Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of pruritus in cholestasis: understanding and treating the itch

Abstract

Pruritus in cholestatic liver diseases can be a major burden and dramatically impair the quality of life of those affected. Here, we provide an update on the latest insights into the molecular pathogenesis of and novel therapeutic approaches for cholestasis-associated itch. Endogenous and exogenous small-molecule pruritogen candidates bind to their receptors on unmyelinated itch C-fibres in the skin. Candidate pruritogens in cholestasis include certain lysophospholipids and sulfated progesterone metabolites, among others, whereas total bile acid or bilirubin conjugates seem unlikely to have a dominant role in the pathogenesis of cholestasis-associated pruritus. Transmission of itch signals via primary, secondary and tertiary itch neurons to the postcentral gyrus and activation of scratch responses offer various targets for therapeutic intervention. At present, evidence-based treatment options for pruritus in fibrosing cholangiopathies, such as primary biliary cholangitis and primary sclerosing cholangitis, are the peroxisome proliferator-associated receptor (PPAR) agonist bezafibrate and the pregnane X receptor (PXR) agonist rifampicin. In pruritus of intrahepatic cholestasis of pregnancy, ursodeoxycholic acid is recommended and might be supported in the third trimester by rifampicin if needed. Alternatively, non-absorbable anion exchange resins, such as cholestyramine, can be administered, albeit with poor trial evidence. Liver transplantation for intolerable refractory pruritus has become an extremely rare therapeutic strategy.

Key points

  • Pruritus can be a burdensome symptom, dramatically impairing the quality of life of people affected with a cholestatic liver disease.

  • Potential pruritogens in cholestasis activate a complex neural network leading to the sensation of itch.

  • Candidate pruritogens include certain lysophospholipids and sulfated progesterone metabolites, among others.

  • First-line effective treatment options for pruritus in fibrosing cholangiopathies, such as primary biliary cholangitis and primary sclerosing cholangitis, are the peroxisome proliferator-associated receptor (PPAR) agonist bezafibrate and the pregnane X receptor (PXR) agonist rifampicin.

  • First-line treatment in intrahepatic cholestasis of pregnancy remains ursodeoxycholic acid, supported in the third trimester by rifampicin, if needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential pruritogens in cholestasis-associated pruritus and antipruritic interventions.
Fig. 2: The sensation of pruritus.
Fig. 3: Model of feedback regulation of autotaxin formation by LPA and its receptor.

Similar content being viewed by others

References

  1. Alighieri, D. La Divina Commedia - I. Inferno Canto XXIX (1307–1321).

  2. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J. Hepatol. 51, 237–267 (2009).

    Article  Google Scholar 

  3. Kremer, A. E., Beuers, U., Oude-Elferink, R. P. & Pusl, T. Pathogenesis and treatment of pruritus in cholestasis. Drugs 68, 2163–2182 (2008).

    Article  CAS  Google Scholar 

  4. Bergasa, N. V. The itch of liver disease. Semin. Cutan. Med. Surg. 30, 93–98 (2011).

    Article  CAS  Google Scholar 

  5. Beuers, U., Kremer, A. E., Bolier, R. & Elferink, R. P. Pruritus in cholestasis: facts and fiction. Hepatology 60, 399–407 (2014).

    Article  CAS  Google Scholar 

  6. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: the diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 67, 145–172 (2017).

    Article  Google Scholar 

  7. Mayo, M. J. et al. Impact of pruritus on quality of life and current treatment patterns in patients with primary biliary cholangitis. Dig. Dis. Sci. https://doi.org/10.1007/s10620-022-07581-x (2022).

    Article  Google Scholar 

  8. van Munster, K. N., Dijkgraaf, M. G. W., Oude Elferink, R. P. J., Beuers, U. & Ponsioen, C. Y. Symptom patterns in the daily life of PSC patients. Liver Int. 42, 1562–1570 (2022).

    Article  Google Scholar 

  9. Kenyon, A. P. et al. Pruritus in pregnancy: a study of anatomical distribution and prevalence in relation to the development of obstetric cholestasis. Obstet. Med. 3, 25–29 (2010).

    Article  CAS  Google Scholar 

  10. McPhedran, N. T. & Henderson, R. D. Pruritus and Jaundice. Can. Med. Assoc. J. 92, 1258–1260 (1965).

    CAS  Google Scholar 

  11. Loomba, R. et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology 73, 625–643 (2021).

    Article  CAS  Google Scholar 

  12. Langedijk, J., Beuers, U. H. & Oude Elferink, R. P. J. Cholestasis-associated pruritus and its pruritogens. Front. Med. 8, 639674 (2021).

    Article  Google Scholar 

  13. Kremer, A. E., Feramisco, J., Reeh, P. W., Beuers, U. & Oude Elferink, R. P. Receptors, cells and circuits involved in pruritus of systemic disorders. Biochim. Biophys. Acta 1842, 869–892 (2014).

    Article  CAS  Google Scholar 

  14. Perino, A., Demagny, H., Velazquez-Villegas, L. & Schoonjans, K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol. Rev. 101, 683–731 (2021).

    Article  CAS  Google Scholar 

  15. Fiorucci, S. & Distrutti, E. The pharmacology of bile acids and their receptors. Handb. Exp. Pharmacol. 256, 3–18 (2019).

    Article  CAS  Google Scholar 

  16. Kremer, A. E. et al. Lysophosphatidic acid is a potential mediator of cholestatic pruritus. Gastroenterology 139, 1008–1018 (2010).

    Article  CAS  Google Scholar 

  17. Ghent, C. N., Bloomer, J. R. & Klatskin, G. Elevations in skin tissue levels of bile acids in human cholestasis: relation to serum levels and topruritus. Gastroenterology 73, 1125–1130 (1977).

    Article  CAS  Google Scholar 

  18. Alemi, F. et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J. Clin. Invest. 123, 1513–1530 (2013).

    Article  CAS  Google Scholar 

  19. Yu, H. et al. MRGPRX4 is a bile acid receptor for human cholestatic itch. eLife 8, e48431 (2019).

    Article  CAS  Google Scholar 

  20. de Vries, E. et al. Fibrates for Itch (FITCH) in fibrosing cholangiopathies: a double-blind, randomized, Placebo-controlled trial. Gastroenterology 160, 734–743 (2021).

    Article  Google Scholar 

  21. Beuers, U. et al. Effect of ursodeoxycholic acid on the kinetics of the major hydrophobic bile acids in health and in chronic cholestatic liver disease. Hepatology 15, 603–608 (1992).

    Article  CAS  Google Scholar 

  22. Cole, S. P. et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650–1654 (1992).

    Article  CAS  Google Scholar 

  23. Meixiong, J., Vasavda, C., Snyder, S. H. & Dong, X. MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus. Proc. Natl Acad. Sci. USA 116, 10525–10530 (2019).

    Article  CAS  Google Scholar 

  24. Harms, M. H. et al. Ursodeoxycholic acid therapy and liver transplant-free survival in patients with primary biliary cholangitis. J. Hepatol. 71, 357–365 (2019).

    Article  CAS  Google Scholar 

  25. Hempfling, W., Dilger, K. & Beuers, U. Systematic review: ursodeoxycholic acid — adverse effects and drug interactions. Aliment. Pharmacol. Ther. 18, 963–972 (2003).

    Article  CAS  Google Scholar 

  26. Dilger, K. et al. Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health. J. Hepatol. 57, 133–140 (2012).

    Article  CAS  Google Scholar 

  27. Langedijk, J. et al. Reduced spontaneous itch in mouse models of cholestasis. Sci. Rep. 11, 6127 (2021).

    Article  Google Scholar 

  28. Cipriani, S. et al. Impaired itching perception in murine models of cholestasis is supported by dysregulation of GPBAR1 signaling. PLoS ONE 10, e0129866 (2015).

    Article  Google Scholar 

  29. Lieu, T. et al. The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology 147, 1417–1428 (2014).

    Article  CAS  Google Scholar 

  30. Ostadhadi, S. et al. Evidence for the involvement of nitric oxide in cholestasis-induced itch associated response in mice. Biomed. Pharmacother. 84, 1367–1374 (2016).

    Article  CAS  Google Scholar 

  31. Boyer, J. L. Bile formation and secretion. Compr. Physiol. 3, 1035–1078 (2013).

    Article  Google Scholar 

  32. Nevens, F. et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N. Engl. J. Med. 375, 631–643 (2016).

    Article  CAS  Google Scholar 

  33. Shah, R. A. & Kowdley, K. V. Obeticholic acid for the treatment of nonalcoholic steatohepatitis. Expert Rev. Gastroenterol. Hepatol. 14, 311–321 (2020).

    Article  CAS  Google Scholar 

  34. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    Article  CAS  Google Scholar 

  35. Fiorucci, S. et al. Targeting FXR in cholestasis: hype or hope. Expert Opin. Ther. Targets 18, 1449–1459 (2014).

    CAS  Google Scholar 

  36. Trauner, M. et al. The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis. Hepatology 70, 788–801 (2019).

    Article  CAS  Google Scholar 

  37. Gege, C., Hambruch, E., Hambruch, N., Kinzel, O. & Kremoser, C. Nonsteroidal FXR ligands: current status and clinical applications. Handb. Exp. Pharmacol. 256, 167–205 (2019).

    Article  CAS  Google Scholar 

  38. Kremoser, C. FXR agonists for NASH: How are they different and what difference do they make? J. Hepatol. 75, 12–15 (2021).

    Article  Google Scholar 

  39. Erken, R. et al. Farnesoid X receptor agonist for the treatment of chronic hepatitis B: a safety study. J. Viral Hepat. https://doi.org/10.1111/jvh.13608 (2021).

    Article  Google Scholar 

  40. Kuiper, E. M. et al. The potent bile acid sequestrant colesevelam is not effective in cholestatic pruritus: results of a double-blind, randomized, placebo-controlled trial. Hepatology 52, 1334–1340 (2010).

    Article  CAS  Google Scholar 

  41. Vaz, F. M. et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology 61, 260–267 (2015).

    Article  CAS  Google Scholar 

  42. Van Herpe, F. et al. NTCP deficiency and persistently raised bile salts: an adult case. J. Inherit. Metab. Dis. 40, 313–315 (2017).

    Article  Google Scholar 

  43. Dong, C. et al. Clinical and histopathologic features of sodium taurocholate cotransporting polypeptide deficiency in pediatric patients. Medicine 98, e17305 (2019).

    Article  CAS  Google Scholar 

  44. Zou, T. T., Zhu, Y., Wan, C. M. & Liao, Q. Clinical features of sodium-taurocholate cotransporting polypeptide deficiency in pediatric patients: case series and literature review. Transl. Pediatr. 10, 1045–1054 (2021).

    Article  Google Scholar 

  45. Erlinger, S. NTCP deficiency: a new inherited disease of bile acid transport. Clin. Res. Hepatol. Gastroenterol. 39, 7–8 (2015).

    Article  Google Scholar 

  46. Meixiong, J. et al. Identification of a bilirubin receptor that may mediate a component of cholestatic itch. eLlife https://doi.org/10.7554/eLife.44116 (2019).

    Article  Google Scholar 

  47. Stapelbroek, J. M., van Erpecum, K. J., Klomp, L. W. & Houwen, R. H. Liver disease associated with canalicular transport defects: current and future therapies. J. Hepatol. 52, 258–271 (2010).

    Article  CAS  Google Scholar 

  48. Aronson, S. J. et al. Disease burden and management of Crigler-Najjar syndrome: report of a world registry. Liver Int. 42, 1593–1604 (2022).

    Article  Google Scholar 

  49. Reyes, H. & Sjovall, J. Bile acids and progesterone metabolites in intrahepatic cholestasis of pregnancy. Ann. Med. 32, 94–106 (2000).

    Article  CAS  Google Scholar 

  50. Reyes, H. Sulfated progesterone metabolites in the pathogenesis of intrahepatic cholestasis of pregnancy: another loop in the ascending spiral of medical knowledge. Hepatology 63, 1080–1082 (2016).

    Article  Google Scholar 

  51. Parizek, A. et al. A comprehensive evaluation of steroid metabolism in women with intrahepatic cholestasis of pregnancy. PLoS ONE 11, e0159203 (2016).

    Article  Google Scholar 

  52. Abu-Hayyeh, S. et al. Prognostic and mechanistic potential of progesterone sulfates in intrahepatic cholestasis of pregnancy and pruritus gravidarum. Hepatology https://doi.org/10.1002/hep.28265 (2016).

    Article  Google Scholar 

  53. Hashimoto, T., Ohata, H. & Momose, K. Itch-scratch responses induced by lysophosphatidic acid in mice. Pharmacology 72, 51–56 (2004).

    Article  CAS  Google Scholar 

  54. van Meeteren, L. A. et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol. Cell Biol. 26, 5015–5022 (2006).

    Article  Google Scholar 

  55. Kremer, A. E. et al. Serum autotaxin is increased in pruritus of cholestasis, but not of other origin, and responds to therapeutic interventions. Hepatology 56, 1391–1400 (2012).

    Article  CAS  Google Scholar 

  56. Langedijk, J. et al. Inhibition of autotaxin by bile salts and bile salt-like molecules increases its expression by feedback regulation. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166239 (2021).

    Article  CAS  Google Scholar 

  57. Keune, W. J. et al. Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling. Nat. Commun. 7, 11248 (2016).

    Article  CAS  Google Scholar 

  58. Benesch, M. G., Zhao, Y. Y., Curtis, J. M., McMullen, T. P. & Brindley, D. N. Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate. J. Lipid Res. 56, 1134–1144 (2015).

    Article  CAS  Google Scholar 

  59. Kremer, A. E. et al. Autotaxin activity has a high accuracy to diagnose intrahepatic cholestasis of pregnancy. J. Hepatol. 62, 897–904 (2015).

    Article  CAS  Google Scholar 

  60. Chen, Y. et al. Transient receptor potential vanilloid 4 ion channel functions as a pruriceptor in epidermal keratinocytes to evoke histaminergic itch. J. Biol. Chem. 291, 10252–10262 (2016).

    Article  CAS  Google Scholar 

  61. Chen, Y. et al. Epithelia-sensory neuron cross talk underlies cholestatic itch induced by lysophosphatidylcholine. Gastroenterology 161, 301–317 (2021).

    Article  CAS  Google Scholar 

  62. Li, X. et al. MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene 480, 34–41 (2011).

    Article  CAS  Google Scholar 

  63. Han, Q. et al. miRNA-711 binds and activates TRPA1 extracellularly to evoke acute and chronic pruritus. Neuron 99, 449–463.e6 (2018).

    Article  CAS  Google Scholar 

  64. Park, C. K. et al. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82, 47–54 (2014).

    Article  CAS  Google Scholar 

  65. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on sclerosing cholangitis.J. Hepatol. 77, 761–806 (2022).

    Article  Google Scholar 

  66. Palma, J. et al. Ursodeoxycholic acid in the treatment of cholestasis of pregnancy: a randomized, double-blind study controlled with placebo. J. Hepatol. 27, 1022–1028 (1997).

    Article  CAS  Google Scholar 

  67. Glantz, A., Marschall, H. U., Lammert, F. & Mattsson, L. A. Intrahepatic cholestasis of pregnancy: a randomized controlled trial comparing dexamethasone and ursodeoxycholic acid. Hepatology 42, 1399–1405 (2005).

    Article  CAS  Google Scholar 

  68. Kondrackiene, J., Beuers, U. & Kupcinskas, L. Efficacy and safety of ursodeoxycholic acid versus cholestyramine in intrahepatic cholestasis of pregnancy. Gastroenterology 129, 894–901 (2005).

    Article  CAS  Google Scholar 

  69. Bacq, Y. et al. Efficacy of ursodeoxycholic acid in treating intrahepatic cholestasis of pregnancy: a meta-analysis. Gastroenterology 143, 1492–1501 (2012).

    Article  CAS  Google Scholar 

  70. Gurung, V., Middleton, P., Milan, S. J., Hague, W. & Thornton, J. G. Interventions for treating cholestasis in pregnancy. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000493.pub2 (2013).

    Article  Google Scholar 

  71. Beuers, U., Trauner, M., Jansen, P. & Poupon, R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J. Hepatol. 62 (Suppl. 1), 25–37 (2015).

    Article  Google Scholar 

  72. Beuers, U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 318–328 (2006).

    Article  CAS  Google Scholar 

  73. Chappell, L. C. et al. Ursodeoxycholic acid versus placebo in women with intrahepatic cholestasis of pregnancy (PITCHES): a randomised controlled trial. Lancet 394, 849–860 (2019).

    Article  CAS  Google Scholar 

  74. Chappell, L. C. et al. Ursodeoxycholic acid versus placebo, and early term delivery versus expectant management, in women with intrahepatic cholestasis of pregnancy: semifactorial randomised clinical trial. BMJ 344, e3799 (2012).

    Article  Google Scholar 

  75. Beuers, U. & de Vries, E. Reply to: “UDCA therapy in intrahepatic cholestasis of pregnancy?”. J. Hepatol. 72, 587–588 (2020).

    Article  Google Scholar 

  76. Mitchell, A. L. et al. Re-evaluating diagnostic thresholds for intrahepatic cholestasis of pregnancy: case-control and cohort study. BJOG 128, 1635–1644 (2021).

    Article  CAS  Google Scholar 

  77. de Vries, E. & Beuers, U. Ursodeoxycholic acid in pregnancy? J. Hepatol. 71, 1237–1245 (2019).

    Article  Google Scholar 

  78. Ovadia, C. et al. Ursodeoxycholic acid in intrahepatic cholestasis of pregnancy: a systematic review and individual participant data meta-analysis. Lancet Gastroenterol. Hepatol. 6, 547–558 (2021).

    Article  Google Scholar 

  79. Geenes, V. et al. Rifampicin in the treatment of severe intrahepatic cholestasis of pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 189, 59–63 (2015).

    Article  CAS  Google Scholar 

  80. Hague, W. M. et al. A multi-centre, open label, randomised, parallel-group, superiority Trial to compare the efficacy of URsodeoxycholic acid with RIFampicin in the management of women with severe early onset Intrahepatic Cholestasis of pregnancy: the TURRIFIC randomised trial. BMC Pregnancy Childbirth 21, 51 (2021).

    Article  Google Scholar 

  81. Rust, C. et al. Effect of cholestyramine on bile acid pattern and synthesis during administration of ursodeoxycholic acid in man. Eur. J. Clin. Invest. 30, 135–139 (2000).

    Article  CAS  Google Scholar 

  82. European Association for the Study of the Liver. EASL clinical practice guidelines on sclerosing cholangitis. J. Hepatol. https://doi.org/10.1016/j.jhep.2022.05.011 (2022).

    Article  Google Scholar 

  83. Lindor, K. D. et al. Primary biliary cirrhosis. Hepatology 50, 291–308 (2009).

    Article  Google Scholar 

  84. Agrawal, R. et al. Effectiveness of bezafibrate and ursodeoxycholic acid in patients with primary biliary cholangitis: a meta-analysis of randomized controlled trials. Ann. Gastroenterol. 32, 489–497 (2019).

    Google Scholar 

  85. Lens, S., Leoz, M., Nazal, L., Bruguera, M. & Pares, A. Bezafibrate normalizes alkaline phosphatase in primary biliary cirrhosis patients with incomplete response to ursodeoxycholic acid. Liver Int. 34, 197–203 (2014).

    Article  CAS  Google Scholar 

  86. Reig, A., Sese, P. & Pares, A. Effects of bezafibrate on outcome and pruritus in primary biliary cholangitis with suboptimal ursodeoxycholic acid response. Am. J. Gastroenterol. 113, 49–55 (2018).

    Article  CAS  Google Scholar 

  87. Corpechot, C. et al. A placebo-controlled trial of bezafibrate in primary biliary cholangitis. N. Engl. J. Med. 378, 2171–2181 (2018).

    Article  CAS  Google Scholar 

  88. Hegade, V. S., Jones, D. E. & Hirschfield, G. M. Apical sodium-dependent transporter inhibitors in primary biliary cholangitis and primary sclerosing cholangitis. Dig. Dis. 35, 267–274 (2017).

    Article  Google Scholar 

  89. Hegade, V. S. et al. Effect of ileal bile acid transporter inhibitor GSK2330672 on pruritus in primary biliary cholangitis: a double-blind, randomised, placebo-controlled, crossover, phase 2a study. Lancet 389, 1114–1123 (2017).

    Article  CAS  Google Scholar 

  90. Al-Dury, S. et al. Pilot study with IBAT inhibitor A4250 for the treatment of cholestatic pruritus in primary biliary cholangitis. Sci. Rep. 8, 6658 (2018).

    Article  Google Scholar 

  91. Kamath, B. M., Stein, P., Houwen, R. H. J. & Verkade, H. J. Potential of ileal bile acid transporter inhibition as a therapeutic target in Alagille syndrome and progressive familial intrahepatic cholestasis. Liver Int. 40, 1812–1822 (2020).

    Article  CAS  Google Scholar 

  92. Gonzales, E. et al. Efficacy and safety of maralixibat treatment in patients with Alagille syndrome and cholestatic pruritus (ICONIC): a randomised phase 2 study. Lancet 398, 1581–1592 (2021).

    Article  CAS  Google Scholar 

  93. Baumann, U. et al. Effects of odevixibat on pruritus and bile acids in children with cholestatic liver disease: phase 2 study. Clin. Res. Hepatol. Gastroenterol. 45, 101751 (2021).

    Article  CAS  Google Scholar 

  94. Kumada, H. et al. Efficacy of nalfurafine hydrochloride in patients with chronic liver disease with refractory pruritus: a randomized, double-blind trial. Hepatol. Res. 47, 972–982 (2017).

    Article  CAS  Google Scholar 

  95. Golpanian, R. S., Yosipovitch, G. & Levy, C. Use of butorphanol as treatment for cholestatic itch. Dig. Dis. Sci. 66, 1693–1699 (2021).

    Article  CAS  Google Scholar 

  96. Hegade, V. S. et al. The safety and efficacy of nasobiliary drainage in the treatment of refractory cholestatic pruritus: a multicentre European study. Aliment. Pharmacol. Ther. 43, 294–302 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for stimulating discussions with Hanns-Ulrich Marschall, University of Gothenburg, Sweden, and Catherine Williamson, King’s College London, UK.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ulrich Beuers or Ronald P. J. Oude Elferink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Olivier Chazouilleres, Gil Yosipovitch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beuers, U., Wolters, F. & Oude Elferink, R.P.J. Mechanisms of pruritus in cholestasis: understanding and treating the itch. Nat Rev Gastroenterol Hepatol 20, 26–36 (2023). https://doi.org/10.1038/s41575-022-00687-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00687-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing