality endoscopic probe for tissue surface shape reconstruction and hyperspectral imaging enabled by deep neural networks. Med. Image Anal. 48, 162–176 (2018).

    Article  PubMed  Google Scholar 

  63. Ciuti, G. et al. Frontiers of robotic colonoscopy: a comprehensive review of robotic colonoscopes and technologies. J. Clin. Med. 9, 1648 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ma, R. et al. RNNSLAM: reconstructing the 3D colon to visualize missing regions during a colonoscopy. Med. Image Anal. 72, 102100 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Recasens, D., Lamarca, J., Facil, J. M., Montiel, J. M. M. & Civera, J. Endo-depth-and-motion: reconstruction and tracking in endoscopic videos using depth networks and photometric constraints. IEEE Robot. Autom. Lett. 6, 7225–7232 (2021).

    Article  Google Scholar 

  66. Zhang, S., Zhao, L., Huang, S., Ye, M. & Hao, Q. A template-based 3D reconstruction of colon structures and textures from stereo colonoscopic images. IEEE Trans. Med. Robot. Bionics. 3, 85–95 (2021).

    Article  Google Scholar 

  67. Rau, A., Bhattarai, B., Agapito, L. & Stoyanov, D. Bimodal camera pose prediction for endoscopy. Preprint at https://doi.org/10.48550/arXiv.2204.04968 (2022).

  68. Takiyama, H. et al. Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks. Nat. Sci. Rep. 8, 7497 (2018).

    Google Scholar 

  69. Igarashi, S., Sasaki, Y., Mikami, T., Sakuraba, H. & Fukuda, S. Anatomical classification of upper gastrointestinal organs under various image capture conditions using AlexNet. Comput. Biol. Med. 124, 103950 (2020).

    Article  PubMed  Google Scholar 

  70. Beg, S. et al. Quality standards in upper gastrointestinal endoscopy: a position statement of the British Society of Gastroenterology (BSG) and Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland (AUGIS). Gut 66, 1886–1899 (2017).

    Article  PubMed  Google Scholar 

  71. Rey, J. F. & Lambert, R. The ESGE Quality Assurance Committee: ESGE recommendations for quality control in gastrointestinal endoscopy: guidelines for image documentation in upper and lower GI endoscopy. Endoscopy 33, 901–903 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Yao, K. The endoscopic diagnosis of early gastric cancer. Ann. Gastroenterol. 26, 11–22 (2013).

    PubMed  PubMed Central  Google Scholar 

  73. He, Q. et al. Deep learning based anatomical site classification for upper gastrointestinal endoscopy. Int. J. Comput. Assist. Radiol. Surg. 15, 1085–1094 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Riegler, M. et al. Multimedia for medicine: the medico task at mediaeval 2017. CEUR Workshop Proceedings http://ceur-ws.org/Vol-1984/Mediaeval_2017_paper_3.pdf (2017).

  75. Pogorelov, K. et al. Medico multimedia task at mediaeval 2018. CEUR Workshop Proceedings http://ceur-ws.org/Vol-2283/MediaEval_18_paper_6.pdf (2018).

  76. Hicks, S. A. et al. ACM multimedia biomedia 2020 grand challenge overview. ACM Int. Conf. Multimed. 2020, 4655–4658 (2020).

    Google Scholar 

  77. Jha, D. et al. A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging. Med. Image Anal. 70, 102007 (2021).

    Article  PubMed  Google Scholar 

  78. Pogorelov, K. et al. KVASIR: a multi-class image dataset for computer aided gastrointestinal disease detection. ACM Int. Conf. Multimed. 2017, 164–169 (2017).

    Google Scholar 

  79. Pogorelov, K. Nerthus: a bowel preparation quality video dataset. ACM Int. Conf. Multimed. 2017, 170–174 (2017).

    Google Scholar 

  80. Luo, Z., Wang, X., Xu, Z., Li, X. & Li, J. Adaptive ensemble: solution to the biomedia ACM MM grandchallenge 2019. ACM Int. Conf. Multimed. 2019, 2583–2587 (2019).

    Google Scholar 

  81. Saito, H. et al. Automatic anatomical classification of colonoscopic images using deep convolutional neural networks. Gastroenterol. Rep. 9, 226–233 (2021).

    Article  Google Scholar 

  82. Sestini, L., Rosa, B., De Momi, E., Ferrigno, G. & Padoy, N. A kinematic bottleneck approach for pose regression of flexible surgical instruments directly from images. IEEE Robot. Autom. Lett. 6, 2938–2945 (2021).

    Article  Google Scholar 

  83. Roß, T. et al. Comparative validation of multi-instance instrument segmentation in endoscopy: results of the ROBUST-MIS 2019 challenge. Med. Image Anal. 70, 101920 (2021).

    Article  PubMed  Google Scholar 

  84. Gonzalez, C., Bravo-Sanchez, L. & Arbelaez, P. ISINet: an instance-based approach for surgical instrument segmentation. Med. Image Comput. Comput. Assist. Interv. 12263, 595–605 (2020).

    Google Scholar 

  85. Xiaowen, K. et al. Accurate instance segmentation of surgical instruments in robotic surgery: model refinement and cross-dataset evaluation. Int. J. Comput. Assist. Radiol. Surg. 19, 1607–1614 (2021).

    Google Scholar 

  86. Colleoni, E., Edwards, P. & Stoyanov, D. Synthetic and real inputs for tool segmentation in robotic surgery. Med. Image Comput. Comput. Assist. Interv. 12263, 700–710 (2020).

    Google Scholar 

  87. Colleoni, E. & Stoyanov, D. Robotic instrument segmentation with image-to-image translation. IEEE Robot. Autom. Lett. 6, 935–942 (2021).

    Article  Google Scholar 

  88. Pfeiffer, M. et al. Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation. Med. Image Comput. Comput. Assist. Interv. 11768, 119–127 (2019).

    Google Scholar 

  89. Sahu, M., Stromsdorfer, R., Mukhopadhyay, A. & Zachow, S. Endo-Sim2Real: consistency learning-based domain adaptation for instrument segmentation. Med. Image Comput. Comput. Assist. Interv. 12263, 784–794 (2020).

    Google Scholar 

  90. Zhang, Z., Rosa, B. & Nageotte, F. Surgical tool segmentation using generative adversarial networks with unpaired training data. IEEE Robot. Autom. Lett. 6, 6266–6273 (2021).

    Article  Google Scholar 

  91. Zhao, Z. et al. One to many: adaptive instrument segmentation via meta learning and dynamic online adaptation in robotic surgical video. IEEE Int. Conf. Robot. Autom. 2021, 13553–13559 (2021).

    Google Scholar 

  92. Du, X. et al. Articulated multi-instrument 2-D pose estimation using fully convolutional networks. IEEE Trans. Med. Imaging 37, 1276–1287 (2018).

    Article  PubMed  Google Scholar 

  93. Kayhan, M. et al. Deep attention based semi-supervised 2D-pose estimation for surgical instruments. Pattern Recognit., ICPR Int. Workshops Chall. 2021, 444–460 (2021).

    Article  Google Scholar 

  94. Rodrigues, M., Mayo, M. & Patros, P. Surgical tool datasets for machine learning research: a survey. Int. J. Comput. Vis. 130, 2222–2248 (2022).

    Article  Google Scholar 

  95. Allan, M., Ourselin, S., Hawkes, D. J., Kelly, J. D. & Stoyanov, D. 3-D pose estimation of articulated instruments in robotic minimally invasive surgery. IEEE Trans. Med. Imaging 37, 1204–1213 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Hasan, K., Calvet, L., Rabbani, N. & Bartoli, A. Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry. Med. Image Anal. 70, 101994 (2021).

    Article  PubMed  Google Scholar 

  97. Ahmidi, N. et al. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans. Biomed. Eng. 64, 2025–2041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Van Amsterdam, B., Clarkson, M. J. & Stoyanov, D. Gesture recognition in robotic surgery: a review. IEEE Trans. Biomed. Eng. 68, 2021–2035 (2021).

    Article  PubMed  Google Scholar 

  99. Dergachyova, O., Bouget, D., Huaulmé, A., Morandi, X. & Jannin, P. Automatic data-driven real-time segmentation and recognition of surgical workflow. Int. J. Comput. Assist. Radiol. Surg. 11, 1081–1090 (2016).

    Article  PubMed  Google Scholar 

  100. Lalys, F. & Jannin, P. Surgical process modelling: a review. Int. J. Comput. Assist. Radiol. Surg. 9, 495–511 (2014).

    Article  PubMed  Google Scholar 

  101. Oleari, E. et al. Enhancing surgical process modeling for artificial intelligence development in robotics: the saras case study for minimally invasive procedures. Int. Symp. Med. Inf. Commun. Technol. 2019, 1–6 (2019).

    Google Scholar 

  102. Gurcan, I. & Van Nguyen, H. Surgical activities recognition using multi-scale recurrent networks. IEEE Int. Conf. Acoust. Speech Signal. Proc. 2019, 2887–2891 (2019).

    Google Scholar 

  103. Funke, I. et al. Video-based surgical skill assessment using 3D convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 14, 1217–1225 (2019).

    Article  PubMed  Google Scholar 

  104. Qin, Y., Allan, M., Burdick, J. W. & Azizian, M. Autonomous hierarchical surgical state estimation during robot-assisted surgery through deep neural networks. IEEE Robot. Autom. Lett. 6, 6220–6227 (2021).

    Article  Google Scholar 

  105. Park, J. & Park, C. H. Recognition and prediction of surgical actions based on online robotic tool detection. IEEE Robot. Autom. Lett. 6, 2365–2372 (2021).

    Article  Google Scholar 

  106. Long, Y. et al. Relational graph learning on visual and kinematics embeddings for accurate gesture recognition in robotic surgery. IEEE Int. Conf. Robot. Autom. 2021, 13346–13353 (2021).

    Google Scholar 

  107. Van Amsterdam, B. et al. Gesture recognition in robotic surgery with multimodal attention. IEEE Trans. Med. Imaging 41, 1677–1687 (2022).

    Article  PubMed  Google Scholar 

  108. Stauder, R. et al. The TUM LapChole dataset for the M2CAI 2016 workflow challenge. Preprint at https://doi.org/10.48550/arXiv.1610.09278 (2016).

  109. Twinanda, A.P. et al. Single-and multi-task architectures for surgical workflow challenge at M2CAI 2016. Preprint at https://doi.org/10.48550/arXiv.1610.08844 (2016).

  110. Twinanda, A. P. et al. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36, 86–97 (2017).

    Article  PubMed  Google Scholar 

  111. Jin, Y. et al. Multi-task recurrent convolutional network with correlation loss for surgical video analysis. Med. Image Anal. 59, 101572 (2020).

    Article  PubMed  Google Scholar 

  112. Bawa, V. S. et al. ESAD: endoscopic surgeon action detection dataset. Preprint at https://doi.org/10.48550/arXiv.2104.03178 (2021).

  113. Bawa, V. S. et al. The SARAS endoscopic surgeon action detection (ESAD) dataset: challenges and methods. Preprint at https://doi.org/10.48550/arXiv.2104.03178 (2021).

  114. Kitaguchi, D. et al. Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: Experimental research. Int. J. Surg. 79, 88–94 (2020).

    Article  PubMed  Google Scholar 

  115. Ban, Y. et al. SUPR-GAN: surgical prediction GAN for event anticipation in laparoscopic and robotic surgery. IEEE Robot. Autom. Lett. 7, 5741–5748 (2022).

    Article  Google Scholar 

  116. Nwoye, C. I. et al. Rendezvous: attention mechanisms for the recognition of surgical action triplets in endoscopic videos. Med. Image Anal. 78, 102433 (2022).

    Article  PubMed  Google Scholar 

  117. Nwoye, C. I. et al. CholecTriplet2021: a benchmark challenge for surgical action triplet recognition. Preprint at https://doi.org/10.48550/arXiv.2204.04746 (2022).

  118. Gibaud, B. Toward a standard ontology of surgical process models. Int. J. Comput. Assist. Radiol. Surg. 13, 1397–1408 (2018).

    Article  PubMed  Google Scholar 

  119. Katić, D. et al. LapOntoSPM: an ontology for laparoscopic surgeries and its application to surgical phase recognition. Int. J. Comput. Assist. Radiol. Surg. 10, 1427–1434 (2015).

    Article  PubMed  Google Scholar 

  120. Meireles, O. R. et al. SAGES Video Annotation for AI Working Groups. SAGES consensus recommendations on an annotation framework for surgical video. Surg. Endosc. 35, 4918–4929 (2021).

    Article  PubMed  Google Scholar 

  121. Mascagni, P. & Padoy, N. OR black box and surgical control tower: recording and streaming data and analytics to improve surgical care. J. Visc. Surg. 158, 18–25 (2021).

    Article  Google Scholar 

  122. Funke, I., Mees, S. T., Weitz, J. & Speidel, S. Video-based surgical skill assessment using 3D convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 14, 1217–1225 (2019).

    Article  PubMed  Google Scholar 

  123. Wang, T., Wang, Y. & Li, M. Towards accurate and interpretable surgical skill assessment: a video-based method incorporating recognized surgical gestures and skill levels. Med. Image Comput. Comput. Assist. Interv. 12263, 668–678 (2020).

    Google Scholar 

  124. Collins, J. W. et al. Ethical implications of AI in robotic surgical training: a Delphi consensus statement. Eur. Urol. Focus. 8, 613–622 (2022).

    Article  PubMed  Google Scholar 

  125. Lavanchy, J. L. et al. Automation of surgical skill assessment using a three-stage machine learning algorithm. Sci. Rep. 11, 5197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, D. et al. Towards unified surgical skill assessment. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2021, 9522–9531 (2021).

    Google Scholar 

  127. Vedula, S. S. et al. Artificial intelligence methods and artificial intelligence-enabled metrics for surgical education: a multidisciplinary consensus. J. Am. Coll. Surg. 234, 1181–1192 (2022).

    Article  PubMed  Google Scholar 

  128. Zhu, Y., Xu, Y., Chen, W., Zhao, T. & Zheng, S. A CNN-based cleanliness evaluation for bowel preparation in colonoscopy. Int. Cong. Image Signal. Process., BioMed. Eng. Inf. 2019, 1–5 (2019).

    Google Scholar 

  129. Hutchinson, K., Li, Z., Cantrell, L. A., Schenkman, N. S. & Alemzadeh, H. Analysis of executional and procedural errors in dry-lab robotic surgery experiments. Int. J. Med. Robot. Comput. Assist. Surg. 18, 1–15 (2022).

    Article  Google Scholar 

  130. Zia, A. et al. Surgical visual domain adaptation: results from the MICCAI 2020 SurgVisDom Challenge. Preprint at https://doi.org/10.48550/arXiv.2102.13644 (2021).

  131. Shademan, A. et al. Supervised autonomous robotic soft tissue surgery. Sci. Trans. Med. 8, 1–8 (2016).

    Article  Google Scholar 

  132. Saeidi, H. et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci. Robot. 7, 1–13 (2022).

    Article  Google Scholar 

  133. Dehghani, H. & Kim, P. C. W. Robotic automation for surgery. Digit. Surg. 2021, 203–213 (2021).

    Article  Google Scholar 

  134. Oberlin, J., Buharin, V. E., Dehghani, H. & Kim, P. C. W. Intelligence and autonomy in future robotic surgery. Robot. Surg. 2021, 183–195 (2021).

    Article  Google Scholar 

  135. Kinross, J. M. et al. Next-generation robotics in gastrointestinal surgery. Nat. Rev. Gastroenterol. Hepatol. 17, 430–440 (2020).

    Article  PubMed  Google Scholar 

  136. Kassahun, Y. et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int. J. Comput. Assist. Radiol. Surg. 11, 553–568 (2016).

    Article  PubMed  Google Scholar 

  137. Haidegger, T. Autonomy for surgical robots: concepts and paradigms. IEEE Trans. Med. Robot. Bionics 1, 65–76 (2019).

    Article  Google Scholar 

  138. Attanasio, A., Scaglioni, B., De Momi, E., Fiorini, P. & Valdastri, P. Autonomy in surgical robotics. Annu. Rev. Control. Robot. Auton. Syst. 4, 651–679 (2021).

    Article  Google Scholar 

  139. Houseago, C., Bloesch, M. & Leutenegger, S. KO-Fusion: dense visual SLAM with tightly-coupled kinematic and odometric tracking. Int. Conf. Robot. Autom. 2019, 4054–4060 (2019).

    Google Scholar 

  140. Li, Y. et al. SuPer: a surgical perception framework for endoscopic tissue manipulation with surgical robotics. IEEE Robot. Autom. Lett. 5, 2294–2301 (2020).

    Article  Google Scholar 

  141. Varier, V. M. et al. Collaborative suturing: a reinforcement learning approach to automate hand-off task in suturing for surgical robots. IEEE Int. Conf. Robot. Hum. Interact. Commun. 2020, 1380–1386 (2020).

    Google Scholar 

  142. Nguyen, T., Nguyen, N. D., Bello, F. & Nahavandi, S. A new tensioning method using deep reinforcement learning for surgical pattern cutting. IEEE Int. Conf. Ind. Technol. 2019, 1339–1344 (2019).

    Google Scholar 

  143. Attanasio, A. et al. Autonomous tissue retraction in robotic assisted minimally invasive surgery – a feasibility study. IEEE Robot. Autom. Lett. 5, 6528–6535 (2020).

    Article  Google Scholar 

  144. Gruijthuijsen, C. et al. Robotic endoscope control via autonomous instrument tracking. Front. Robot. AI 9, 832208 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Shin, C. Autonomous tissue manipulation via surgical robot using learning based model predictive control. Int. Conf. Robot. Autom. 2019, 3875–3881 (2019).

    Google Scholar 

  146. Omisore, O. M. et al. A review on flexible robotic systems for minimally invasive surgery. IEEE Trans. Syst. Man. Cybern. 52, 631–644 (2022).

    Article  Google Scholar 

  147. Martin, J. W. et al. Enabling the future of colonoscopy with intelligent and autonomous magnetic manipulation. Nat. Mach. Intell. 2, 595–606 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Huang, H. E. et al. Autonomous navigation of a magnetic colonoscope using force sensing and a heuristic search algorithm. Sci. Rep. 11, 16491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Loftus, T. J. et al. Intelligent, autonomous machines in surgery. J. Surg. Res. 253, 92–99 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hung, A. J., Chen, J. & Gill, I. S. Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery. JAMA Surg. 153, 770–771 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ahmad, O. F., Stoyanov, D. & Lovat, L. B. Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory issues. Tech. Innov. Gastrointest. Endosc. 22, 80–84 (2020).

    Article  Google Scholar 

  152. Muehlematter, U. J., Daniore, P. & Vokinger, K. N. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis. Lancet Digit. Health 3, 195–203 (2021).

    Article  Google Scholar 

  153. Taghiakbari, M., Mori, Y. & von Renteln, D. Artificial intelligence-assisted colonoscopy: a review of current state of practice and research. World J. Gastroenterol. 27, 8103–8122 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Vulpoi, R.-A. et al. Artificial intelligence in digestive endoscopy — where are we and where are we going? Diagnostics 12, 927 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Mori, Y., Bretthauer, M. & Kalager, M. Hopes and hypes for artificial intelligence in colorectal cancer screening. Gastroenterol 161, 774–777 (2021).

    Article  Google Scholar 

  156. Aisu, N. et al. Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 2020: a systematic review. PLoS Digit. Health 2022, 1–12 (2022).

    Google Scholar 

  157. Mori, Y., Neumann, H., Misawa, M., Kudo, S. & Bretthauer, M. Artificial intelligence in colonoscopy-Now on the market. What’s next? J. Gastroenterol. Hepatol. 36, 7–11 (2021).

    Article  PubMed  Google Scholar 

  158. Parikh, R. B. & Helmchen, L. A. Paying for artificial intelligence in medicine. NPJ Digit. Med. 5, 63 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Europa. Advanced Technologies for Industry – Product Watch. Artificial Intelligence-based software as a medical device. Europa https://ati.ec.europa.eu/sites/default/files/2020-07/ATI%20-%20Artificial%20Intelligence-based%20software%20as%20a%20medical%20device.pdf (2020).

  160. MedTech Europe. Proposed Guiding Principles for Reimbursement of Digital Health Products and Solutions. MedTech Europe https://www.medtecheurope.org/wp-content/uploads/2019/04/30042019_eHSGSubGroupReimbursement.pdf (2019).

  161. Zhou, X. Y. et al. Application of artificial intelligence in surgery. Front. Med. 14, 417–430 (2020).

    Article  PubMed  Google Scholar 

  162. Bayoudh, K. et al. A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. Vis. Comput. 38, 2939–2970 (2022).

    Article  PubMed  Google Scholar 

  163. Luo, X., Mori, K. & Peters, T. M. Advanced endoscopic navigation: surgical big data, methodology, and applications. Annu. Rev. Biomed. Eng. 20, 221–251 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. The MONAI Consortium. Project MONAI. MONAI https://docs.monai.io/en/stable/ (2020).

  165. Rudiman, R. Minimally invasive gastrointestinal surgery: from past to the future. Ann. Med. Surg. 71, 102922 (2021).

    Article  Google Scholar 

  166. Bogdanova, R., Boulanger, P. & Zheng, B. Depth perception of surgeons in minimally invasive surgery. Surg. Innov. 23, 515–524 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) at University College London (203145Z/16/Z), EPSRC (EP/P012841/1, EP/P027938/1 and EP/R004080/1) and the H2020 FET (GA 863146). D.S. is supported by a Royal Academy of Engineering Chair in Emerging Technologies (CiET1819\2\36) and an EPSRC Early Career Research Fellowship (EP/P012841/1).

Author information

Authors and Affiliations

Authors

Contributions

D.S. and F.C. researched data for the article and wrote the article. All authors contributed substantially to discussion of the content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Danail Stoyanov.

Ethics declarations

Competing interests

D.S. is part of Digital Surgery from Medtronic and a shareholder in Odin Vision. L.B.L. is a shareholder in Odin Vision. F.C. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Pietro Valdastri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ORB-SLAM: https://webdiis.unizar.es/~raulmur/orbslam/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chadebecq, F., Lovat, L.B. & Stoyanov, D. Artificial intelligence and automation in endoscopy and surgery. Nat Rev Gastroenterol Hepatol 20, 171–182 (2023). https://doi.org/10.1038/s41575-022-00701-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00701-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research