Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nerves in gastrointestinal cancer: from mechanism to modulations

Abstract

Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut’s intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.

Key points

  • The gut is a highly innervated, dynamic ecosystem wherein nerves are key for intestinal functioning and homeostasis by communicating with a variety of cell types and the gut microbiome.

  • Neural contributions to gastrointestinal cancers represent a flourishing area of investigation as both intrinsic and extrinsic nerves influence gastrointestinal tumorigenesis via their interplay with cancer cells.

  • Neural-related signals and pathways can influence the cancer hallmarks, interfering with several cancer cell characteristics (metabolism and (epi)genomic stability) and/or supporting a cancer-promoting microenvironment (immune infiltration, extracellular matrix).

  • While neoneurogenesis and axonogenesis are emerging within the gastrointestinal cancer field, both topics require in-depth investigation to identify their exact origin and driving mechanisms.

  • Cancer cells are able to hijack (embryonic) neural pathways to promote their own fitness.

  • Targeting neural cell-derived messengers and their respective receptors holds great promise in the treatment of gastrointestinal cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nervous signalling paths and modulators of the gastrointestinal tract in mammals.
Fig. 2: Cholinergic signalling in gastrointestinal cancers.
Fig. 3: Adrenergic signalling in gastrointestinal cancers.
Fig. 4: Neural-related factors alter the epigenome in gastrointestinal cancer cells.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    PubMed  Google Scholar 

  2. Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–R925 (2020).

    PubMed  PubMed Central  Google Scholar 

  3. Quante, M., Varga, J., Wang, T. C. & Greten, F. R. The gastrointestinal tumor microenvironment. Gastroenterology 145, 63–78 (2013).

    PubMed  Google Scholar 

  4. Zahalka, A. H. & Frenette, P. S. Nerves in cancer. Nat. Rev. Cancer 20, 143–157 (2020). Prominent review highlighting the importance of nerves within the TME in a variety of cancer types.

    PubMed  PubMed Central  Google Scholar 

  5. Mancino, M., Ametller, E., Gascon, P. & Almendro, V. The neuronal influence on tumor progression. Biochim. Biophys. Acta 1816, 105–118 (2011).

    PubMed  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    PubMed  Google Scholar 

  7. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022). Timely revisited view on the hallmarks of cancer, building on the original hallmarks.

    PubMed  Google Scholar 

  8. Furness, J. B., Callaghan, B. P., Rivera, L. R. & Cho, H. J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817, 39–71 (2014).

    PubMed  Google Scholar 

  9. Langley, J. N. The autonomic nervous system. Brain 26, 1–26 (1903).

    Google Scholar 

  10. Furness, J. B. The Enteric Nervous System 1st edn, 288 (Blackwell Publishing, 2006).

  11. Bon-Frauches, A. C. & Boesmans, W. The enteric nervous system: the hub in a star network. Nat. Rev. Gastroenterol. Hepatol. 17, 717–718 (2020).

    PubMed  Google Scholar 

  12. Rao, M. & Gershon, M. D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517–528 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Niesler, B., Kuerten, S., Demir, I. E. & Schafer, K. H. Disorders of the enteric nervous system - a holistic view. Nat. Rev. Gastroenterol. Hepatol. 18, 393–410 (2021).

    PubMed  Google Scholar 

  14. Holland, A. M., Bon-Frauches, A. C., Keszthelyi, D., Melotte, V. & Boesmans, W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol. Life Sci. 78, 4713–4733 (2021).

    PubMed  PubMed Central  Google Scholar 

  15. Rademakers, G. et al. The role of enteric neurons in the development and progression of colorectal cancer. Biochim. Biophys. Acta 1868, 420–434 (2017). The first review summarizing the importance of enteric neurons in colorectal carcinogenesis, focusing on the link between the ENS, inflammation and CRC.

    Google Scholar 

  16. Schledwitz, A., Xie, G. & Raufman, J. P. Exploiting unique features of the gut-brain interface to combat gastrointestinal cancer. J. Clin. Invest. https://doi.org/10.1172/JCI143776 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Griffin, N. et al. Clinicopathological significance of nerves in esophageal cancer. Am. J. Pathol. 190, 1921–1930 (2020).

    PubMed  Google Scholar 

  18. Xu, G. et al. Prognosis and progression of ESCC patients with perineural invasion. Sci. Rep. 7, 43828 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Deng, J. et al. Prognostic value of perineural invasion in gastric cancer: a systematic review and meta-analysis. PLoS ONE 9, e88907 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Tianhang, L., Guoen, F., Jianwei, B. & Liye, M. The effect of perineural invasion on overall survival in patients with gastric carcinoma. J. Gastrointest. Surg. 12, 1263–1264 (2008).

    PubMed  Google Scholar 

  21. Knijn, N., Mogk, S. C., Teerenstra, S., Simmer, F. & Nagtegaal, I. D. Perineural invasion is a strong prognostic factor in colorectal cancer: a systematic review. Am. J. Surg. Pathol. 40, 103–112 (2016). Systematic review depicting the prominence of perineural invasion by summarizing all evidence for its prognostic value for CRC.

    PubMed  Google Scholar 

  22. Liebig, C. et al. Perineural invasion is an independent predictor of outcome in colorectal cancer. J. Clin. Oncol. 27, 5131–5137 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. Zhao, C. M. et al. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.3009569 (2014). Leading research article uncovering the functional importance of parasympathetic nerves in gastric cancer and their highly valuable potential as therapeutic targets. This article paved the way to gain more insights into the role of the nervous system in (gastric) cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Albo, D. et al. Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer 117, 4834–4845 (2011).

    PubMed  Google Scholar 

  25. Mauffrey, P. et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569, 672–678 (2019).

    PubMed  Google Scholar 

  26. Lu, R. et al. Neurons generated from carcinoma stem cells support cancer progression. Signal. Transduct. Target. Ther. 2, 16036 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Weinstein, V. A., Druckerman, L. J., Lyons, A. S. & Colp, R. Gastroenterostomy and vagotomy in the treatment of duodenal ulcer. Ann. Surg. 141, 482–487 (1955).

    PubMed  PubMed Central  Google Scholar 

  28. Kraft, R. O., Myers, J., Overton, S. & Fry, W. J. Vagotomy and the gastric ulcer. Am. J. Surg. 121, 122–128 (1971).

    PubMed  Google Scholar 

  29. Calmels, S., Bereziat, J. C., Ohshima, H. & Bartsch, H. Bacterial formation of N-nitroso compounds from administered precursors in the rat stomach after omeprazole-induced achlorhydria. Carcinogenesis 12, 435–439 (1991).

    PubMed  Google Scholar 

  30. Moller, H., Nissen, A. & Mosbech, J. Use of cimetidine and other peptic ulcer drugs in Denmark 1977-1990 with analysis of the risk of gastric cancer among cimetidine users. Gut 33, 1166–1169 (1992).

    PubMed  PubMed Central  Google Scholar 

  31. Rabben, H. L., Zhao, C. M., Hayakawa, Y., Wang, T. C. & Chen, D. Vagotomy and gastric tumorigenesis. Curr. Neuropharmacol. 14, 967–972 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Tatsuta, M., Iishi, H., Yamamura, H., Baba, M. & Taniguchi, H. Effects of bilateral and unilateral vagotomy on gastric carcinogenesis induced by N-methyl-N’-nitro-N-nitrosoguanidine in Wistar rats. Int. J. Cancer 42, 414–418 (1988).

    PubMed  Google Scholar 

  33. Kim, S. J. & Choi, C. W. Common locations of gastric cancer: review of research from the endoscopic submucosal dissection era. J. Korean Med. Sci. 34, e231 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Cassaro, M. et al. Topographic patterns of intestinal metaplasia and gastric cancer. Am. J. Gastroenterol. 95, 1431–1438 (2000).

    PubMed  Google Scholar 

  35. Liu, V. et al. Extrinsic intestinal denervation modulates tumor development in the small intestine of ApcMin/+ mice. J. Exp. Clin. Cancer Res. 34, 39 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. Nelson, R. L., Briley, S., Vaz, O. P. & Abcarian, H. The effect of vagotomy and pyloroplasty on colorectal tumor induction in the rat. J. Surg. Oncol. 51, 281–286 (1992).

    PubMed  Google Scholar 

  37. Bayón Lara, A. M. et al. Colonic carcinogenesis in vagotomyzed rats. Rev. Esp. Enferm. Dig. 93, 576–586 (2001).

    PubMed  Google Scholar 

  38. Caygill, C. P., Hill, M. J., Hall, C. N., Kirkham, J. S. & Northfield, T. C. Increased risk of cancer at multiple sites after gastric surgery for peptic ulcer. Gut 28, 924–928 (1987).

    PubMed  PubMed Central  Google Scholar 

  39. Bundred, N. J. et al. Gastric surgery and the risk of subsequent colorectal cancer. Br. J. Surg. 72, 618–619 (1985).

    PubMed  Google Scholar 

  40. Watt, P. C., Patterson, C. C. & Kennedy, T. L. Late mortality after vagotomy and drainage for duodenal ulcer. Br. Med. J. 288, 1335–1338 (1984).

    Google Scholar 

  41. Tatsuta, M., Iishi, H., Baba, M. & Taniguchi, H. Inhibitions by 6-hydroxydopamine and neostigmine singly or together of gastric carcinogenesis induced by N-methyl-N’-nitro-N-nitrosoguanidine in Wistar rats. Int. J. Cancer 51, 767–771 (1992).

    PubMed  Google Scholar 

  42. Tatsuta, M., Iishi, H., Baba, M. & Taniguchi, H. Inhibition of azoxymethane-induced experimental colon carcinogenesis in Wistar rats by 6-hydroxydopamine. Int. J. Cancer 50, 298–301 (1992).

    PubMed  Google Scholar 

  43. Sadighparvar, S., Darband, S. G., Ghaderi-Pakdel, F., Mihanfar, A. & Majidinia, M. Parasympathetic, but not sympathetic denervation, suppressed colorectal cancer progression. Eur. J. Pharmacol. 913, 174626 (2021).

    PubMed  Google Scholar 

  44. Miyato, H., Kitayama, J., Ishigami, H., Kaisaki, S. & Nagawa, H. Loss of sympathetic nerve fibers around intratumoral arterioles reflects malignant potential of gastric cancer. Ann. Surg. Oncol. 18, 2281–2288 (2011).

    PubMed  Google Scholar 

  45. Gao, J. & Liu, S. G. Role of sympathetic and parasympathetic nerves in the development of gastric cancer through antagonism. Chin. Med. J. 134, 908–909 (2021).

    PubMed  PubMed Central  Google Scholar 

  46. Bae, G. E. et al. Lower sympathetic nervous system density and beta-adrenoreceptor expression are involved in gastric cancer progression. Anticancer Res. 39, 231–236 (2019).

    PubMed  Google Scholar 

  47. Borresen, T., Henriksen, O. B. & Christensen, N. J. Decreased norepinephrine concentration in normal tissue neighboring a malignant tumor. Cancer Res. 40, 4320–4321 (1980).

    PubMed  Google Scholar 

  48. Garcia, S. B., Minto, S. B., Marques, I. D. S. & Kannen, V. Myenteric denervation of the gut with benzalkonium chloride: a review of forty years of an experimental model. Can. J. Gastroenterol. Hepatol. 2019, 3562492 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Zucoloto, S. et al. Effect of chemical ablation of myenteric neurones on intestinal cell proliferation. Cell Tissue Kinet. 21, 213–219 (1988).

    PubMed  Google Scholar 

  50. Romanello, L. M. F. Effect of destruction of myenteric neurons of rat stomach by benzalkonium chloride on gastric acid secretion and gastrin release. Gut 32, 594 (1991).

    Google Scholar 

  51. Febronio, L. H., Britto-Garcia, S., de Oliveira, J. S. & Zucoloto, S. Megaesophagus in rats. Res. Exp. Med. 197, 109–115 (1997).

    Google Scholar 

  52. Polli-Lopes, A. C., Zucoloto, S., de Queiros Cunha, F., da Silva Figueiredo, L. A. & Garcia, S. B. Myenteric denervation reduces the incidence of gastric tumors in rats. Cancer Lett. 190, 45–50 (2003).

    PubMed  Google Scholar 

  53. Vespucio, M. V. et al. Intrinsic denervation of the colon is associated with a decrease of some colonic preneoplastic markers in rats treated with a chemical carcinogen. Braz. J. Med. Biol. Res. 41, 311–317 (2008).

    PubMed  Google Scholar 

  54. Estofolete, C. F., Zucoloto, S., Oliani, S. M., Polli-Lopes, A. C. & Gil, C. D. Myenteric denervation downregulates galectin-1 and -3 expression in gastric carcinogenesis. Dig. Dis. Sci. 56, 1637–1644 (2011).

    PubMed  Google Scholar 

  55. Sato, A. et al. Pathophysiology of aganglionic colon and anorectum: an experimental study on aganglionosis produced by a new method in the rat. J. Pediatr. Surg. 13, 399–435 (1978).

    PubMed  Google Scholar 

  56. Garcia, S. B., Oliveira, J. S. M., Pinto, L. Z., Muccillo, G. & Zucoloto, S. The relationship between megacolon and carcinoma of the colon: an experimental approach. Carcinogenesis 17, 1777–1779 (1996).

    PubMed  Google Scholar 

  57. Munari, F. F. et al. The relationship between esophageal cancer, chagasic megaesophagus and HPV: myths, tales or reality? Histol. Histopathol. 33, 1135–1149 (2018).

    PubMed  Google Scholar 

  58. Kennedy, M. F., Tutton, P. J. & Barkla, D. H. Adrenergic factors involved in the control of crypt cell proliferation in jejunum and descending colon of mouse. Clin. Exp. Pharmacol. Physiol. 10, 577–586 (1983).

    PubMed  Google Scholar 

  59. Berthoud, H. R., Carlson, N. R. & Powley, T. L. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am. J. Physiol. 260, R200–R207 (1991).

    PubMed  Google Scholar 

  60. Aloe, L. Rita Levi-Montalcini and the discovery of NGF, the first nerve cell growth factor. Arch. Ital. Biol. 149, 175–181 (2011).

    PubMed  Google Scholar 

  61. Liu, S. M. Neurotrophic factors in enteric physiology and pathophysiology. Neurogastroent. Motil. https://doi.org/10.1111/nmo.13446 (2018).

    Article  Google Scholar 

  62. Schonkeren, S. L., Thijssen, M. S., Vaes, N., Boesmans, W. & Melotte, V. The emerging role of nerves and glia in colorectal cancer. Cancers https://doi.org/10.3390/cancers13010152 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hayakawa, Y. et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31, 21–34 (2017). Prominent research paper describing that cholinergic signalling affects gastric carcinogenesis in vitro and in vivo.

    PubMed  Google Scholar 

  64. Wang, L. et al. Muscarinic receptor M3 mediates cell proliferation induced by acetylcholine and contributes to apoptosis in gastric cancer. Tumour Biol. 37, 2105–2117 (2016).

    PubMed  Google Scholar 

  65. Cheng, K. et al. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G591–G597 (2008).

    PubMed  PubMed Central  Google Scholar 

  66. Yang, W. L. & Frucht, H. Cholinergic receptor up-regulates COX-2 expression and prostaglandin E(2) production in colon cancer cells. Carcinogenesis 21, 1789–1793 (2000).

    PubMed  Google Scholar 

  67. Frucht, H., Gazdar, A. F., Park, J. A., Oie, H. & Jensen, R. T. Characterization of functional receptors for gastrointestinal hormones on human colon cancer cells. Cancer Res. 52, 1114 (1992).

    PubMed  Google Scholar 

  68. Cheng, K. R., Zimniak, P. & Raufman, J. P. Transactivation of the epidermal growth factor receptor mediates cholinergic agonist-induced proliferation of h508 human colon cancer cells. Cancer Res. 63, 6744–6750 (2003).

    PubMed  Google Scholar 

  69. Yu, H. et al. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci. Rep. 7, 40802–40802 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Raufman, J. P. et al. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res. 68, 3573–3578 (2008).

    PubMed  PubMed Central  Google Scholar 

  71. Cai, J., Maitra, A., Anders, R. A., Taketo, M. M. & Pan, D. β-Catenin destruction complex-independent regulation of Hippo-YAP signaling by APC in intestinal tumorigenesis. Genes Dev. 29, 1493–1506 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. Rosenbluh, J. et al. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457–1473 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. Schaak, S. et al. Alpha2 adrenoceptors regulate proliferation of human intestinal epithelial cells. Gut 47, 242–250 (2000).

    PubMed  PubMed Central  Google Scholar 

  74. Peng, Z., Heath, J., Drachenberg, C., Raufman, J. P. & Xie, G. Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis. BMC Cancer 13, 204 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. Xie, G., Cheng, K., Shant, J. & Raufman, J. P. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G755–G763 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Zhong, L. R., Estes, S., Artinian, L. & Rehder, V. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors. Dev. Neurobiol. 73, 487–501 (2013).

    PubMed  Google Scholar 

  77. Jobling, P. et al. Nerve-cancer cell cross-talk: a novel promoter of tumor progression. Cancer Res. 75, 1777–1781 (2015).

    PubMed  Google Scholar 

  78. Buffin-Meyer, B. et al. EGF receptor transactivation and PI3-kinase mediate stimulation of ERK by α2A-adrenoreceptor in intestinal epithelial cells: a role in wound healing. Eur. J. Pharmacol. 574, 85–93 (2007).

    PubMed  Google Scholar 

  79. Zhang, X. et al. Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2. Cell Death Dis. 10, 788 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. Ogawa, H. et al. Prognostic significance of β2-adrenergic receptor expression in patients with surgically resected colorectal cancer. Int. J. Clin. Oncol. 25, 1137–1144 (2020).

    PubMed  Google Scholar 

  81. Shi, M. et al. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer. Mol. Cancer 9, 269 (2010).

    PubMed  PubMed Central  Google Scholar 

  82. Shan, T. et al. Novel regulatory program for norepinephrine-induced epithelial-mesenchymal transition in gastric adenocarcinoma cell lines. Cancer Sci. 105, 847–856 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Lu, Y. J. et al. Isoprenaline induces epithelial-mesenchymal transition in gastric cancer cells. Mol. Cell Biochem. 408, 1–13 (2015).

    PubMed  Google Scholar 

  84. Njeim, R. & Eid, A. Alpha-2c adrenergic receptor promotes the malignant phenotype of colon cancer cells. FASEB J. 32, 695.5 (2018).

    Google Scholar 

  85. Zhi, X. et al. Adrenergic modulation of AMPKdependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer. Int. J. Oncol. 54, 1625–1638 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. Chin, C. C. et al. Selective β2-AR blockage suppresses colorectal cancer growth through regulation of EGFR-Akt/ERK1/2 signaling, G1-phase arrest, and apoptosis. J. Cell Physiol. 231, 459–472 (2016).

    PubMed  Google Scholar 

  87. Griffin, N. et al. The neurotrophic tyrosine kinase receptor 1 (TrkA) is overexpressed in oesophageal squamous cell carcinoma. Pathology 53, 470–477 (2021).

    PubMed  Google Scholar 

  88. Okumura, T. et al. The biological role of the low-affinity p75 neurotrophin receptor in esophageal squamous cell carcinoma. Clin. Cancer Res. 12, 5096–5103 (2006).

    PubMed  Google Scholar 

  89. Chen, H. et al. NGFR increases the chemosensitivity of colorectal cancer cells by enhancing the apoptotic and autophagic effects of 5-fluorouracil via the activation of S100A9. Front. Oncol. 11, 652081 (2021).

    PubMed  PubMed Central  Google Scholar 

  90. Yang, Z. et al. Epigenetic inactivation and tumor-suppressor behavior of NGFR in human colorectal cancer. Mol. Cancer Res. 13, 107–119 (2015).

    PubMed  Google Scholar 

  91. Allen, J. K. et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 78, 3233–3242 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Akil, H., Perraud, A., Melin, C., Jauberteau, M. O. & Mathonnet, M. Fine-tuning roles of endogenous brain-derived neurotrophic factor, TrkB and sortilin in colorectal cancer cell survival. PLoS ONE 6, e25097 (2011).

    PubMed  PubMed Central  Google Scholar 

  93. Perrone, M. G., Notarnicola, M., Caruso, M. G., Tutino, V. & Scilimati, A. Upregulation of beta3-adrenergic receptor mRNA in human colon cancer: a preliminary study. Oncology 75, 224–229 (2008).

    PubMed  Google Scholar 

  94. Douma, S. et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430, 1034–1039 (2004).

    PubMed  Google Scholar 

  95. Fujikawa, H. et al. High TrkB expression levels are associated with poor prognosis and EMT induction in colorectal cancer cells. J. Gastroenterol. 47, 775–784 (2012).

    PubMed  Google Scholar 

  96. Meng, L. et al. Targeting the BDNF/TrkB pathway for the treatment of tumors. Oncol. Lett. 17, 2031–2039 (2019).

    PubMed  Google Scholar 

  97. de Farias, C. B. et al. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition. Biochem. Biophys. Res. Commun. 425, 328–332 (2012).

    PubMed  Google Scholar 

  98. Huang, S. M. et al. Brain-derived neurotrophic factor regulates cell motility in human colon cancer. Endocr. Relat. Cancer 22, 455–464 (2015).

    PubMed  Google Scholar 

  99. Yang, X., Martin, T. A. & Jiang, W. G. Biological influence of brain-derived neurotrophic factor (BDNF) on colon cancer cells. Exp. Ther. Med. 6, 1475–1481 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. Mescher, A. L., Connell, E., Hsu, C., Patel, C. & Overton, B. Transferrin is necessary and sufficient for the neural effect on growth in amphibian limb regeneration blastemas. Dev. Growth Differ. 39, 677–684 (1997).

    PubMed  Google Scholar 

  101. Wang, L., Marchionni, M. A. & Tassava, R. A. Cloning and neuronal expression of a type III newt neuregulin and rescue of denervated, nerve-dependent newt limb blastemas by rhGGF2. J. Neurobiol. 43, 150–158 (2000).

    PubMed  Google Scholar 

  102. Smith, M. J., Globus, M. & Vethamany-Globus, S. Nerve extracts and substance P activate the phosphatidylinositol signaling pathway and mitogenesis in newt forelimb regenerates. Dev. Biol. 167, 239–251 (1995).

    PubMed  Google Scholar 

  103. Boesmans, W. et al. Development, diversity, and neurogenic capacity of enteric glia. Front. Cell Dev. Biol. 9, 775102 (2021).

    PubMed  Google Scholar 

  104. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000). Landmark paper describing the original hallmarks of cancer, that is, the acquired, functional and biological capacities that govern neoplastic transformation.

    PubMed  Google Scholar 

  105. Senga, S. S. & Grose, R. P. Hallmarks of cancer-the new testament. Open Biol. https://doi.org/10.1098/rsob.200358 (2021). New perspective to add neuronal signalling to the hallmarks of cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    PubMed  Google Scholar 

  107. Wang, W. et al. Nerves in the tumor microenvironment: origin and effects. Front. Cell Dev. Biol. 8, 601738 (2020).

    PubMed  PubMed Central  Google Scholar 

  108. Klagsbrun, M. & Eichmann, A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor. Rev. 16, 535–548 (2005).

    PubMed  Google Scholar 

  109. Gysler, S. M. & Drapkin, R. Tumor innervation: peripheral nerves take control of the tumor microenvironment. J. Clin. Invest. https://doi.org/10.1172/JCI147276 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ekstrand, A. J. et al. Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. Proc. Natl Acad. Sci. USA 100, 6033–6038 (2003).

    PubMed  PubMed Central  Google Scholar 

  111. Nuevo-Tapioles, C. et al. Coordinate beta-adrenergic inhibition of mitochondrial activity and angiogenesis arrest tumor growth. Nat. Commun. 11, 3606 (2020).

    PubMed  PubMed Central  Google Scholar 

  112. Chen, S. H. et al. Perineural invasion of cancer: a complex crosstalk between cells and molecules in the perineural niche. Am. J. Cancer Res. 9, 1–21 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321–326 (2017). One of the first studies to indicate that the nervous system affects the angiometabolic switch in prostate cancer cells.

    PubMed  PubMed Central  Google Scholar 

  114. Liu, J. et al. The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. Psychoneuroendocrinology 52, 130–142 (2015).

    PubMed  Google Scholar 

  115. Zamani, A. & Qu, Z. C. Serotonin activates angiogenic phosphorylation signaling in human endothelial cells. FEBS Lett. 586, 2360–2365 (2012).

    PubMed  Google Scholar 

  116. Nocito, A. et al. Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res. 68, 5152–5158 (2008).

    PubMed  Google Scholar 

  117. Chakroborty, D. et al. Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin. Cancer Res. 10, 4349–4356 (2004).

    PubMed  Google Scholar 

  118. Sarkar, C. et al. Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 287, H1554–H1560 (2004).

    PubMed  Google Scholar 

  119. Sarkar, C., Chakroborty, D., Chowdhury, U. R., Dasgupta, P. S. & Basu, S. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin. Cancer Res. 14, 2502–2510 (2008).

    PubMed  Google Scholar 

  120. Basu, S. et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat. Med. 7, 569–574 (2001).

    PubMed  Google Scholar 

  121. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    PubMed  Google Scholar 

  122. Hering, N. A. et al. Blockage of cholinergic signaling via muscarinic acetylcholine receptor 3 inhibits tumor growth in human colorectal adenocarcinoma. Cancers 13, 3220 (2021).

    PubMed  PubMed Central  Google Scholar 

  123. Belo, A. et al. Muscarinic receptor agonists stimulate human colon cancer cell migration and invasion. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G749–G760 (2011).

    PubMed  PubMed Central  Google Scholar 

  124. Raufman, J. P. et al. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells. Biochem. Biophys. Res. Commun. 415, 319–324 (2011).

    PubMed  PubMed Central  Google Scholar 

  125. Sawayama, H., Ishimoto, T. & Baba, H. Microenvironment in the pathogenesis of gastric cancer metastasis. J. Cancer Metastasis Treat. 4, 10 (2018).

    Google Scholar 

  126. Samantaray, S., Sharma, R., Chattopadhyaya, T. K., Gupta, S. D. & Ralhan, R. Increased expression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 130, 37–44 (2004).

    PubMed  Google Scholar 

  127. Li, Y. et al. Overexpression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma. Dis. Esophagus 22, 664–667 (2009).

    PubMed  Google Scholar 

  128. Masur, K., Niggemann, B., Zanker, K. S. & Entschladen, F. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res. 61, 2866–2869 (2001).

    PubMed  Google Scholar 

  129. Lei, Y. et al. Nerve growth factor orchestrates NGAL and matrix metalloproteinases activity to promote colorectal cancer metastasis. Clin. Transl. Oncol. https://doi.org/10.1007/s12094-021-02666-x (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jin, H. F. et al. P75 neurotrophin receptor inhibits invasion and metastasis of gastric cancer. Mol. Cancer Res. 5, 423–433 (2007).

    PubMed  Google Scholar 

  131. Okugawa, Y. et al. Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br. J. Cancer 108, 121–130 (2013).

    PubMed  Google Scholar 

  132. Szpunar, M. J., Burke, K. A., Dawes, R. P., Brown, E. B. & Madden, K. S. The antidepressant desipramine and α2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure. Cancer Prev. Res. 6, 1262–1272 (2013).

    Google Scholar 

  133. Ganguly, D. et al. Cancer-associated fibroblasts: versatile players in the tumor microenvironment. Cancers https://doi.org/10.3390/cancers12092652 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    PubMed  PubMed Central  Google Scholar 

  135. Ping, Q. R. et al. Cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Ther. 28, 984–999 (2021).

    PubMed  Google Scholar 

  136. Kobayashi, H. et al. Cancer-associated fibroblasts in gastrointestinal cancer. Nat. Rev. Gastro Hepat. 16, 282–295 (2019).

    Google Scholar 

  137. Akbareian, S. E. et al. Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev. Biol. 382, 446–456 (2013).

    PubMed  PubMed Central  Google Scholar 

  138. Nagy, N. et al. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development. Development https://doi.org/10.1242/dev.160317 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Vaes, N. et al. Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Rep. https://doi.org/10.15252/embr.202051913 (2021). Research paper addressing the role of enteric neural-derived ECM proteins in CRC.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Estofolete, C. F. et al. Effects of myenteric denervation on extracellular matrix fibers and mast cell distribution in normal stomach and gastric lesions. Cancer Cell Int. 10, 18 (2010).

    PubMed  PubMed Central  Google Scholar 

  141. Li, J. et al. Elastin is a key factor of tumor development in colorectal cancer. BMC Cancer https://doi.org/10.1186/s12885-020-6686-x (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wang, Y., Song, E. C. & Resnick, M. B. in Tumor Microenvironment: Extracellular Matrix Components – Part B (ed. Birbrair, A.) 1–16 (Springer International Publishing, 2020).

  143. Patel, P. R. et al. Norepinephrine reduces reactive oxygen species (ROS) and DNA damage in ovarian surface epithelial cells. J. Bioanal. Biomed. 7, 75–80 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Rizzi, E. et al. β1-Adrenergic blockers exert antioxidant effects, reduce matrix metalloproteinase activity, and improve renovascular hypertension-induced cardiac hypertrophy. Free Radic. Biol. Med. 73, 308–317 (2014).

    PubMed  Google Scholar 

  145. Sakita, J. Y. et al. Serotonin synthesis protects the mouse colonic crypt from DNA damage and colorectal tumorigenesis. J. Pathol. 249, 102–113 (2019).

    PubMed  Google Scholar 

  146. Eckerling, A., Ricon-Becker, I., Sorski, L., Sandbank, E. & Ben-Eliyahu, S. Stress and cancer: mechanisms, significance and future directions. Nat. Rev. Cancer 21, 767–785 (2021).

    PubMed  Google Scholar 

  147. Hara, M. R. et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature 477, 349–353 (2011).

    PubMed  PubMed Central  Google Scholar 

  148. Sun, F. et al. Adrenergic DNA damage of embryonic pluripotent cells via β2 receptor signalling. Sci. Rep. 5, 15950 (2015).

    PubMed  PubMed Central  Google Scholar 

  149. Lamboy-Caraballo, R. et al. Norepinephrine-induced DNA damage in ovarian cancer cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21062250 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Dialynas, G. K., Vitalini, M. W. & Wallrath, L. L. Linking heterochromatin protein 1 (HP1) to cancer progression. Mutat. Res. 647, 13–20 (2008).

    PubMed  PubMed Central  Google Scholar 

  151. Ruginis, T., Taglia, L., Matusiak, D., Lee, B. S. & Benya, R. V. Consequence of gastrin-releasing peptide receptor activation in a human colon cancer cell line: a proteomic approach. J. Proteome Res. 5, 1460–1468 (2006).

    PubMed  Google Scholar 

  152. Zeng, W., Ball, A. R. Jr. & Yokomori, K. HP1: heterochromatin binding proteins working the genome. Epigenetics 5, 287–292 (2010).

    PubMed  Google Scholar 

  153. Cornelio, D. B., Roesler, R. & Schwartsmann, G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann. Oncol. 18, 1457–1466 (2007).

    PubMed  Google Scholar 

  154. Tell, R. et al. Gastrin-releasing peptide signaling alters colon cancer invasiveness via heterochromatin protein 1Hsβ. Am. J. Pathol. 178, 672–678 (2011).

    PubMed  PubMed Central  Google Scholar 

  155. Schwartsmann, G. et al. A phase I trial of the bombesin/gastrin-releasing peptide (BN/GRP) antagonist RC3095 in patients with advanced solid malignancies. Invest. New Drugs 24, 403–412 (2006).

    PubMed  Google Scholar 

  156. Brunetto de Farias, C. et al. BDNF/TrkB content and interaction with gastrin-releasing peptide receptor blockade in colorectal cancer. Oncology 79, 430–439 (2010).

    PubMed  Google Scholar 

  157. Rick, F. G. et al. Combination of gastrin-releasing peptide antagonist with cytotoxic agents produces synergistic inhibition of growth of human experimental colon cancers. Cell Cycle 11, 2518–2525 (2012).

    PubMed  PubMed Central  Google Scholar 

  158. Zhao, S. et al. Histone H3Q5 serotonylation stabilizes H3K4 methylation and potentiates its readout. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2016742118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ye, D. et al. Targeting SERT promotes tryptophan metabolism: mechanisms and implications in colon cancer treatment. J. Exp. Clin. Cancer Res. 40, 173 (2021).

    PubMed  PubMed Central  Google Scholar 

  160. Rabben, H. L. et al. Neural signaling modulates metabolism of gastric cancer. iScience 24, 102091 (2021). Important study identifying a metabolic signature in gastric cancer as well as the reversibility of this metabolic reprogramming by vagotomy.

    PubMed  PubMed Central  Google Scholar 

  161. Song, Z., Wei, B., Lu, C., Li, P. & Chen, L. Glutaminase sustains cell survival via the regulation of glycolysis and glutaminolysis in colorectal cancer. Oncol. Lett. 14, 3117–3123 (2017).

    PubMed  PubMed Central  Google Scholar 

  162. Hao, Y. et al. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat. Commun. 7, 11971 (2016).

    PubMed  PubMed Central  Google Scholar 

  163. Qie, S. et al. Targeting glutamine-addiction and overcoming CDK4/6 inhibitor resistance in human esophageal squamous cell carcinoma. Nat. Commun. 10, 1296 (2019).

    PubMed  PubMed Central  Google Scholar 

  164. Zhao, Y. et al. Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Sci. Rep. 9, 19180 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. Shi, M., Liu, D., Yang, Z. & Guo, N. Central and peripheral nervous systems: master controllers in cancer metastasis. Cancer Metastasis Rev. 32, 603–621 (2013).

    PubMed  Google Scholar 

  166. Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 14, 555–565 (2021).

    PubMed  PubMed Central  Google Scholar 

  167. Hodo, T. W., de Aquino, M. T. P., Shimamoto, A. & Shanker, A. Critical neurotransmitters in the neuroimmune network. Front. Immunol. 11, 1869 (2020).

    PubMed  PubMed Central  Google Scholar 

  168. Qiao, G. et al. β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol. Immunother. 68, 11–22 (2019).

    PubMed  Google Scholar 

  169. Salmon, H., Remark, R., Gnjatic, S. & Merad, M. Host tissue determinants of tumour immunity. Nat. Rev. Cancer 19, 215–227 (2019).

    PubMed  PubMed Central  Google Scholar 

  170. Wang, H. et al. Role of the nervous system in cancers: a review. Cell Death Discov. 7, 76 (2021).

    PubMed  PubMed Central  Google Scholar 

  171. Rihawi, K. et al. Tumor-associated macrophages and inflammatory microenvironment in gastric cancer: novel translational implications. Int. J. Mol. Sci. 22, 3805 (2021).

    PubMed  PubMed Central  Google Scholar 

  172. Kitamura, T., Qian, B. Z. & Pollard, J. W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15, 73–86 (2015).

    PubMed  PubMed Central  Google Scholar 

  173. Kuol, N., Stojanovska, L., Apostolopoulos, V. & Nurgali, K. Crosstalk between cancer and the neuro-immune system. J. Neuroimmunol. 315, 15–23 (2018).

    PubMed  Google Scholar 

  174. Qin, J.-F. et al. Adrenergic receptor β2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment. BMB Rep. 48, 295–300 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Lamkin, D. M. et al. β-Adrenergic-stimulated macrophages: comprehensive localization in the M1-M2 spectrum. Brain Behav. Immun. 57, 338–346 (2016).

    PubMed  PubMed Central  Google Scholar 

  176. Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    PubMed  PubMed Central  Google Scholar 

  177. Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78.e16 (2020).

    PubMed  PubMed Central  Google Scholar 

  178. Park, J. Y. et al. Polarized CD163+ tumor-associated macrophages are associated with increased angiogenesis and CXCL12 expression in gastric cancer. Clin. Res. Hepatol. Gastroenterol. 40, 357–365 (2016).

    PubMed  Google Scholar 

  179. Nakayama, Y. et al. Relationships between tumor-associated macrophages and clinicopathological factors in patients with colorectal cancer. Anticancer Res. 22, 4291–4296 (2002).

    PubMed  Google Scholar 

  180. Herrera, M. et al. Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci. 104, 437–444 (2013).

    PubMed  PubMed Central  Google Scholar 

  181. Koelzer, V. H. et al. Phenotyping of tumor-associated macrophages in colorectal cancer: impact on single cell invasion (tumor budding) and clinicopathological outcome. Oncoimmunology https://doi.org/10.1080/2162402X.2015.1106677 (2016).

    Article  PubMed  Google Scholar 

  182. Zhong, X. M., Chen, B. & Yang, Z. W. The role of tumor-associated macrophages in colorectal carcinoma progression. Cell Physiol. Biochem. 45, 356–365 (2018).

    PubMed  Google Scholar 

  183. Pages, F. et al. International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    PubMed  Google Scholar 

  184. Zhang, Z. et al. Development of a prognostic signature for esophageal cancer based on nine immune related genes. BMC Cancer 21, 113 (2021).

    PubMed  PubMed Central  Google Scholar 

  185. Zhang, N. et al. Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: a meta-analysis and experimental validation. Arch. Med. Sci. 16, 1092–1103 (2020).

    PubMed  Google Scholar 

  186. Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    PubMed  Google Scholar 

  187. Costa, P. A. C. et al. Chemogenetic modulation of sensory neurons reveals their regulating role in melanoma progression. Acta Neuropathol. Commun. 9, 183 (2021).

    PubMed  PubMed Central  Google Scholar 

  188. Dai, S. et al. Chronic stress promotes cancer development. Front. Oncol. 10, 1492 (2020).

    PubMed  PubMed Central  Google Scholar 

  189. Bucsek, M. J. et al. β-Adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res. 77, 5639–5651 (2017).

    PubMed  PubMed Central  Google Scholar 

  190. Nakai, A., Hayano, Y., Furuta, F., Noda, M. & Suzuki, K. Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors. J. Exp. Med. 211, 2583–2598 (2014).

    PubMed  PubMed Central  Google Scholar 

  191. Tavazoie, M. F. et al. LXR/ApoE activation restricts innate immune suppression in cancer. Cell 172, 825–840.e18 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. Guo, W. et al. Prognostic value of PD-L1 in esophageal squamous cell carcinoma: a meta-analysis. Oncotarget 9, 13920–13933 (2018).

    PubMed  Google Scholar 

  193. Li, Y. et al. The prognostic and clinicopathological roles of PD-L1 expression in colorectal cancer: a systematic review and meta-analysis. Front. Pharmacol. 10, 139 (2019).

    PubMed  PubMed Central  Google Scholar 

  194. Gu, L. et al. PD-L1 and gastric cancer prognosis: a systematic review and meta-analysis. PLoS ONE 12, e0182692 (2017).

    PubMed  PubMed Central  Google Scholar 

  195. Wang, L. et al. Immune sculpting of norepinephrine on MHC-I, B7-1, IDO and B7-H1 expression and regulation of proliferation and invasion in pancreatic carcinoma cells. PLoS ONE 7, e45491 (2012).

    PubMed  PubMed Central  Google Scholar 

  196. Mo, R. J. et al. Expression of PD-L1 in tumor-associated nerves correlates with reduced CD8+ tumor-associated lymphocytes and poor prognosis in prostate cancer. Int. J. Cancer 144, 3099–3110 (2019).

    PubMed  Google Scholar 

  197. Kuol, N. et al. Cholinergic signalling influences the expression of immune checkpoint inhibitors, PD-L1 and PD-L2, in human colorectal cancer tissues and cell lines. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-665274/v1 (2021).

    Article  Google Scholar 

  198. Hou, N. et al. A novel chronic stress-induced shift in the Th1 to Th2 response promotes colon cancer growth. Biochem. Biophys. Res. Commun. 439, 471–476 (2013).

    PubMed  Google Scholar 

  199. Qiao, G. X. et al. Chronic adrenergic stress contributes to metabolic dysfunction and an exhausted phenotype in T cells in the tumor microenvironment. Cancer Immunol. Res. 9, 651–664 (2021).

    PubMed  PubMed Central  Google Scholar 

  200. Mitsui, T. et al. Truncal vagotomy temporarily decreases the pro- and anti-inflammatory cytokine levels in the small intestine. Surg. Today 44, 1123–1127 (2014).

    PubMed  Google Scholar 

  201. Costa, A. C., Santos, J. M. O., Gil da Costa, R. M. & Medeiros, R. Impact of immune cells on the hallmarks of cancer: a literature review. Crit. Rev. Oncol. Hematol. 168, 103541 (2021).

    PubMed  Google Scholar 

  202. Saloman, J. L. et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl Acad. Sci. USA 113, 3078–3083 (2016).

    PubMed  PubMed Central  Google Scholar 

  203. Barres, B. A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    PubMed  Google Scholar 

  204. Seguella, L. & Gulbransen, B. D. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat. Rev. Gastroenterol. Hepatol. 18, 571–587 (2021). Prominent review discussing enteric glial heterogeneity and their functional roles in gastrointestinal pathophysiology.

    PubMed  PubMed Central  Google Scholar 

  205. Rosenberg, H. J. & Rao, M. Enteric glia in homeostasis and disease: from fundamental biology to human pathology. iScience 24, 102863 (2021).

    PubMed  PubMed Central  Google Scholar 

  206. Boesmans, W. et al. Structurally defined signaling in neuro-glia units in the enteric nervous system. Glia 67, 1167–1178 (2019).

    PubMed  PubMed Central  Google Scholar 

  207. Ahmadzai, M. M., Seguella, L. & Gulbransen, B. D. Circuit-specific enteric glia regulate intestinal motor neurocircuits. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2025938118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Vergnolle, N. & Cirillo, C. Neurons and glia in the enteric nervous system and epithelial barrier function. Physiology 33, 269–280 (2018).

    PubMed  PubMed Central  Google Scholar 

  209. Neunlist, M. et al. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 90–100 (2013). Renowned review summarizing the importance of the ENS for maintenance of intestinal epithelial barrier integrity, thereby putting forward the digestive 'neuronal–glial–epithelial unit'.

    PubMed  Google Scholar 

  210. Vales, S. et al. Tumor cells hijack enteric glia to activate colon cancer stem cells and stimulate tumorigenesis. EBioMedicine 49, 172–188 (2019). This paper is one of the first functional studies describing glia as part of the TME.

    PubMed  PubMed Central  Google Scholar 

  211. Neunlist, M. et al. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G231–G241 (2007).

    PubMed  Google Scholar 

  212. Liu, Y. A. et al. 3-D imaging, illustration, and quantitation of enteric glial network in transparent human colon mucosa. Neurogastroenterol. Motil. 25, e324–e338 (2013).

    PubMed  Google Scholar 

  213. Godlewski, J. & Kmiec, Z. Colorectal cancer invasion and atrophy of the enteric nervous system: potential feedback and impact on cancer progression. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21093391 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Yuan, R. et al. Enteric glia play a critical role in promoting the development of colorectal cancer. Front. Oncol. https://doi.org/10.3389/fonc.2020.595892 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Baghdadi, M. B. et al. Enteric glial cell heterogeneity regulates intestinal stem cell niches. Cell Stem Cell 29, 86–100.e6 (2022).

    PubMed  Google Scholar 

  216. Progatzky, F. & Pachnis, V. Enteric glia bring fresh WNT to the intestinal stem cell niche. Cell Stem Cell 29, 3–4 (2022).

    PubMed  Google Scholar 

  217. Boesmans, W. et al. Imaging neuron-glia interactions in the enteric nervous system. Front. Cell Neurosci. https://doi.org/10.3389/fncel.2013.00183 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Rolig, A. S. et al. The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biol. https://doi.org/10.1371/journal.pbio.2000689 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Ge, Y. et al. Gut microbiota influence tumor development and Alter interactions with the human immune system. J. Exp. Clin. Cancer Res. 40, 42 (2021).

    PubMed  PubMed Central  Google Scholar 

  220. De Vadder, F. et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl Acad. Sci. USA 115, 6458–6463 (2018).

    PubMed  PubMed Central  Google Scholar 

  221. Collins, J., Borojevic, R., Verdu, E. F., Huizinga, J. D. & Ratcliffe, E. M. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroent. Motil. 26, 98–107 (2014).

    Google Scholar 

  222. Vicentini, F. A. et al. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome 9, 210 (2021).

    PubMed  PubMed Central  Google Scholar 

  223. Kabouridis, P. S. et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85, 289–295 (2015).

    PubMed  PubMed Central  Google Scholar 

  224. Obata, Y. et al. Neuronal programming by microbiota regulates intestinal physiology. Nature 578, 284–289 (2020).

    PubMed  Google Scholar 

  225. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science https://doi.org/10.1126/science.abc4552 (2021). A detailed overview of the known links between the microbiome and various types of cancer, including the microbiome–cancer–immune crosstalk.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Lofgren, J. L. et al. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 140, 210–220 (2011).

    PubMed  Google Scholar 

  227. Zhan, Y. et al. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res. 73, 7199–7210 (2013).

    PubMed  Google Scholar 

  228. Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019). Summary of the evidence linking CRC to the gut microbiome, with specific attention to the clinical applicability of this knowledge.

    PubMed  Google Scholar 

  229. Takiishi, T., Fenero, C. I. M. & Camara, N. O. S. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers https://doi.org/10.1080/21688370.2017.1373208 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    PubMed  PubMed Central  Google Scholar 

  231. Zhou, J. & Boutros, M. JNK-dependent intestinal barrier failure disrupts host-microbe homeostasis during tumorigenesis. Proc. Natl Acad. Sci. USA 117, 9401–9412 (2020).

    PubMed  PubMed Central  Google Scholar 

  232. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    PubMed  Google Scholar 

  233. Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183, 666–683.e17 (2020).

    PubMed  PubMed Central  Google Scholar 

  234. Piscione, M., Mazzone, M., Di Marcantonio, M. C., Muraro, R. & Mincione, G. Eradication of helicobacter pylori and gastric cancer: a controversial relationship. Front. Microbiol. 12, 630852 (2021).

    PubMed  PubMed Central  Google Scholar 

  235. Butt, J. & Epplein, M. Helicobacter pylori and colorectal cancer — a bacterium going abroad? PLoS Pathog. https://doi.org/10.1371/journal.ppat.1007861 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Sticlaru, L. et al. Dangerous liaison: helicobacter pylori, ganglionitis, and myenteric gastric neurons: a histopathological study. Anal. Cell Pathol. https://doi.org/10.1155/2019/3085181 (2019).

    Article  Google Scholar 

  237. Gorle, N., Bauwens, E., Haesebrouck, F., Smet, A. & Vandenbroucke, R. E. Helicobacter and the potential role in neurological disorders: there is more than Helicobacter pylori. Front. Immunol. https://doi.org/10.3389/fimmu.2020.584165 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Ramirez, V. T. et al. T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium. PLoS Pathog. 15, e1007719 (2019).

    PubMed  PubMed Central  Google Scholar 

  239. Colosimo, D. A. et al. Mapping interactions of microbial metabolites with human G-protein-coupled receptors. Cell Host Microbe 26, 273–282.e7 (2019).

    PubMed  PubMed Central  Google Scholar 

  240. Chen, H. W. et al. A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell 177, 1217–1231.e18 (2019).

    PubMed  PubMed Central  Google Scholar 

  241. Choudhry, H. The microbiome and its implications in cancer immunotherapy. Molecules https://doi.org/10.3390/molecules26010206 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Wang, T. T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012).

    PubMed  Google Scholar 

  243. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    PubMed  PubMed Central  Google Scholar 

  244. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    PubMed  Google Scholar 

  245. Smukler, S. R., Runciman, S. B., Xu, S. & van der Kooy, D. Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J. Cell Biol. 172, 79–90 (2006).

    PubMed  PubMed Central  Google Scholar 

  246. Przyborski, S. A. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cell 23, 1242–1250 (2005).

    Google Scholar 

  247. Germain, N. D. et al. Teratocarcinoma formation in embryonic stem cell-derived neural progenitor hippocampal transplants. Cell Transpl. 21, 1603–1611 (2012).

    Google Scholar 

  248. Xu, L. et al. Neural stemness contributes to cell tumorigenicity. Cell Biosci. 11, 21 (2021).

    PubMed  PubMed Central  Google Scholar 

  249. Nagy, N. & Goldstein, A. M. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin. Cell Dev. Biol. 66, 94–106 (2017).

    PubMed  PubMed Central  Google Scholar 

  250. Munro, M. J., Wickremesekera, S. K., Peng, L., Tan, S. T. & Itinteang, T. Cancer stem cells in colorectal cancer: a review. J. Clin. Pathol. 71, 110–116 (2018).

    PubMed  Google Scholar 

  251. Sakakibara, S. et al. Mouse-musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230–242 (1996).

    PubMed  Google Scholar 

  252. Ji, G. et al. PCGF1 promotes epigenetic activation of stemness markers and colorectal cancer stem cell enrichment. Cell Death Dis. 12, 633 (2021).

    PubMed  PubMed Central  Google Scholar 

  253. Guan, A. et al. MiR-330-3p inhibits gastric cancer progression through targeting MSI1. Am. J. Transl. Res. 8, 4802–4811 (2016).

    PubMed  PubMed Central  Google Scholar 

  254. Gao, C. et al. Downregulation of Msi1 suppresses the growth of human colon cancer by targeting p21cip1. Int. J. Oncol. 46, 732–740 (2015).

    PubMed  Google Scholar 

  255. Yang, W. et al. Identification of hub genes and therapeutic drugs in esophageal squamous cell carcinoma based on integrated bioinformatics strategy. Cancer Cell Int. 19, 142 (2019).

    PubMed  PubMed Central  Google Scholar 

  256. Yang, Y. et al. Identification of regulatory role of DNA methylation in colon cancer gene expression via systematic bioinformatics analysis. Medicine 96, e8487 (2017).

    PubMed  PubMed Central  Google Scholar 

  257. Fan, J. et al. Genome-wide DNA methylation profiles of low- and high-grade adenoma reveals potential biomarkers for early detection of colorectal carcinoma. Clin. Epigenetics 12, 56 (2020).

    PubMed  PubMed Central  Google Scholar 

  258. Rademakers, G. et al. Identification of DNA methylation markers for early detection of CRC indicates a role for nervous system-related genes in CRC. Clin. Epigenetics 13, 80 (2021).

    PubMed  PubMed Central  Google Scholar 

  259. Zhang, Z. et al. Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. J. Biol. Chem. 292, 12842–12859 (2017). One of the earliest reports that highlight neural stemness in cancer cells.

    PubMed  PubMed Central  Google Scholar 

  260. Lei, A. et al. EZH2 regulates protein stability via recruiting USP7 to mediate neuronal gene expression in cancer cells. Front. Genet. 10, 422 (2019).

    PubMed  PubMed Central  Google Scholar 

  261. Chang, P. Y. et al. Propranolol reduces cancer risk: a population-based cohort study. Medicine 94, e1097 (2015).

    PubMed  PubMed Central  Google Scholar 

  262. Ahl, R. et al. Effects of beta-blocker therapy on mortality after elective colon cancer surgery: a Swedish nationwide cohort study. BMJ Open 10, e036164 (2020).

    PubMed  PubMed Central  Google Scholar 

  263. Reda, S. et al. Pre-operative beta-blocker therapy does not affect short-term mortality after esophageal resection for cancer. BMC Surg. 20, 333 (2020).

    PubMed  PubMed Central  Google Scholar 

  264. Fiala, O. et al. Incidental use of beta-blockers is associated with outcome of metastatic colorectal cancer patients treated with bevacizumab-based therapy: a single-institution retrospective analysis of 514 patients. Cancers https://doi.org/10.3390/cancers11121856 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Deng, Y. et al. Effects of antihypertensive drugs use on risk and prognosis of colorectal cancer: a meta-analysis of 37 observational studies. Front. Pharmacol. 12, 670657 (2021).

    PubMed  Google Scholar 

  266. Liao, X. et al. Effects of propranolol in combination with radiation on apoptosis and survival of gastric cancer cells in vitro. Radiat. Oncol. 5, 98 (2010).

    PubMed  PubMed Central  Google Scholar 

  267. MacDonald, C. R. et al. Adrenergic receptor signaling regulates the response of tumors to ionizing radiation. Radiat. Res. 191, 585–589 (2019).

    PubMed  PubMed Central  Google Scholar 

  268. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03245554 (2018).

  269. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04005365 (2019).

  270. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04682158 (2021).

  271. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03919461 (2019).

  272. Felton, J., Hu, S. & Raufman, J. P. Targeting M3 muscarinic receptors for colon cancer therapy. Curr. Mol. Pharmacol. 11, 184–190 (2018).

    PubMed  PubMed Central  Google Scholar 

  273. Ali, O., Tolaymat, M., Hu, S., Xie, G. & Raufman, J. P. Overcoming obstacles to targeting muscarinic receptor signaling in colorectal cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22020716 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  274. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01822210 (2018).

  275. Jin, W. Roles of TrkC signaling in the regulation of tumorigenicity and metastasis of cancer. Cancers https://doi.org/10.3390/cancers12010147 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  276. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03556228 (2022).

  277. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02650401 (2022).

  278. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02219711 (2020).

  279. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02568267 (2022).

  280. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02576431 (2022).

  281. Aboody, K. S., Najbauer, J. & Danks, M. K. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther. 15, 739–752 (2008).

    PubMed  Google Scholar 

  282. Park, G. T., Kim, S. U. & Choi, K. C. Anti-proliferative effect of engineered neural stem cells expressing cytosine deaminase and interferon-beta against lymph node-derived metastatic colorectal adenocarcinoma in cellular and xenograft mouse models. Cancer Res. Treat. 49, 79–91 (2017).

    PubMed  Google Scholar 

  283. Yi, B. R. et al. Suppression of the growth of human colorectal cancer cells by therapeutic stem cells expressing cytosine deaminase and interferon-beta via their tumor-tropic effect in cellular and xenograft mouse models. Mol. Oncol. 7, 543–554 (2013).

    PubMed  PubMed Central  Google Scholar 

  284. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02015819 (2021).

  285. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03072134 (2022).

  286. Sharma, M. & Flood, P. M. in Neuroprotection Ch. 4 https://doi.org/10.5772/intechopen.81343 (IntechOpen, 2019).

  287. Costa, M., Brookes, S. J. & Hennig, G. W. Anatomy and physiology of the enteric nervous system. Gut 47 (Suppl. 4), iv15–iv19 (2000).

    PubMed  PubMed Central  Google Scholar 

  288. Brookes, S., Chen, N., Humenick, A., Spencer, N. J. & Costa, M. Extrinsic sensory innervation of the gut: structure and function. Adv. Exp. Med. Biol. 891, 63–69 (2016).

    PubMed  Google Scholar 

  289. Beyak, M. J. et al. in Physiology of the Gastrointestinal Tract 4th edn (ed. Johnsond, L. R.) 685–725 (Academic Press, 2006).

  290. Ratcliffe, E. M. Molecular development of the extrinsic sensory innervation of the gastrointestinal tract. Auton. Neurosci. 161, 1–5 (2011).

    PubMed  Google Scholar 

  291. Brierley, S. M. & Linden, D. R. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 11, 611–627 (2014).

    PubMed  Google Scholar 

  292. Furness, J. B. Novel gut afferents: Intrinsic afferent neurons and intestinofugal neurons. Auton. Neurosci. 125, 81–85 (2006).

    PubMed  Google Scholar 

  293. Saffrey, M. J. in Encyclopedia of Neuroscience (ed. Squire, L. R.) 1097–1102 (Academic Press, 2009).

  294. Campbell, I. Gut motility and its control. Anaesth. Intensive Care Med. 13, 59–61 (2012).

    Google Scholar 

  295. Mohs, F. E. & Lathrop, T. G. Modes of spread of cancer of skin. AMA Arch. Derm. Syphilol. 66, 427–439 (1952).

    PubMed  Google Scholar 

  296. Batsakis, J. G. Nerves and neurotropic carcinomas. Ann. Otol. Rhinol. Laryngol. 94, 426–427 (1985).

    PubMed  Google Scholar 

  297. Veness, M. J. Perineural spread in head and neck skin cancer. Australas. J. Dermatol. 41, 117–119 (2000).

    PubMed  Google Scholar 

  298. Fagan, J. J. et al. Perineural invasion in squamous cell carcinoma of the head and neck. Arch. Otolaryngol. Head Neck Surg. 124, 637–640 (1998).

    PubMed  Google Scholar 

  299. Bockman, D. E., Buchler, M. & Beger, H. G. Interaction of pancreatic ductal carcinoma with nerves leads to nerve damage. Gastroenterology 107, 219–230 (1994).

    PubMed  Google Scholar 

  300. Nagakawa, T. et al. Patterns of neural and plexus invasion of human pancreatic cancer and experimental cancer. Int. J. Pancreatol. 10, 113–119 (1991).

    PubMed  Google Scholar 

  301. Liebig, C., Ayala, G., Wilks, J. A., Berger, D. H. & Albo, D. Perineural invasion in cancer: a review of the literature. Cancer 115, 3379–3391 (2009).

    PubMed  Google Scholar 

  302. Ayala, G. E. et al. In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 49, 213–223 (2001).

    PubMed  Google Scholar 

  303. Mirkin, K. A. et al. Impact of perineural invasion on survival in node negative colon cancer. Cancer Biol. Ther. 18, 740–745 (2017).

    PubMed  PubMed Central  Google Scholar 

  304. Hu, G., Li, L. & Hu, K. Clinical implications of perineural invasion in patients with colorectal cancer. Medicine 99, e19860 (2020).

    PubMed  PubMed Central  Google Scholar 

  305. Duchalais, E. et al. Colorectal cancer cells adhere to and migrate along the neurons of the enteric nervous system. Cell Mol. Gastroenterol. Hepatol. 5, 31–49 (2018).

    PubMed  Google Scholar 

  306. Bakst, R. L. et al. Perineural invasion and perineural tumor spread in head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 103, 1109–1124 (2019).

    PubMed  Google Scholar 

  307. Chi, A. C., Katabi, N., Chen, H. S. & Cheng, Y. L. Interobserver variation among pathologists in evaluating perineural invasion for oral squamous cell carcinoma. Head. Neck Pathol. 10, 451–464 (2016).

    PubMed  PubMed Central  Google Scholar 

  308. Schmitd, L. B., Scanlon, C. S. & D’Silva, N. J. Perineural invasion in head and neck cancer. J. Dent. Res. 97, 742–750 (2018).

    PubMed  PubMed Central  Google Scholar 

  309. Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017).

    PubMed  Google Scholar 

  310. Metchnikoff, E. The wilde medal and lecture of the manchester literary and philosophical society. Br. Med. J. 1, 1027–1028 (1901).

    Google Scholar 

  311. Hyland, N. P. & Cryan, J. F. Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system. Dev. Biol. 417, 182–187 (2016).

    PubMed  Google Scholar 

  312. Rodriguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26, 26050 (2015).

    PubMed  Google Scholar 

  313. Gagniere, J. et al. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 22, 501–518 (2016).

    PubMed  PubMed Central  Google Scholar 

  314. Natividad, J. M. M. & Verdu, E. F. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol. Res. 69, 42–51 (2013).

    PubMed  Google Scholar 

  315. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).

    PubMed  PubMed Central  Google Scholar 

  316. Baumler, A. J. & Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535, 85–93 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is financially supported by VENI-NWO grant (016.186.124) obtained by V.M., the Kootstra Talent Fellowship grant (Maastricht University) obtained by N.V. and the Hestia – NWO grant (VidW.1154.18.045) obtained by M.I and V.M.

Author information

Authors and Affiliations

Authors

Contributions

N.V., M.I. and V.M. researched data for and wrote the article. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Veerle Melotte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Jean-Pierre Raufman, who co-reviewed with Alyssa Schledwitz; Brian Davis; Brian Gulbransen; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaes, N., Idris, M., Boesmans, W. et al. Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 19, 768–784 (2022). https://doi.org/10.1038/s41575-022-00669-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00669-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer